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The linear amplification of modal disturbances that lead to boundary-layer transition in
two-dimensional/axisymmetric hypersonic configurations is strongly reduced by the presence
of a blunt nosetip, and the mechanisms underlying the observed onset of transition over the
cone frustum are currently unknown. Linear nonmodal analysis has shown that both planar
and oblique traveling disturbances that peak within the entropy layer experience appreciable
energy amplification for moderate to large nosetip bluntness. The present study extends
the previous linear analysis by including the nonlinear effects. Specifically, the perturbation
form of the 2D, harmonic Navier-Stokes equations (HNSE) are solved with a fully implicit
formulation and the Newton-Raphson method. The increased number of degrees of freedom
for the nonlinear system presents difficulties for solution strategies based on direct solution of
the linearized system. Such difficulties are overcome by using the GMRES iterative method
with a preconditioner corresponding to a simplified Jacobianwithout the cross derivative terms.
TheHNSE solver is verified by comparingwith nonlinear parabolized stability equation (NPSE)
results for the nonlinear evolution of planar waves in an incompressible Blasius boundary layer
and in a Mach 6 flow over a blunt cone. Finally, nonlinear nonmodal results are presented for
planar traveling disturbances over the blunt cone. The nonmodal analysis demonstrates that
entropy-layer disturbances generated close to the nose tip can seed the amplification of higher
frequency Mack’s second-mode instabilities further downstream.

Nomenclature

� = disturbance amplitude
� = disturbance energy
� = gain
ℎC = total enthalpy [kg m2 s−2]
ℎb = streamwise metric factor
ℎZ = azimuthal metric factor
< = azimuthal wavenumber [rad−1]
" = Mach number
= = Fourier mode
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=l = number of Fourier modes
# = logarithmic amplification factor
q̂ = vector of amplitude variables
q̆ = vector of disturbance function variables
q̄ = vector of base flow variables
q̃ = vector of perturbation variables
'4G = Reynolds number based on streamwise location
' = local Reynolds number
'4∞ = freestream unit Reynolds number [m−1]
'4'#

= Reynolds number based on nosetip radius
'# = nosetip radius [m]
) = temperature [K]
)F = wall temperature [K]
(D, E, F) = streamwise, wall-normal, and azimuthal velocity components [m s−1]
(G, H, I) = Cartesian coordinates
U = streamwise wavenumber [m−1]
Xℎ = boundary-layer thickness [m]
^ = streamwise curvature [m−1]
l = disturbance angular frequency [s−1]
d = density [kg m−3]
(b, [, Z) = streamwise, wall-normal, and azimuthal coordinates
Superscripts
∗ = dimensional value
Subscript
∞ = freestream value
A<B = root-mean-square
0 = initial position
1 = final position
) = transition location

I. Introduction
The importance of transition prediction in the hypersonic regime is paramount to the survival of a vehicle as the

surface heating has a significant impact on the structure. It remains a complex issue to accurately predict the location
and intensity of the transition, and canonical geometries such as flat plates and cones are used in both wind tunnel
experiments and computational analyses to further understand the onset and development of transition [1–3]. A thorough
review concerning boundary-layer transition on sharp and blunt cones at hypersonic speeds is provided by Schneider [4].
The review notes modal growth of Mack-mode instabilities (second-mode waves) being responsible for laminar-turbulent
transition on sharp axisymmetric cones at zero degrees angle of attack. This conclusion was reached following both
experimental and numerical studies. Previous work by Stetson [5] identified the effect of increasing the nosetip Reynolds
number ('4'#

), leading to the formation of an entropy layer stabilizing the Mack-mode instabilities, consistent with
experimental results demonstrating a displacement of the transition onset downstream. But this trend eventually reverses
beyond a critical nosetip bluntness. This reversal phenomenon has been explored by Paredes et al. [6], where wind
tunnel measurements from Mach 6 to 10 highlighted the nosetip roughness influence on the beginning of transition.

Transition reversal has also been experimentally reported on blunted flat plates by Lysenko [7]. The transition
mechanism is somewhat different from blunted cones due to shorter entropy-layer swallowing length and azimuthal
spreading. Work by Goparaju et al. [8] studied the effects of leading-edge bluntness on the receptivity and stability
of the boundary layer over a flat plate at zero degrees angle of attack and Mach 6 flow conditions. Direct numerical
simulations (DNS) were conducted with random forcing upstream of the model. The results show a change in the
induced boundary-layer disturbances as the flat-plate bluntness was increased. The instability waves for the blunter
models were observed near the generalized inflection point of the entropy layer above the boundary-layer edge and
resembled the nonmodal entropy-layer waves captured by Paredes et al. [9] for blunt cones. In a follow-up work,
Scholten et al. [10] performed linear modal and nonmodal analysis on the same flat plate geometries at Mach 4 and 6
and obtained good agreement between the identified frequencies and spanwise wavenumbers of the most amplified
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disturbances. The increase in leading edge radius of the flat plate led to a decrease in the amplification of modal
instability. However, the nonmodal analysis established the appreciable amplification of disturbances in the boundary-
and entropy-layer disturbances at large enough nose radius.

Experimental measurements by Hill [11] and Hill et al. [12] at the Air Force Research Laboratory Mach 6 Ludwieg
Tube have focused on disturbance evolution over a series of sharp and blunt ogive-cylinder geometries. Interchangeable
forebodies followed by a cylindrical section allowed instability measurements past the entropy-layer swallowing location.
The ogive forebodies were designed specifically to control the shock curvature, which in turn alters the entropy layer
structure and strength, both playing a crucial role in external instability growth [13, 14]. The frequency and azimuthal
wavenumber of the observed disturbances were then obtained numerically by Scholten et al. [15] by using linear modal
and nonmodal analyses. The disturbance shape was also compared with experimental schlieren images and validated the
wall-normal location of the disturbances. The numerical study by Hartman et al. [16] targeted an oblique breakdown
via a stronger nonlinear mechanism that leads to transition over a shorter downstream distance as compared to the
breakdown via a fundamental or subharmonic resonance.

DNS are now offering new insights into boundary-layer transition in conventional ground facilities that suffer from
acoustic noise emanating from the turbulent boundary layer over the nozzle walls and is not encountered in hypersonic
flight [17–20]. The results from a hypersonic wind-tunnel DNS by Liu et al. [21] with a blunt cone of 5.2 mm at zero
AoA and flow conditions of the Sandia Hypersonic Wind Tunnel 8 (HWT-8), i.e., Mach 8 and freestream Reynolds
number of 12.2 × 106 m-1 ('4'#

= 63, 440), show that the spectra of wall-pressure and heat-transfer fluctuations
recover the signature of the axisymmetric entropy-layer waves predicted by the nonmodal analysis. Nevertheless, the
transition is anticipated to occur at a later stage, as indicated by the findings from the blunt cone experiments conducted
by Jewell et al. [22] and Marineau et al. [23] in a Mach 6 facility at the Air Force Research Laboratory (AFRL) and
during Mach 10 tests in the AEDC Hypervelocity Wind Tunnel Number, respectively. As summarized by Paredes et al.
[6], there is a drop in the second Mack’s mode N-factor at the transition onset location for '4'#

> 40, 000, but the
transition onset continues to correlate with low values of the N-factor up to approximately '4'#

≈ 500, 000. The
physical mechanisms responsible for the correlation of the transition onset location with low values of the Mack’s mode
N-factor are unknown. The potential interaction of the axisymmetric nonmodal entropy-layer disturbances with the
Mack’s second mode are investigated in the present work.

The popularity of solving the parabolized stability equations (PSE) stems from its economy as an efficient analysis
tool to identify and propagate a single disturbance entity at specified frequency or a group of disturbances that are nearly
phase synchronized with each other. Although the PSE have been used for linear and nonlinear stability analysis in
weakly nonparallel flows, the limiting assumptions on the spatial gradients in the flow and the restriction of solution
accuracy to the dominating mode hinders PSE application to flows with mode interactions [24]. The Nonlinear PSE
(NPSE) presented by Bertolotti et al. [25] and Chang and Malik [26] are still affected by the limitations explained in
Ref. [24] but in addition, the disturbance behavior of one frequency can affect the behavior of other frequencies through
nonlinear interactions, allowing for the study of nonlinear evolution of linear disturbances as performed by Paredes et al.
[27] on cones. Reference [27] not only reports an excellent agreement between the NPSE and DNS predictions, but also
that nonlinear interactions of the primary linear nonmodal disturbances can lead to stationary streaks that amplify in
the boundary layer and lead to transition onset for moderate amplitudes of the inflow disturbance. In this work, the
linear nonmodal disturbances were used as the inflow for the nonlinear calculations. However, the nonlinear interactions
can lead to different optimal results as shown by Ref. [28] for an incompressible Blasius boundary layer flow. In this
work, we extend the linear nonmodal analysis performed in Refs. [6, 9] by including the nonlinear effects on disturbance
development. By assuming a time periodic form for the perturbations, the harmonic Navier-Stokes equations (HNSE)
are used as an efficient method to solve nonlinear disturbances. An inherent challenge in this development is related to
the numerical treatment of time advancement. An explicit solver in time does not scale well when the spatial grid is
refined and will eventually lead to convergence issues during the solution of the discretized HNSE. In contrast, solving
implicitly in time allows for a significant performance gain resulting from the lack of restrictions on the time-stepping
integration. However, the implicit formulation requires the inversion of a very large matrix and iterative methods can
greatly reduce the computational requirements of a direct method [28]. Thus, the iterative methods form a significant
component of efficient solutions to the HNSE.

The theoretical approach is outlined in Section II with a description of the governing equations as well as the implicit
solution process. In Section III, the HNSE solver is verified against NPSE results for two separate cases: the nonlinear
evolution of Tollmien-Schlichting waves in an incompressible flat-plate boundary layer flow and the development of
Mack’s second modes over a Mach 6 blunt cone. Linear and nonlinear nonmodal results are also presented for the Mach
6 blunt cone configuration. Concluding remarks are given in Section IV.
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II. Theory
The harmonic linear Navier-Stokes equations (HLNSE) formulation of Refs. [6, 9] for the study of linear modal

and nonmodal stability analysis of the boundary layer over blunt, circular cones at hypersonic conditions is extended
to include nonlinear effects with the harmonic Navier-Stokes equations (HNSE) and study the nonlinear, nonmodal
analysis of such configurations. The linear and nonlinear parabolized stability equations, LPSE and NPSE, respectively,
are used to verify the HNSE solver.

A. Governing Equations for Modal and Nonmodal Disturbances
For the two-dimensional/axisymmetric geometries of interest here, the computational coordinates are defined as

an orthogonal, body-fitted coordinate system, with (b, [, Z) denoting the streamwise, wall-normal, and azimuthal
coordinates, respectively, and (D, E, F) representing the corresponding velocity components. Density and temperature
are denoted by d and ) . The Cartesian coordinates are represented by (G, H, I). The vector of perturbation variables is
denoted by q̃(b, [, Z , C) = ( d̃, D̃, Ẽ, F̃, )̃)) and the vector of disturbance functions is q̆(b, [, Z) = ( d̆, D̆, Ĕ, F̆, )̆)) . The
vector of basic state variables is q̄(b, [, Z) = ( d̄, D̄, Ē, F̄, )̄)) . For two-dimensional/axisymmetric geometries, the basic
state variables are independent of the azimuthal coordinate.

For linear analysis, the perturbations can be assumed to be harmonic in time and in the azimuthal direction, which
lead to the following expression for the perturbations,

q̃(b, [, Z , C) = q̆(b, [) exp [i (<Z − lC)] + c.c., (1)

where < is the azimuthal wavenumber and l is the angular frequency. In two-dimensional geometries, the azimuthal
wavenumber < is substituted by the spanwise wavenumber V. The disturbance functions q̆(b, [, Z) satisfy the HLNSE
[6], which the linear operators depend on for the basic state variables and parameters, and on the angular frequency and
azimuthal wavenumber of the perturbation.

For nonlinear analysis, the perturbation form of the HNSE is used. A fully implicit formulation is proposed by
discretizing the azimuthal direction and the time domains with the periodic Fourier spectral collocation method [29, 30].
The definition of the first and second derivative matrix coefficients on a periodic grid depends on the choice of grid
points, N, being even or odd. Here, N is always chosen odd for this discretization, and represents the number of
Fourier modes being solved, =l , by # = 2=l + 1. The computational domain is selected in the range [0, 2c] and the
computational mesh spacing is ℎ = 2c/# . The elements of the first derivative operator, D, are written as

D8, 9 =
{ 0, 8 = 9

1
2 (−1)8+ 9csc

[
(8− 9) c
#

]
, 8 ≠ 9

(2)

where 8, 9 = 1, ..., # . The computational domain is scaled to the physical domain by using the selected fundamental
wavelength for the azimuthal direction or fundamental frequency for time.

The HNSE, F(q̃) = 0, are solved with the Newton-Raphson method as

LΔq̃ = −F, (3)

where Δq̃ denotes the change in perturbation variables and L is the Jacobian of the nonlinear equations, L = mF
mq and,

therefore, is equivalent to the HLNSE operator. Following each Newton-Raphson iteration, the solution is updated with
the solution of Eq. 3, q̃ 9+1 = q̃ 9 + Δq̃ until convergence is achieved. The right-preconditioned GMRES method [31] is
used to converge the linear system. The preconditioning is based on a simplified matrix that corresponds to the overall
Jacobian, but without the cross derivative terms. The LU decomposition of the preconditioner matrix is performed with
the sparse direct solver MUMPS [32, 33] for the first linear system solution, and is recomputed in the course of the
nonlinear iterative steps if the GMRES method fails to converge. Pseudotransient continuation is used to facilitate the
convergence of the solution [34].

The PSE approximation to the HNSE is based on isolating the rapid phase variations in the streamwise direction
by introducing a phase term. Furthermore, the disturbance variables are expanded in terms of their truncated Fourier
components assuming they are periodic in time as follows

q̃(b, [, Z , C) =
=l∑

==−=l
q̂= (b, [) exp

[
i
(∫ b

b0

U= (b ′) db ′ + <Z − =lC
)]
, (4)
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where U is the streamwise wavenumber and =l is the number of Fourier modes. The LPSEs neglect the nonlinear
terms, while the NPSEs retain the nonlinear terms as a forcing term. Additional details of the PSE method and current
implementation can be found in Refs. [25, 27, 35–39].

For the nonmodal analysis, a variational formulation based on the HNSE is used. The optimal initial disturbance, q̃0,
is defined as the initial (i.e., inflow) condition at b0 that maximizes the objective function, �, which can be defined as a
measure of disturbance growth over a specified interval [b0, b1] or other relevant quantities, such as those related to the
skin friction or the heat transfer. The definition used in the present study correspond to the outlet energy gain [40, 41]
that is defined as

�� =
� (b1)
� (b0)

, (5)

where � denotes the energy norm of q̃. The energy norm is defined as

� (b) = 1
!C!Z

∫
C

∫
Z

∫
[

q̃(b, [, Z , C)�M� q̃(b, [, Z , C) ℎb ℎZ d[dZdC, (6)

where M� is the energy weight matrix and the superscript � denotes conjugate transpose. The disturbance amplitude is
defined as � =

√
� , and the amplitude gain is �� =

√
�� .

The nonlinear nonmodal analysis follows the same procedure as the linear analysis. The variational formulation of
the problem to determine the maximum of the objective functional � leads to an optimality system (see Ref. [42] for
linear analysis and Refs. [28, 43] for nonlinear analysis), which is solved in an iterative manner, starting from a random
solution at b0 that must satisfy the boundary conditions. The HNSE, � (q̃) = 0, are used to solve for q̃, and the optimality
condition is used to obtain the initial condition for the integration of the adjoint equations, L†q̃† = R(q̃), where R(q̃) is
a function of the direct solution [28, 43]. The iterative procedure finishes when the value of � has converged up to a
certain tolerance.

B. Discretization and Boundary Conditions
High-order finite-difference schemes [44, 45] of sixth order are used to discretize the stability equations on a

nonuniform grid along the wall-normal direction. For the results presented here, the wall-normal direction is discretized
with #[ = 81, with the nodes clustered toward the wall. The discretized PSE are integrated along the streamwise
coordinate by using second-order backward differentiation. The HNSE are discretized with a sixth-order, central scheme
along the streamwise direction, by using a total of #b = 1201 − 1601 points. The number of Fourier collocation points
in time are varied from #C = 5 to #C = 15 to obtain converged solutions for higher Fourier modes. The number of
discretization points in both streamwise and wall-normal directions as well as in time is varied in selected cases to
ensure the numerical convergence of the solution up to the leading modes of interest.

No-slip, isothermal boundary conditions are used at the wall, i.e., D̂ = Ê = F̂ = )̂ = 0 or D̆ = Ĕ = F̆ = )̆ = 0. The
farfield boundary is set far enough to allow the decay of the perturbations for the incompressible case and just below
the bow shock layer for the hypersonic case. The amplitude functions are forced to decay at the farfield boundary by
imposing the Dirichlet conditions d̂ = D̂ = F̂ = )̂ = 0 or d̆ = D̆ = F̆ = )̆ = 0. For the HLNSE, the inflow condition is
based on the solution of the PSE, and the perturbations are forced to decay at the outflow boundary with a sponge region.

III. Results
This section begins with the comparison of results based on the harmonic Navier-Stokes solver for a Blasius flow

with the predictions obtained by using the nonlinear PSE solver from Paredes et al. [38]. After demonstrating a good
agreement between the two sets of predictions, we consider an axisymmetric 7-degree half-angle cone with a nosetip
radius of '# = 1.524 mm at a freestream Mach number of 5.9 and freestream unit Reynolds number of 30.5 × 106 m-1.
Linear development of modal and nonmodal disturbances in this flow was studied by Paredes et al. [9]. The results
presented in this section address both linear and nonlinear evolution of nonmodal disturbances. The freestream values
of velocity, temperature, and density are used as the reference quantities for nondimensionalization.

A. Blasius Flow
To validate the HNSE solver, the nonlinear evolution of a planar Tollmien-Schlichting (TS) wave in a zero-pressure-

gradient boundary-layer Blasius flow at "∞ = 0.001 is studied. The fundamental wave is selected with a disturbance
frequency of l1 = 0.0344 s−1 and is initiated at '0 = 400, where ' =

√
'4G . As previously explained, we use a fully
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Fig. 1 Evolution of the root-mean-square amplitude of the streamwise velocity disturbance in the Blasius
boundary layer, as computed with NPSE and HNSE for a fundamental planar disturbance with l = 0.0344 s−1

and an initial amplitude of (a) D̃A<B = 0.002 and (b) D̃A<B = 0.004. The linear evolution of the fundamental mode
computed with LPSE is also included.

implicit formulation of the HNSE, where the time is discretized with Fourier collocation points with a domain equal to
the period of the fundamental wave, !C = 2c/l1. The number of points # defines the number of Fourier modes being
solved by # = 2=l + 1, where =l includes the mean flow distortion, the fundamental frequency, and its harmonics. For
the present verification of the solver, the first three harmonics are sought and #C = 2 × (3 + 1) + 1 = 9 collocation points
are used. The spanwise direction is not discretized because only planar waves are considered.

Figures 1(a) and 1(b) display the streamwise evolution of the root-mean-square amplitudes of streamwise velocity
perturbations computed with both NPSE and HNSE for two initial amplitudes of the fundamental wave, D̃A<B,0 = 0.002
and D̃A<B,0 = 0.004, respectively. Predictions pertaining to the linear evolution calculated with LPSE are also shown for
comparison. For both initial amplitudes, the HNSE and NPSE predictions indicate very good agreement for the mean
flow distortion (= = 0) as well as for the amplitudes of the fundamental mode (= = 1) and its harmonics (= > 1). For
the lower initial amplitude (D̃A<B,0 = 0.002), the fundamental mode follows the linear trend until ' ≈ 750, where the
nonlinear effects become important and the fundamental wave is further destabilized. Even at the higher amplitude of
D̃A<B,0 = 0.004, good agreement between NPSE and HNSE is still observed up to ' ≈ 875, where the NPSE iterations
fail to converge due to strong nonlinear effects. Therefore, this simple example highlights the potential utility of the
HNSE for cases with higher initial disturbance amplitudes.

For this incompressible flow, increasing the initial disturbance amplitude leads to a continued growth in the
fundamental disturbance amplitude, well past the upper branch location (slightly downstream of ' = 800) as predicted
by the LPSE in Fig. 2. The LPSE predict a peak amplitude growth of nearly 8 with respect to the initial station. For low
initial amplitudes of up to D̃A<B,0 = 0.001, the increase in fundamental mode amplitude predicted via the NPSE is very
similar to the LPSE predictions. However, the effects of nonlinearity become quite prominent for D̃A<B,0 = 0.003, where
the peak disturbance amplification reaches almost |D̃ |/|D̃0 | = 20 at ' = 1000. For the largest initial amplification shown,
the fundamental wave continues to amplify across the entire streamwise domain, leading to |D̃ |/|D̃0 | = 45 at ' = 1100.
Therefore, nonlinear effects strongly destabilize the TS instabilities.

B. Mach 6 Flow over Blunt Circular Cones
Following the study of linear analyses of modal and nonmodal disturbance evolution on blunt cones by Paredes et al.

[9], the nonlinear evolution of Mack’s second mode (MM) disturbances is analyzed with NPSE and HNSE for the lower
Reynolds number case of '4∞ = 30.5 × 106 m-1, with a nosetip of 1.524 mm radius (case II in the aforementioned
work).

The flow conditions and geometry are based upon the tests conducted by Jewell et al. [22] in the U.S. Air Force
Research Laboratory (AFRL) Mach 6 high-Reynolds-number facility. The computational freestream conditions are
given here in Table 1. The selection of this case is motivated by the low transition N-factor value of #MM (b) ) = 3.75 at
the measured transition location, b) = 0.223 m. For a sharper cone with '# = 0.508 mm and '4∞ = 91.5 × 106 m-1,
the measured onset of transition corresponds to streamwise location with #MM (b) ) = 7.77. Therefore, the drop in
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Fig. 2 Evolution of the normalized streamwise velocity amplitude of the fundamental disturbance with l1 =
0.0344 s−1 in the Blasius boundary layer, as computed with HNSE with different initial amplitudes. The linear
evolution of the fundamental mode computed with LPSE is also included.

Table 1 Details of theAFRL configuration used in the present study, including themeasured transition location
(b) ) from Ref. [22], the Mack-mode #-factor (#MM (b) )) at the transition location, along with the frequency of
the most amplified disturbance (�MM (b) )). The flow conditions are "∞ = 5.9, )̄∞ = 76.74 K, )̄F = 300 K, and
)̄F/)̄F,03 = 0.57.

'# [mm] '4∞ [×106 m−1] '4'#
[×103] b) [m] #MM (b) ) �MM (b) ) [kHz]

1.524 30.5 46.48 0.223 3.75 660

#MM (b) ) is believed to be related to the effects of nose bluntness.
The verification of the HNSE solver for an axisymmetric configuration in high-speed flow is performed by comparing

with NPSE results for the evolution of planar MM with a disturbance frequency of 5 = 660 kHz. The inflow location is
selected at b = 0.155 m in order to lower computational cost and was verified to not significantly change the results as
opposed to a location further upstream. The evolution of the root-mean-square of temperature disturbances computed
with the NPSE and HNSE, as well as the linear evolution calculated with LPSE, are shown in Figures 3(a) and 3(b) for
two different initial amplitudes of D̃A<B,0 = 0.001 and D̃A<B,0 = 0.004, respectively. The fundamental mode (= = 1)
follows the linear trend until b ≈ 0.22 and b ≈ 0.2 m for D̃A<B,0 = 0.001 and D̃A<B,0 = 0.004, respectively. Downstream,
the nonlinear effects become important and the fundamental wave is stabilized (in contrast to the Blasius configuration,
where the fundamental wave was destabilized as seen in Fig. 2). The HNSE and NPSE results agree for all modes
(= = 0, 1, 2, 3, 4). However, NPSE are not obtained downstream of G = 0.215 m for the larger initial amplitude due
to the strong nonlinear effects. The dampening effect of the nonlinear interactions on the temperature disturbances is
shown in Fig. 4. As the initial disturbance amplitude is increased, the normalized temperature maximum decreases.
Therefore, the nonlinear effects lead to saturation of the MM disturbances as noted in previous work by Li et al. [46].

The linear nonmodal analysis of the boundary layer over the blunt cone geometry at the conditions of Table 1
was studied in Ref. [9] with the reduced form of the HLNSE (RHLNSE) that uses the Vigneron parameter to allow
a parabolic integration of the HLNSE. However, the amplification of modal instabilities is not well captured by the
RHLNSE. Here, the HLNSE are used to study the linear nonmodal amplification of planar disturbances (< = 0). The
inflow optimization location is selected at b0 = 0.05 m, although nearly equivalent results were obtained with inflow
locations close to the nosetip. The final optimization location is selected to coincide with the measured transition
location of b1 = b) = 0.223 m. Figure 5(a) shows the amplitude gain predicted by the linear analysis, i.e., �� =

√
�� ,

as a function of the disturbance frequency. The narrow bandwidth centered at 5 = 660 kHz corresponds to the MM
wave. The disturbance frequency corresponding to the maximum #"" at the transition location of 5"" = 660 kHz [9]
coincides with the frequency for maximum optimal gain. The nonmodal entropy-layer disturbances are also amplified,
albeit with lower amplification gains across the selected frequency range up to 800 kHz. Figure 5(b) shows the optimal
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Fig. 3 Evolution of the root-mean-square amplitude of the temperature disturbance computed with NPSE and
HNSE for a fundamental planar disturbance with 5 = 660 kHz and an initial amplitude of (a) D̃A<B = 0.001 and
(b) D̃A<B = 0.004 for the Mach 6 flow over a blunt circular cone. The linear evolution of the fundamental mode
computed with LPSE is also included.
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Fig. 4 Evolution of the normalized temperature amplitude of the fundamental disturbance with 51 = 660 kHz
for the Mach 6 flow over a blunt, circular cone as computed with HNSE with different initial amplitudes. The
linear evolution of the fundamental mode computed with LPSE is also included.
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Fig. 6 Contours of the normalized temperature for the linear, optimal disturbances with 5 = 330 and 660 kHz
and an optimization interval of (b0, b1) = (0.05, 0.223) m. The solid and dashed black lines indicate the edge of
the boundary layer, Xℎ , and the edge of the entropy layer, X( , respectively.

disturbance amplitude evolution for 5 = 330 and 660 kHz. The evolution of the optimal disturbances are clearly different
between the two frequencies. Whereas the lower frequency monotonically gets amplified nearly up to the maximum
amplitude location somewhat upstream of the optimization station (b = 0.223 m), the higher frequency disturbance has
a first peak near b = 0.13 m and then decays and begins to amplify again to reach its overall maximum near b = 0.24 m.
The contours of normalized temperature fluctuation )̃/max()̃) for both frequencies ( 5 = 330 and 660 kHz) are shown
in Figures 6(a) and 6(b), respectively. The lower frequency and the first peak of the higher frequency disturbances
correspond to the nonmodal entropy-layer disturbances with peaks along the edge of the entropy layer (i.e., outside of the
boundary layer). As the disturbance amplitude decreases downstream of the first peak for the 5 = 660 kHZ disturbance,
the second mode becomes dominant, with the peak of temperature fluctuations occurring inside the boundary layer.

The nonlinear nonmodal analysis is used to investigate the potential interactions between the nonmodal entropy-layer
disturbances with 5 = 330 kHz and MM waves with 5 = 660 kHz. The inflow forcing is limited to the fundamental
wave to avoid the introduction of the high frequency disturbance at the inflow. The dependency of the amplitude gain
on the initial amplitude �0 =

√
�0 is shown in Fig. 7(a). The two separate curves in this figure represent the fact

that the optimization process converged to two different values of the amplitude gain over an intermediate range of
initial amplitudes, depending on the initial guess. The linear optimal disturbance was selected as initial guess for the
lowest initial amplitude, and the final solution at a given amplitude was successively used as initial guess for the next
higher amplitude. However, the resulting gain was found to change drastically for sufficiently large initial amplitudes as
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Fig. 7 Evolution of the (a) amplitude gain as a function of initial disturbance amplitude with a fundamental
frequency of 51 = 330 kHz and (b) evolution of the root-mean-square amplitude of the optimal temperature
disturbance for the = = 0 mean flow distortion, = = 1 fundamental wave, and its harmonics = = 2, 3, 4 with an
initial amplification of �0 = 0.06. In the legend of subfigure (a), �0 ↑ and �0 ↓ refer to a lower and higher
amplitude used as initial guess respectively.

indicated by the green curve in Fig. 7(a). The evolution of the leading Fourier harmonics from the nonlinear optimal
disturbance corresponding to �0 = 0.06 is plotted in Fig. 7(b). This disturbance has an energy gain of nearly 15 as seen
from Fig. 7(a). The MM wave with 5 = 660 kHz (first harmonic of the inflow disturbance frequency) is generated by
the nonlinear self-interaction of the initially seeded 5 = 330 kHz disturbance as it undergoes a nonmodal growth. The
highest amplitude is observed somewhat downstream of the optimization location at b ≈ 0.24 m, and it surpasses the
peak of the fundamental wave which occurs around b = 0.125 m. Therefore, the entropy-layer disturbances excited near
the nosetip can excite the high frequency MM disturbances somewhat upstream of their lower branch neutral station
for the MM modes and the subsequent amplification of these MM disturbances can lead to an overall increase in the
disturbance energy beyond the linear evolution of the same entropy-layer disturbances.

The temperature contours of the mean flow distortion ( 50 = 0 kHz), the fundamental mode ( 51 = 330 kHz), and its
first harmonic ( 52 = 660 kHz) are shown in Fig. 8 for an initial amplitude of �0 = 0.06. The initial phase of mean
flow distortion includes a temperature disturbance in the vicinity of the entropy layer edge, contributing to a higher
temperature above the edge and lower temperature below the edge. Downstream of b = 0.12 m, the negative correction
to basic state temperature penetrates the boundary layer edge, progressively spreading to the interior portions of the
boundary layer. Downstream of b = 0.223 m, the negative temperature correction has spread through the majority of the
boundary layer and is accompanied by a thin layer of positive temperature correction between the boundary layer edge
and the entropy layer edge. The temperature contours associated with the fundamental wave are similar to the linear
nonmodal results in Fig. 6 with the exception that the fluctuations peak around b = 0.13 m and do not extend as far in
the wall-normal direction. Consistent with the aforemention discussion, the evolution of the temperature disturbances at
the first harmonic ( 52 = 660 kHz) is similar to the results of the linearly optimal disturbance with 5 = 660 kHz shown in
Fig. 6. Thus, two regions of disturbance growth are observed, the first corresponding to the entropy layer disturbances,
and the second one to the MM instability.

IV. Summary and Concluding Remarks
A fully implicit formulation of the harmonic Navier-Stokes equations (HNSE) is presented for the nonlinear

nonmodal analysis of disturbances in the Mach 6 flow over blunt, circular cone. Previous studies [6, 9] performed
linear, nonmodal analysis of the same flow and found the amplification of planar and oblique traveling disturbances that
peak within the entropy layer for moderate to large nosetip bluntness values. The extension of the linear nonmodal
analysis based on the harmonic linearized Navier-Stokes equations (HLNSE) to include nonlinear interactions enables
us to investigate the coupling among a broader set of disturbances, including potential interactions involving nonmodal
entropy layer waves and Mack’s second mode disturbances.
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Fig. 8 Contours of temperature for the mean flow distortion, fundamental frequency ( 5 = 330 kHz), and the
first harmonic ( 5 = 660 kHz) of the optimal disturbance computed by using theHNSE and (b0, b1) = (0.05, 0.223)
m. The solid and dashed black lines indicate the edge of the boundary layer, Xℎ , and the edge of the entropy
layer, X( , respectively.

The predictions of the HNSE solver are compared with NPSE results for the nonlinear evolution of modal instabilities
in a low-speed Blasius boundary layer flow and a Mach 6 flow over a blunt circular cone. The predicted evolution of
both a planar Tollmien-Schlichting wave in the Blasius flow and a planar Mack’s second mode in the hypersonic flow
over the cone showed excellent agreement with the NPSE results. Furthermore, for both flow configurations, the HNSE
led to converged predictions for relatively high initial amplitudes where the NPSE failed to converge due to strong
nonlinear effects. The nonlinear analysis for the blunt cone case was extended to include the nonmodal evolution of an
inflow disturbance generated near the nose tip with half the frequency of the most amplified Mack’s second mode at the
measured transition location. The results show how the nonmodal entropy-layer disturbance can trigger excitation of
Mack’s second mode waves that undergo significant amplification downstream, to yield a continued growth in the overall
disturbance energy. The additional receptivity mechanism associated with this path could contribute to higher initial
amplitudes of the Mack’s second mode disturbances, and hence, to a reduction in the transition N-factor in this flow.

The present work focuses on the linear and nonlinear development of planar waves. However, the nonlinear nonmodal
analysis with the addition of three-dimensional disturbances would allow identification of the most dangerous inflow
disturbances that would lead to the earliest onset of transition, especially in cases where the modal amplification alone
is insufficient to cause transition. The addition of the third dimension represents a challenge for the solution of the
linearized system. Therefore, iterative techniques based on suitable preconditioning are being further investigated to
overcome those difficulties and allow for the fully implicit solution of the HNSE for a nonlinear, nonmodal analysis for
three-dimensional disturbances.
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