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The objective of this work is to perform an uncertainty analysis of the deduced stagnation
heat flux environment on a slug calorimeter for conditions that span the performance envelope
of the Hypersonic Materials Environmental Test System arc-jet facility located at NASA Langley
Research Center. Analytical solutions are developed for boundary-value problems on the
slug element accounting for non-ideal effects, including spatial variation in the slug heat flux,
multi-dimensional thermal conduction, and back-face losses, which departs from the state-of-
the-art method derived from the American Society of Testing and Materials. Boundary-value
problem definitions are informed by preliminary finite element thermal analysis of the slug
calorimeter assembly (including both slug and housing) and just the slug element. The analytical
solutions are presented in a general sense and in a truncated form from error analysis. Results
are shown in optimizing and validating the analytical models against available slug back-face
thermal data. The optimization results indicate that the appropriate epistemic uncertainty
of the deduced stagnation heat flux on the slug calorimeter is at most ±2.5% for both a high-
and low-enthalpy test condition. In addition, a numerical approach is used to determine the
aleatory (probabilistic) uncertainty component in the slug stagnation heat flux by applying a
marching least-squares slope routine through the steady-state portion of the slug back-face
thermal response. Results indicate a compromise between the number of samples and the filter
frequency of slug back-face thermal data points when evaluating the standard deviation of the
deduced stagnation heat flux statistics. When combining the mixed uncertainty, both aleatory
and epistemic, the interval of uncertainty in the deduced stagnation heat flux is determined to
be up to ±4%, which is at least a 60% reduction from the standard uncertainty used in the
state-of-the-art method.

Nomenclature

𝑎0 = constant in 2D solution with variable heat flux
𝑎1 = constant in 2D solution with variable heat flux
𝐴𝑛 = constant in steady-state series in the 2D solution with variable heat flux
𝐵𝑛 = constant in steady-state series in the 2D solution with variable heat flux
𝑐 = scale factor
𝐶𝑝 = specific heat of the slug, J/kg-K
𝐶𝑧𝑛 = constant in variable heat flux transient solution with positive eigenvalues
𝐸𝑧 = constant in variable heat flux transient solution zero eigenvalue
𝑓𝐿 = slug back-face fractional heat flux loss
𝐽0 = Bessel function of the first kind of order zero
𝐽1 = Bessel function of the first kind of order one
𝐿 = length of slug, m
𝑘 = thermal conductivity of slug, W/m-K
𝑚, 𝑛, 𝑧 = set of positive integers 1, 2, 3, . . .
𝑞0 = constant heat flux applied to the front face of slug, or constant in variable heat flux function 𝑞(𝑟), W/cm2

𝑞1 = constant in variable heat flux function 𝑞(𝑟), W/cm3

𝑞2 = constant in variable heat flux function 𝑞(𝑟), W/cm4
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𝑞(𝑟) = variable heat flux as a function of 𝑟 , W/cm2

𝑞𝑎𝑣𝑔 = average heat flux value, W/cm2

𝑝 = percent increase of the constant term 𝑞0 at 𝑟 = 𝑟0
𝑝𝑛 = 𝛼𝑛

𝑟0
, eigenvalues for 𝐽1

𝑟 = radial position from slug centerline at 𝑟 = 0, m
𝑟0 = radius of the slug, m
𝑡 = time, s
𝑇 (𝑥, 𝑡) = temperature of a slug as a funciton of 𝑥 and 𝑡, K
𝑇 (𝑟, 𝑥, 𝑡) = temperature of a slug as a function of 𝑟, 𝑥, and 𝑡, K
𝑇𝑏 (𝑡) = temperature of the back-face of the slug with respect to the time 𝑡, K
𝑇0 = initial slug temperature at 𝑡 = 0, K
𝑇𝑟 = the first partial derivative of the function 𝑇 with respect to the variable 𝑟
𝑇𝑟𝑟 = the second partial derivative of the function 𝑇 with respect to the variable 𝑟
𝑇𝑡 = the first partial derivative of the function 𝑇 with respect to the variable 𝑡
𝑇𝑥 = the first partial derivative of the function 𝑇 with respect to the variable 𝑥
𝑇𝑥𝑥 = the second partial derivative of the function 𝑇 with respect to the variable 𝑥
𝑣(𝑟, 𝑥, 𝑡) = steady-state 2D solution with variable heat flux
𝑣𝑧 = 𝑧 𝜋

𝐿
, eigenvalues of sine function

𝑤(𝑟, 𝑥, 𝑡) = transient 2D solution with variable heat flux
𝑥 = position along length of slug from front face at 𝑥 = 0, m
𝛼 = thermal diffusity of slug, m2/s
𝛼𝑛 = nth positive root of 𝐽1
𝛽2 = separation of variables constant for 2D steady-state solution
Δ = differential operator
𝜌 = density of the slug, kg/m2

I. Introduction
Arc-jet test facilities are used to simulate heating and flow environments experienced in atmospheric entry and

hypersonic flight. These test facilities are crucial for testing thermal protection materials and systems. Slug calorimeters
are used for calibration of arc-jet test conditions in which heat losses from the slug to its holder are of concern as well
as uncertainties associated with the slug calorimeter measurements. Brune et al. [1] performed a recent study on
uncertainty quantification and validation as well as a sensitivity analysis of a high- and low-enthalpy test condition.
Forty-seven sources of uncertainty were considered, such as instrumentation bias (including stagnation heat flux
measurement) as well as surface catalysis input, chemical kinetic rates, and binary collision integrals in the computation
fluid dynamics analysis (CFD) model. The calibration probe stagnation heat flux measurement bias was determined as a
significant contributor in the uncertainty of stagnation heat flux computation.

Since 1996, NASA has used a simple, ideal approach involving a temperature slope of slug calorimeter data to
evaluate the heat flux. However, this state-of-the-art method described in [2] uses the American Society of Testing and
Materials (ASTM) standard E457-08 with a ±10% uncertainty on the calculated heat flux value. Other studies have
attempted to address modeling of the slug heat flux probes in an effort to provide an analysis of the thermal environment
and uncertainty, either through finite element or analytical methods. Hightower [3] presents two one-dimensional
analytical models for a NASA Ames probe design - one with the assumption of no heat losses and constant physical
properties and the other with assumptions of losses and variable heat capacity with temperature. Nawaz [4] discusses
various methods for evaluating calorimeter measurements for a NASA Ames probe design, including Hightower, ASTM,
and finite element analysis (FEA). Both Dalir [5] and Jain [6] present analytical models for higher dimensions with
the assumption that the geometry of the slug calorimeter is a sphere. While each of these studies provides valuable
information, they do not address methods that are specific to the NASA Langley Hypersonic Material Environment Test
System (HyMETS) arc-jet facilty for a flat-faced (cylindrical) slug geometry. Futhermore, these studies do not address
some non-ideal effects, including spatial variation of heat sources in combination with thermal path losses.

The primary objective of this work is to characterize and reduce the uncertainty in the deduced heat flux of the
flat-faced slug calorimeter in the HyMETS arc-jet facility. Analytical models are developed to incorporate a combination
of non-ideal effiects, including factors related to spatially varying heat flux on, and heat losses from, the flat-faced slug
element. These analytical models are then validated and optimized against back-face slug temperature data from a low-
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and high-enthalpy test condition. Using the results of the optimization, a new range for both epistemic (bias) uncertainty
in the deduced stagnation heat flux on the slug element can be determined. A second component of the uncertainty
(aleatory) is also evaluated with a numerical approach in quantifying the local temperature slopes, marching through
time, in the steady-state portion of the slug back-face temperature data from each test condition. In the end, a mixed
uncertainty assessment is provided given the analysis performed in this study, which can be used in future studies for
model validation and calibration with CFD.

This paper is organized to first present an overview of the HyMETS facility configuration and instrumentation in
Section II. Section III presents the initial-boundary value problems that incorporate non-ideal effects, informed by
preliminary high-fidelity slug probe thermal analysis, and the developed analytical solution approaches. In Section IV,
an evaluation of the epistemic uncertainty in the deduced stagnation heat flux of the slug calorimeter is performed based
on the results of optimizing analytical solutions against available slug thermal data from the HyMETS arc-jet facility
at low- and high-enthalpy test conditions. In addition, the aleatory uncertainty is evaluated using a least-squares fit
marching routine to generate statistics in the temporal variation of the deduced stagnation heat flux. The results of the
two components of uncertainty will be compiled into a probability box plot and compared against the uncertainty used
in Brune et al. [1], which is based on the state-of-the-art ASTM standard procedure. Conclusions of this work are
provided in Section V.

II. Test Facility Details
Arc-jet facilities are typically used to develop and demonstrate high-temperature materials at flight-relevant heat

flux, surface pressure, and shear force environments. In this study, the HyMETS facility at NASA Langley Research
Center is considered to assess and characterize the uncertainty of the slug calorimeter specifically used at two arc heater
conditions that span the facility’s performance envelope. The history of the facility use can be found in the work by
Splinter et al. [7], most of which includes material characterization for hypersonic vehicles [8–10].

The HyMETS facility uses a segmented-constrictor dc-electric arc heater with injected discrete test gases to form
mixtures of diatomic nitrogen, diatomic oxygen, and argon. The segmented arc heater column along with power supply
and water lines is shown in Figures 1 and 2 . The arc heater is mounted on the outside of the test cabin door. The heater
consists of water-cooled components, which include a copper cathode with tungsten button emitter, electrically-isolated
copper segment constrictors with a 1.27-cm diameter bore, and a copper divergent-ring anode. Test gasses are injected
tangentially into the bore of the arc heater generator at six discrete locations and can be mixed at various levels to
desired atmospheric composition. The gases are heated by a high-voltage electric arc that is maintained between the
cathode and anode to create a high-temperature dissociated gas via radiation and gas conduction modes. The HyMETS
facility has several viewports to obtain video and pyrometer thermal data of the test specimen and are located on the
test cabin door and test cabin walls. A detailed description and overview of the HyMETS facility and performance
envelopes for stagnation testing can be found in the literature [7, 11].

Fig. 1 HyMETS test setup schematic. Fig. 2 HyMETS facility test setup.

For stagnation testing, a water-cooled 6.35-cm exit diameter conical nozzle with a 1.27-cm throat diameter and half
angle of 12 degrees, made of copper and attached to the arc heater system, is used to provide the appropriate freestream
conditions for a combination of desired heat flux and pressure at the probe surface. The high-temperature flow from the
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arc heater is accelerated through the nozzle and exhausted into a 60.9-cm wide by 91.4-cm long vacuum test cabin. The
flow proceeds downstream of the test cabin into a collector cone, a 15.24-cm diameter constant cross-section diffuser,
and a coiled-copper tubing heat exchanger to decelerate and cool the flow. The test cabin is pumped to the desired
conditions with a mechanical pumping system. Test models are positioned on the centerline of the flow just downstream
of the nozzle exit. A Pitot probe, a slug calorimeter, and a TPS specimen are injected in sequential order into the flow
during each run.

Fig. 3 Pitot tube. Fig. 4 Copper slug calorimeter.

A flat-face Pitot probe and copper slug calorimeter [12, 13] shown in Figures 3 and 4 respectively, are used to
determine the stagnation surface pressure and heat flux during each run. The copper slug calorimeter is used to
determine the cold-wall heat flux and consists of an un-cooled slug sensor element that is 1.27-cm diameter by 1.27-cm
long with an uncooled shroud that is 3.3-cm diameter by 2.16-cm long and a flow-face edge radius of 0.318 centimeters.
The slug sensor element and shroud are fabricated out of oxygen-free high-conductivity copper. The slug sensor element
has a 0.005-cm wide “insulating” air gap between it and the shroud and is held in place using six cone-tipped set-screws.
The slug sensor element also has a Type-K thermocouple mounted on its back surface to measure temperature rise. The
length, diameter, and mass of the slug sensor element are measured prior to calorimeter assembly. The copper slug
calorimeter is inserted into a steady-state flow for up to five seconds so that it achieves a back-face temperature rise of
several hundred degrees Fahrenheit, not to exceed a final temperature of 588 K (600𝑜F). The state-of-the-art method is
based on the ASTM standard procedure for deducing the heat flux [12]. The heat flux is deduced from the density of the
copper slug sensor element 𝜌, the specific heat capacity of the element 𝐶𝑝 , the length of the element 𝐿, and the slope
of the temperature rise Δ𝑇/Δ𝑡 from the linear portion of the temperature response curve, measured by the back-face
Type-K thermocouple, using Equation 1 :

¤𝑞𝑤 = 𝜌𝐶𝑝𝐿

(
Δ𝑇

Δ𝑡

)
(1)

The uncertainty of the resulting method given by Eq. 1 is assumed to be ±10% [7, 13]. In this study, two test conditions
are considered, ranging in low to high enthalpy, with sufficient detail described and presented in Brune et al. [1]. The
low enthalpy condition is defined throughout the paper with a reported stagnation heat flux reference of 56.7 W/cm2,
using the above ASTM approach. The high enthalpy condition is defined throughout the paper with a reported stagnation
heat flux reference of 243.1 W/cm2, using the above ASTM approach. The ASTM method is described in this paper
interchangeably as the state-of-the-art method.

III. Modeling Approach of Slug Calorimeter Temperature Environments
In the previous section, details of the NASA Langley HyMETS arc-jet test facility were presented along with the

state-of-the-art ASTM method and reference test conditions. In this section, analytical solutions are developed for
boundary-value problems on the slug element accounting for non-ideal effects, including spatial variation in the slug
heat flux, multi-dimensional thermal conduction, and back-face losses, which departs from the state-of-the-art method.
In Section III.A, the boundary-value problem definitions are informed by preliminary finite element thermal analysis of
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the slug calorimeter assembly (including both slug and housing) and just the slug element. In Sections III.B.1 - III.B.3,
the analytical solutions are presented in a general sense with the derived boundary value problems on the slug element.
Sections III.C.1 - III.C.2 present truncation analysis to simplify the complex solutions while maintaining accuracy.

A. Preliminary Finite Element Analysis (FEA)
A three-dimensional finite element model of the slug calorimeter (Figure 5a), is developed in COMSOL to analyze

the non-ideal thermal effects, including radiation and conduction losses and spatial (radial) variation of a heat flux
source (as opposed to the ideal constant heat flux source). A simplified slug element model (Figure 5a) is also developed
to compare against the higher-fidelity slug calorimeter model. Figure 6 shows a schematic of the various components
of the slug calorimeter, including the slug element, housing, and a copper sting mount with a hole to route a Type-K
thermocouple from the slug back-face to connectors. The copper sting mount has a potential air gap, when installed, and
could be in contact with a significant portion of the slug back-face area, with exception of the thermocouple drill hole
aligned with at the centerline of the slug back face. In either case (with or without contact), there is the potential for
conduction or radiation loss from the slug. In addition, studies have shown that the spatial variation of the heat flux
can be significant, especially for slug calorimeters with small base diameters [1, 14], which can potentially impact the
thermal response of the slug element.

(a) Slug Calorimeter Model (with Housing). (b) Slug Element Only Model (No Housing).

Fig. 5 CAD model geometries implemented in the preliminary finite element analysis.

In this preliminary analysis, constant material properties are taken from sources, including the National Institute
of Standards and Technology (NIST) Reference Database [15–17]. Although the thermal properties are presented as
temperature-dependent in these references, the slug calorimeters are subjected to limited exposure time and temperature
range in the flow between 285 and 400 Kelvin. Constant material properties are set to approximate room temperature
values with a thermal conductivity of 400 W/m-K and specific heat of 385.2 J/kg-K. The density of copper is set to
the average of five slug elements at 8821 kg/m3. The material property values deviate by no more than 1-2% in the
applicable temperature range of data in which the slug calorimeter is in the flow. The set screws are treated as alloy steel
with default material property values in COMSOL [18].

Fig. 6 Schematic of slug calorimeter.

The preliminary simulations of the slug calorimeter model implement internal radiation between the slug element
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and housing with an emissivity of polished copper of 0.05. The slug element is modeled in perfect contact with the
sting mount as a bounding case of a potential air gap. Constant heat flux is applied to the external surfaces of the slug
and holder based on the reported heat flux at the high enthalpy condition. The spatial heat flux distribution is applied
based on CFD data from Brune et al. [1]. Note that the heat fluxes are applied as cold-wall values (low temperature
environment and limited exposure time). With emissivity values of polished copper between 0.02 and 0.07 and tested
copper with a thick oxide layer of 0.78, radiation cooling of the copper slug to test cabin walls and vacuum environment
is considered negligible with a magnitude less than 1% of the convective heat flux magnitude. Thermal expansion and
convective flow in the gap between the holder and slug element are also considered negligible due to limited time of
exposure in the arc flow. For the simplified slug element model, the sides of the slug are modeled as adiabatic (no heat
transfer loss). Constant and spatially-varying heat fluxes are applied to the front surface of the slug element, consistent
with those applied to the slug calorimeter model. A constant conduction loss heat flux source is modeled on the back
face of the slug as a percentage of the front-face heat flux.

Fig. 7 FEA results comparing back-face temperature predictions for various non-ideal effects with the slug
element model and full slug calorimeter assembly.

Figure 7 presents the thermal response as a function of arc run time of the slug at the center of the back face,
corresponding to the location where the thermocouple bead is placed for a temperature measurement. Results are shown
for slug calorimeter (slug w/ housing) model with and without internal radiation for both constant and spatially-varying
heat flux distributions on the external surfaces. The thermal response of the slug element (slug only) model with and
without losses for both constant and spatially-varying heat flux sources are compared to those of the slug calorimeter
model. Looking at the slug calorimeter model results in green, the internal radiation has no impact to the back-face
temperature response of the slug. When considering the slug element model results (red lines) for the constant heat
flux case, the conduction losses to the copper sting mount aft of the slug have a noticeable impact in the back-face
steady-state slug temperature slope, and the temperature response of the slug with a back-face loss of 1% of the front
face heat flux agrees with the higher-fidelity slug calorimeter model. The results shown in blue also indicate a more
signficant impact to the steady-state temperature slope due to spatial variations in the front face heat flux distribution. In
following subsections, analytical solutions will be developed for the simplified slug model with appropriate boundary
value problems based on the significant non-ideal thermal effects, including back-face slug conduction losses and spatial
(radial) variation of the front-face heat flux on the slug. The multi-dimensionality of the copper conduction will also be
considered in the development of these analytical solutions.
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B. Analytical Solutions

1. Constant Heat Flux without Radial Conduction
Consider a one-dimensional approach with assumed heat losses on the back-face of the slug with constant heat flux

𝑞0 and constant properties. This gives the standard governing equation

𝑇𝑥𝑥 =
1
𝛼
𝑇𝑡 (2)

where 𝑇𝑥𝑥 = 𝜕2𝑇
𝜕𝑥2 , 𝑇𝑡 =

𝜕𝑇
𝜕𝑡

, and 𝛼 is constant. The boundary and initial conditions informed by FEA are

𝑇𝑥 (0, 𝑡) = −𝑞0
𝑘

𝑇𝑥 (𝐿, 𝑡) = − 𝑓𝐿
( 𝑞0
𝑘

)
𝑇 (𝑥, 0) = 𝑇0 (3)

where 𝑇0 represents the initial constant uniform temperature of the slug calorimeter, 𝑘 is the thermal conductivity
constant, and 𝑓𝐿 is the fractional loss. A schematic of the boundary value problem is provided in Figure 8 .

Fig. 8 Boundary conditions for constant heat flux with one-dimensional conduction.

This initial-value problem is very similar to the one proposed by Hightower et al. [3] in which the method of separation
of variables is used to find a solution of the form 𝑇 (𝑥, 𝑡) = (steady state) + (transient state). Using the same approach,
the general solution is

𝑇 (𝑥, 𝑡) = 𝑇0 +
(1 − 𝑓𝐿)𝑞0

2𝑘𝐿
𝑥2 − 𝑞0

𝑘
𝑥 + (2 + 𝑓𝐿)𝑞0𝐿

6𝑘
+ (1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
+ 2𝑞0𝐿

𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛 𝑓𝐿 − 1

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 cos

(𝑛𝜋𝑥
𝐿

)
(4)

More details on the derivation and verification of Eqn. 4 are provided in the Appendix. The back-face temperature of
the slug that satisfies the initial-boundary value problem is 𝑇𝑏 (𝑡) = 𝑇 (𝐿, 𝑡):

𝑇𝑏 (𝑡) = 𝑇0 −
(1 + 2 𝑓𝐿)𝑞0𝐿

6𝑘
+ (1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
+ 2𝑞0𝐿

𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛+1 + 𝑓𝐿

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 (5)

A two-dimensional approach with assumed heat losses on the back-face of the slug with radial conduction, constant
heat flux 𝑞0, and constant properties is also considered. The resulting analytical solution, 𝑇 (𝑟, 𝑥, 𝑡), does not depend on
the variable 𝑟 (distance from the center of the slug) and therefore reduces to Eqn. 4 . The derivation and verification for
these boundary conditions on the slug element are provided in the Appendix.

2. Variable Heat Flux without Radial Conduction
Now assume heat flux is no longer constant, but spatially varying in the radial direction. Based on an empirical

fit of heat flux data from the CFD analysis, the heat flux follows a quadratic form. That is, 𝑞(𝑟) is of the form
𝑞(𝑟) = 𝑞2𝑟

2 + 𝑞1𝑟 + 𝑞0 for some constants 𝑞2, 𝑞1, and 𝑞0. Note that 𝑞0 here represents the stagnation heat flux at 𝑟 = 0
and is different from that defined in the previous subsection as a constant heat flux. The average value of 𝑞(𝑟) is

𝑞𝑎𝑣𝑔 =
1

𝜋(𝑟0)2

∫ 2𝜋

0

∫ 𝑟0

0
𝑟𝑞(𝑟)𝑑𝑟𝑑\ = 𝑞2 (𝑟0)2

2
+ 2𝑞1𝑟0

3
+ 𝑞0 (6)
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where 𝑟0 is the radius of the slug. This equation gives a formula for 𝑞0 in terms of 𝑞2, 𝑞1, and 𝑞𝑎𝑣𝑔:

𝑞0 = 𝑞𝑎𝑣𝑔 −
𝑞2 (𝑟0)2

2
− 2𝑞1𝑟0

3
. (7)

Imposing the initial conditions 𝑞′ (0) = 0 and 𝑞(𝑟0) = 𝑝𝑞0, where 𝑝 is the percent increase of the constant term 𝑞0,
gives the values of 𝑞1 and 𝑞2 to be

𝑞1 = 0 𝑞2 =
2(𝑝 − 1)𝑞𝑎𝑣𝑔
(𝑟0)2 (1 + 𝑝)

. (8)

Given specified values of 𝑝 and 𝑞𝑎𝑣𝑔, the coefficients of the quadratic heat flux, 𝑞2, 𝑞1, and 𝑞0, can be computed
using Eqns. 7 and 8. This simple computation allows Eqn. 4 to be adjusted to accommodate spatial variation in heat
flux. In particular, replacing 𝑞0 in Eqn. 4 with the given 𝑞𝑎𝑣𝑔 value adjusts the general solution to

𝑇 (𝑥, 𝑡) = 𝑇0 +
(1 − 𝑓𝐿)𝑞𝑎𝑣𝑔

2𝑘𝐿
𝑥2 −

𝑞𝑎𝑣𝑔

𝑘
𝑥 +

(2 + 𝑓𝐿)𝑞𝑎𝑣𝑔𝐿
6𝑘

+
(1 − 𝑓𝐿)𝛼𝑞𝑎𝑣𝑔𝑡

𝑘𝐿

+
2𝑞𝑎𝑣𝑔𝐿
𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛 𝑓𝐿 − 1

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 cos

(𝑛𝜋𝑥
𝐿

)
(9)

The above model satisfies the one-dimensional boundary value problem. Therefore, the back-face temperature of the
slug then becomes

𝑇𝑏 (𝑡) = 𝑇0 −
(1 + 2 𝑓𝐿)𝑞𝑎𝑣𝑔𝐿

6𝑘
+
(1 − 𝑓𝐿)𝛼𝑞𝑎𝑣𝑔𝑡

𝑘𝐿
+

2𝑞𝑎𝑣𝑔𝐿
𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛+1 + 𝑓𝐿

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 (10)

3. Variable Heat Flux With Radial Conduction
Consider a two-dimensional approach with the assumption of variable heat flux 𝑞(𝑟) = 𝑞2𝑟

2 + 𝑞1𝑟 + 𝑞0. This gives
the governing equation

𝑇𝑥𝑥 + 𝑇𝑟𝑟 =
1
𝛼
𝑇𝑡 −

1
𝑟
𝑇𝑟 (11)

with initial condition 𝑇 (𝑟, 𝑥, 0) = 𝑇0 and boundary conditions

𝑇𝑟 (0, 𝑥, 𝑡) = 0 𝑇𝑟 (𝑟0, 𝑥, 𝑡) = 0 (12)

𝑇𝑥 (𝑟, 0, 𝑡) = −𝑞(𝑟)
𝑘

𝑇𝑥 (𝑟, 𝐿, 𝑡) = − 𝑓𝐿
(
𝑞(𝑟)
𝑘

)
(13)

where 𝑟0 is the radius of the slug. A schematic of the boundary value problem is provided in Figure 9 .

Fig. 9 Boundary conditions for variable heat flux with two-dimensional conduction.

Similar to the one-dimensional approach, assume the solution is of the form

𝑇 (𝑟, 𝑥, 𝑡) = (steady state) + (transient) = 𝑣(𝑟, 𝑥, 𝑡) + 𝑤(𝑟, 𝑥, 𝑡) (14)
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Two analytical solutions of this form exist, and they depend on the choice of eigenvalues in the transient solution,
𝑤(𝑟, 𝑥, 𝑡). Using the separation of variables 𝑤(𝑟, 𝑥, 𝑡) = 𝑅(𝑟)𝑋 (𝑥)𝜏(𝑡), the eigenvalues of 𝑅(𝑟) are associated to the
roots of the Bessel function 𝐽1.

In the case of positive roots of 𝐽1, 𝛼𝑛, where 𝑛 is a positive integer, gives the eigenvalues for 𝑅(𝑟) to be 𝑝𝑛 =
𝛼𝑛

𝑟0
for

all positive integers 𝑛. The general solution is

𝑇 (𝑟, 𝑥, 𝑡) = 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0 +

∞∑︁
𝑛=1

[𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟)

+
∞∑︁
𝑛=1

∞∑︁
𝑧=1

𝐶𝑧𝑛𝑒
−(𝑣2

𝑧+𝑝2
𝑛 )𝛼𝑡 cos(𝑣𝑧𝑥)𝐽0 (𝑝𝑛𝑟) (15)

where 𝐴𝑛, 𝐵𝑛, 𝐶𝑧𝑛, 𝛽
2, 𝑎1, 𝑎0 are constants and 𝑣𝑧 = 𝑧 𝜋

𝐿
for all positive integers 𝑧.

In the case of zero as the root of 𝐽1, the associated eigenvalues of 𝑅(𝑟) are zero. This yields the general solution as

𝑇 (𝑟, 𝑥, 𝑡) =𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0 +

∞∑︁
𝑛=1

[𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) +
∞∑︁
𝑧=1

𝐸𝑧𝑒
−𝑣2

𝑧𝛼𝑡 cos(𝑣𝑧𝑥)

(16)

where 𝐴𝑛, 𝐵𝑛, 𝐸𝑧 , 𝛽
2, 𝑎1, 𝑎0 are constants.

The coefficients of 𝑥2, 𝑥, and 𝑡 are 𝛽2, 𝑎1, and 𝑎0, respectively. The values of these constants are

𝛽2 =
(1 − 𝑓𝐿)𝑞𝑎𝑣𝑔

𝑘𝐿
𝑎1 = −

𝑞𝑎𝑣𝑔

𝑘
𝑎0 =

(2 + 𝑓𝐿)𝑞𝑎𝑣𝑔𝐿
6𝑘

(17)

The Appendix contains the process used to calculate the value of 𝛽2 and also provides justification that 𝑎0 and 𝑎1 can be
arbitrary. Thus, the values of 𝑎0 and 𝑎1 are chosen so that they are comparable to the corresponding terms in Eqn. 9.

Futhermore, using Fourier series and integration, the values of the remaining unknown constants in Eqns. 15 and 16
are as follows:

𝐴𝑛 = 𝐵𝑛

[
𝑓𝐿 − cosh(𝑝𝑛𝐿)

sinh(𝑝𝑛𝐿)

]
= 𝐵𝑛𝐷𝑛 (18)

𝐵𝑛 =
−2

𝑘 𝑝𝑛 [𝐽0 (𝛼𝑛)]2

∞∑︁
𝑚=1

(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−2 [(𝑚 − 1)!]2

[
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
(19)

𝐶𝑧𝑛 =

∞∑︁
𝑚=1

[(−1)𝑧 𝑓𝐿 − 1]
𝑘𝐿 (𝑝2

𝑛 + 𝑣2
𝑧) [𝐽0 (𝛼𝑛)]2

[
(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−4 [(𝑚 − 1)!]2

] [
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
(20)

𝐸𝑧 =
(−1)𝑧+1 (2𝛽2𝐿 + 2𝑎1) + 2𝑎1

𝐿𝑣2
𝑧

+
∞∑︁
𝑛=1

∞∑︁
𝑚=1

[(−1)𝑧 𝑓𝐿 − 1]
𝑘𝐿 (𝑝2

𝑛 + 𝑣2
𝑧) [𝐽0 (𝛼𝑛)]2

[
(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−4 [(𝑚 − 1)!]2

] [
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
(21)

Evaluating Eqns. 15 and 16 at 𝑥 = 𝐿 and 𝑟 = 0 yields two models for the back-face centerline temperature of the slug.
The positive eigenvalue solution is

𝑇𝑏 (𝑡) = 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝐿2 + 𝑎1𝐿 + 𝑎0 +

∞∑︁
𝑛=1

𝐵𝑛𝐷𝑛 +
∞∑︁
𝑛=1

∞∑︁
𝑧=1

(−1)𝑧𝐶𝑧𝑛𝑒
−(𝑣2

𝑧+𝑝2
𝑛 )𝛼𝑡 (22)

and the zero eigenvalue solution is

𝑇𝑏 (𝑡) = 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝐿2 + 𝑎1𝐿 + 𝑎0 +

∞∑︁
𝑛=1

𝐵𝑛𝐷𝑛 +
∞∑︁
𝑧=1

(−1)𝑧𝐸𝑧𝑒
−𝑣2

𝑧𝛼𝑡 . (23)

Both of these solutions satisfy the proposed initial-boundary value problem detailed in Eqns. 11, 12 and 13. The
next section will present results showing that one of the above solutions is not valid and does not agree with the slug
back-face temperature data. The Appendix provides details on the derivation and verification of the above solutions.
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C. Truncation Analysis
Now that the analytical models for the back-face temperature have been established, it is necessary to determine the

number of terms needed to approximate each infinite series in Eqns. 5 , 10 , 22 , and 23 with reasonable accuracy.
In order to accomplish this, it is necessary to set values for the quantities 𝑇0, 𝑞2, 𝑞1, and 𝑞0. The value for the initial
temperature in the high-enthalpy condition is 𝑇0 = 285.93 K, which is based on the mean temperature near 𝑡 = 0
of slug calorimeter data. The values used for 𝑞2, 𝑞1, and 𝑞0 are determined from an empirical fit of CFD data. In
the high-enthalpy condition, these values are determined to be 𝑞2 = 45.5 W/cm4, 𝑞1 = -2.5 W/cm3, and 𝑞0 = 243.1
W/cm2. The thermal diffusity, 𝛼 = 0.00011773 𝑚2/𝑠, and thermal conductivity, 𝑘 = 400 𝑊/𝑚 𝐾 , constants outlined
in Section III.A as well as the length, 𝐿 = 0.0127 𝑚, and radius, 𝑟0 = 0.00635 𝑚, of the slug are also used in the
truncation analysis. Furthermore, 𝑓𝐿 is assigned the value of 0.01 per the preliminary analysis in Section III.A, which
indicates a 1% conductive heat loss at the slug back-face.

1. Analytical 1D Conduction
The only series term in Eqn. 5 is the transient solution:

2𝑞0𝐿

𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛+1 + 𝑓𝐿

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 . (24)

Fig. 10 Transient solution of Eqn. 4, summed up to the nth term.

Figure 10 shows the sum of the first five terms with the values of 𝑞0, 𝑘, 𝐿 and 𝑓𝐿 as indicated above. Note that the
vertical axis is in units of degrees Kelvin. When 𝑛 = 3, the sum is less than one Kelvin from the summation of terms
greater than three. Thus, the transient solution in Eqn. 5 can be truncated to three terms. This truncation then simplifies
the back-face temperature of the slug with constant heat flux (with or without radial conduction) as

𝑇𝑏 (𝑡) = 𝑇0 −
(1 + 2 𝑓𝐿)𝑞0𝐿

6𝑘
+ (1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
+ 2𝑞0𝐿

𝑘𝜋2

[
(1 + 𝑓𝐿)𝑒−𝛼( 𝜋

𝐿 )2
𝑡 − (1 − 𝑓𝐿)

4
𝑒−𝛼( 2𝜋

𝐿 )2
𝑡 + (1 + 𝑓𝐿)

9
𝑒−𝛼( 3𝜋

𝐿 )2
𝑡

]
.

(25)

Since Eqn. 10 is an adjustment of Eqn. 5 , the transient series can be truncated similarly. Therefore, Eqn. 10 can be
truncated to three terms giving the simplified model:

𝑇𝑏 (𝑡) = 𝑇0 −
(1 + 2 𝑓𝐿)𝑞𝑎𝑣𝑔𝐿

6𝑘
+
(1 − 𝑓𝐿)𝛼𝑞𝑎𝑣𝑔𝑡

𝑘𝐿
+

2𝑞𝑎𝑣𝑔𝐿
𝑘𝜋2

[
(1 + 𝑓𝐿)𝑒−𝛼( 𝜋

𝐿 )2
𝑡 − (1 − 𝑓𝐿)

4
𝑒−𝛼( 2𝜋

𝐿 )2
𝑡 + (1 + 𝑓𝐿)

9
𝑒−𝛼( 3𝜋

𝐿 )2
𝑡

]
.

(26)
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2. Analytical 2D Conduction
Compared to the solutions in the previous subsection, the analytical models in Eqns. 22 and 23 only differ in their

transient solutions. Conveniently, the series in the transient solution of both models follows a similar pattern with
similar conclusions. Therefore, this section will only highlight details of the the truncation analyses for solution in Eqn.
23, which is presented in Section III.B.3.

Eqn. 23 has series in both the steady-state solution and the transient solution. First, note that the steady-state series
in Eqn. 18 is independent of time. Second, recall 𝐵𝑛 contains an infinite sum with respect to the index 𝑚. Therefore,∑∞

𝑛=1 𝐵𝑛𝐷𝑛 is a double sum in the indices 𝑛 and 𝑚. Figure 11 shows the sum of the steady-state series for 1 ≤ 𝑛 ≤ 5
and 1 ≤ 𝑚 ≤ 20, which again uses the values of 𝑘, 𝐿, 𝑞2, and 𝑞1 laid out in the introduction of this subsection. To
summarize, if 𝑛 = 1, 2, 3, . . . , 𝜖 for some fixed positive integer 𝜖 , then there is a sufficiently large positive integer 𝑚 in
which the sum is negligible. It should be noted that as 𝜖 increases, the number of 𝑚 terms needed to make the sum
negligible will also increase. Therefore, this series can be dropped from the steady-state solution in Eqn. 23.

Fig. 11 Summation of steady-state series in Eqns. 22
and 23.

Fig. 12 Summation of first transient series in Eqn.
23.

The transient solution of Eqn. 23 has two infinite series:

∞∑︁
𝑧=1

[
(−1)𝑧2𝑎1 − 2𝛽2𝐿 − 2𝑎1

𝐿𝑣2
𝑧

]
𝑒−𝑣

2
𝑧𝛼𝑡 +

∞∑︁
𝑧=1

∞∑︁
𝑛=1

∞∑︁
𝑚=1

[(−1)𝑧+1 + 𝑓𝐿]
𝑘𝐿 (𝑝2

𝑛 + 𝑣2
𝑧) [𝐽0 (𝛼𝑛)]2

[
(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−4 [(𝑚 − 1)!]2

] [
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
𝑒−𝑣

2
𝑧𝛼𝑡

(27)

The sum of the first transient series for up to the first five terms is shown in Figure 12 . Since this mimics the pattern
shown in Figure 10, the same conclusion of truncating the first transient series to three terms would provide a reasonable
approximation.

Since the transient solution tends to zero as 𝑡 increases, it is sufficent to evaluate Eqn. 23 at values near 𝑡 = 0 in
order to truncate the second transient series. Define 𝑇𝑧𝑛𝑚 (𝑡) to be Eqn. 23 with the suggested number of terms for the
first transient series, along with the sum of all terms of the second transient solution from one to the specified values of
𝑧, 𝑛, and 𝑚. Figures 13 and 14 show the value of 𝑇𝑧𝑛𝑚(𝑡), in units of Kelvin, at 𝑡 = 0 and 𝑡 = 0.1 seconds from the
penetration time where 1 ≤ 𝑧 = 𝑛 ≤ 3 and 1 ≤ 𝑚 ≤ 11. Observe that 𝑇111 (𝑡) is within one Kelvin of the value 𝑇𝑧𝑛𝑚 (𝑡)
converges to for a fixed time 𝑡. The same holds true for all 𝑡 when 𝑧, 𝑛, and 𝑚 get large, even in the case when 𝑧 ≠ 𝑛.
Therefore, the second transient series can be truncated to one term.
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Fig. 13 Summation of second transient series in Eqn.
23 at t=0.

Fig. 14 Summation of second transient series of Eqn.
23 at t=0.1.

In conclusion, the steady-state series is neglible, the first transient series can be truncated to three terms, and the
second transient series can be truncated to one term. Thus, Eqn. 23 can be reduced to

𝑇𝑏 (𝑡) = 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝐿2 + 𝑎1𝐿 + 𝑎0 +

[
4.04

𝑘𝐿 [𝐽0 (𝛼1)]2 (𝑝2
1 + 𝑣

2
1)

[
𝑞2𝑟

2
0

4
+ 𝑞1𝑟0

3

]
− 4𝑎1 + 2𝛽2𝐿

𝐿
(
𝜋
𝐿

)2

]
𝑒−( 𝜋

𝐿 )2
𝛼𝑡

−
©«

2𝛽2(
2𝜋
𝐿

)2

ª®®¬ 𝑒−(
2𝜋
𝐿 )2

𝛼𝑡 −
©«

4𝑎1 + 2𝛽2𝐿

𝐿

(
3𝜋
𝐿

)2

ª®®¬ 𝑒−(
3𝜋
𝐿 )2

𝛼𝑡 . (28)

As mentioned previously, the same truncations can be used to simplify Eqn.22. The steady-state series is negligible,
and the transient series can be truncated to one term. Therefore, Eqn. 22 can be simplifed to

𝑇𝑏 (𝑡) =𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝐿2 + 𝑎1𝐿 + 𝑎0 +

4.04
𝑘𝐿 [𝐽0 (𝛼1)]2 (𝑝2

1 + 𝑣
2
1)

[
𝑞2𝑟

2
0

4
+ 𝑞1𝑟0

3

]
𝑒−(𝑣2

1+𝑝
2
1 )𝛼𝑡 . (29)

IV. Results and Discussion
In the previous section, analytical solutions were derived, and an error analysis was performed to truncate the

solutions to a simplified form. In this section, Eqns. 25, 26, 28, and 29 will be validated against slug calorimeter
back-face thermal data using optimization in Section IV.A - IV.B. The objective is to find optimal values of the stagnation
heat flux and the initial temperature in which the analytical solutions provide a best-fit to the slug thermal data. A least
squares approach is used to find optimal variables to produce the best fit using the Generalized Reduced Gradient (GRG)
nonlinear optimization method [19, 20]. This approach is an available tool in Excel and requires a good initial guess to
ensure an accurate local minimum is returned by the optimization routine. The initial guess for the stagnation heat
flux is determined by the ASTM reported value, and in the case of variable (radially varying) heat flux, data acquired
from CFD performed in Brune et al. [1] to inform the initial guess of the coefficients in 𝑞(𝑟). The guess for the initial
temperature is calculated as the average of the slug thermal data points in the first one-tenth of a second, prior to the
steady-state portion of the slug thermal response. In Sections IV.C, a summary of the optimization results is given
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to make an assessment of the new range of epistemic uncertainty in the stagnation heat flux on the slug probe. In
Section IV.D, the aleatory uncertainty is quantified by evaluating temporal variations in the stagnation heat flux in the
steady-state portion of the slug thermal response, which is accomplished by using a least-squares slope marching routine.
A comparison of the mixed uncertainty, accouting for aleatory and espistemic components, will be presented in Section
IV.E and compared to the uncertainty used in Brune et al [1].

A. Analytical 1D Conduction Validation
Using Eqn. 25, 𝑇0 and 𝑞0 are used as optimization variables to minimize the sum of square of the error between the

model prediction and slug thermal data points. Figure 15a shows the best fit 𝑇𝑏 (𝑡) for the high-enthalpy test condition,
which is obtained when 𝑞0 = 246.7 W/cm2 and 𝑇0 = 289.7 K. Figure 15b shows the best fit 𝑇𝑏 (𝑡) for the low-enthalpy test
condition which is obtained when 𝑞0 = 60.6 W/cm2 and 𝑇0 = 288.5 K. Note the initial guesses used for both conditions
are listed in the figure caption and are the same values used for the truncation error analysis in Section III.C. The results
demonstrate that Eqn. 25 is a valid and optimized model for predicting the slug thermal response for both enthalpy
conditions in the case of constant heat flux across the front face of the slug element.

(a) High-enthalpy condition. (b) Low-enthalpy condition.

Fig. 15 Comparison of the optimized constant heat flux solution and the slug back-face temperature data with
initial guesses: (a) 𝑇0 = 285.9 K and 𝑞0 = 243.1 W/cm2, (b) 𝑇0 = 283.2 K and 𝑞0 = 56.7 W/cm2.

Now, assume that the constant heat flux assumption is relaxed, and the heat flux varies radially across the front face
of the slug element. As mentioned in Section III.B.2, Eqn. 26 requires designated values for 𝑝 and 𝑞𝑎𝑣𝑔 in order to
evaluate the coefficients of 𝑞(𝑟) from Eqns. 7 and 8. The value of 𝑞𝑎𝑣𝑔 is equivalent to the optimized constant heat flux
value, 𝑞0, determined by the optimized model in Eqn. 25. The value of 𝑝 can be determined by the CFD predictions in
Brune et al. [1], which indicates that the heat flux value at 𝑟 = 𝑟𝑜 is approximately 8% higher than the stagnation heat
flux predicted value for both high- and low-enthalpy conditions; therefore, 𝑝 = 1.08. For the high-enthalpy condition,
evaluating the derived formulas given in Eqns. 7 and 8 result in 𝑞0 = 237.2 W/cm2, 𝑞1 = 0 W/cm3, and 𝑞2 = 47.1
W/cm4. For the low-enthalpy condition, evaluating the derived formulas given in Eqns. 7 and 8 result in 𝑞0 = 58.2
W/cm2, 𝑞1 = 0 W/cm3, and 𝑞2 = 11.6 W/cm4. Note that since 𝑞𝑎𝑣𝑔 equals the optimized 𝑞0 in Eqn. 25, the results
shown in Figures 15a and 15b are also applicable to Eqn. 26 for the high- and low-enthalpy conditions.

B. Analytical 2D Conduction Validation
Recall that two possible analytical solutions were derived from two eigenvalue cases in Section III.B.3, as shown

by Eqns. 28 and 29. The optimization variables in these analytical models are the initial temperature, 𝑇0, and the
coefficients of the quadratic heat flux equation 𝑞(𝑟) i.e. 𝑞2, 𝑞1, and 𝑞0. For this particular optimization problem, the
coefficients in 𝑞(𝑟) can produce an optimal solution, when left unconstrained, that does not conform fundamentally to
an increasing heat flux as the spatial location increases towards the shoulder of the slug element. In an effort to preserve
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the shape of the heat flux distribution on the front face of the slug element, consistent with the CFD data in Brune et
al.[1], the following constraint is applied to the coefficients in 𝑞(𝑟) for some scale factor 𝑐:

𝑞(𝑟) = 𝑐𝑞2𝑟
2 + 𝑐𝑞1𝑟 + 𝑐𝑞0. (30)

Therefore, Eqns. 28 and 29 are optimized with respect to the scale factor, 𝑐, and the initial temperature, 𝑇0.
Figures 16a and 16b present the optimized slug back-face thermal response analytical prediction, using Eqn. 29,

compared to the slug thermal data for the high- and low-enthalpy test conditions, respectively. This comparison is shown
for the case in which the analytical solution adopts a zero-eigenvalue root. The resulting coefficients in the heat flux
equation for the high-enthalpy condition are 𝑐𝑞2 = 44.3 W/cm4 , 𝑐𝑞1 = -2.4 W/cm3, and 𝑐𝑞0 = 237 W/cm2. For the
low-enthalpy condition, the coefficient values are 𝑐𝑞2 = 10.9 W/cm4, 𝑐𝑞1 = -0.53 W/cm3, and 𝑐𝑞0 = 58.6 W/cm2. The
results demonstrate that Eqn. 29 is a valid and optimized model, in the case of a zero eigenvalue root, for predicting the
slug thermal response for both enthalpy conditions assuming variable heat flux across the front face of the slug element
with two-dimensional thermal conduction.

For the case of positive eigenvalues, Figures 17a and 17b present the optimized slug back-face thermal response
analytical prediction, using Eqn. 28, compared to the slug thermal data for the high- and low-enthalpy test conditions,
respectively. For a true comparison of the positive eigenvalue solution to the zero eigenvalue solution, the 𝑇0 and the
𝑞(𝑟) coefficients are set to the aforementioned optimized values in the zero eigenvalue case. A clear distinction can be
observed between the two solutions in the first 0.1-0.2 seconds of penetration time since insertion of the slug element
into the flow, which is consistent with the differences in the transient terms of the two analytical solutions. Figure 17
indicates a significant deviation from the slug calorimeter data near 𝑡 = 0 and does not follow the behavior of the data for
small 𝑡, which is primarily due to the exponential term in the transient solution, 𝑒−(𝑝2

1+𝑣
2
1 )𝛼𝑡 . While the transient series

is supposed to approach zero as 𝑡 tends towards infinity, the exponential term forces the transient series to approach
zero a short while after 𝑡 = 0 seconds. Furthermore, a large valued expression involving 𝑐𝑞2 and 𝑐𝑞1 is included in the
transient series as well, resulting in an ill-posed solution for small adjustments in 𝑐 that produces significant deviations
from the experimental data. Therefore, the positive eigenvalue solution in Eqn. 28 is eliminated as a valid model.

(a) High-enthalpy condition. (b) Low-enthalpy condition.

Fig. 16 Comparison of the zero-eigenvalue optimized variable heat flux solution and the slug back-face
temperature data with initial guesses: (a) 𝑐 = 1.00, 𝑞2 = 45.5 W/cm4, 𝑞1 = -2.5 W/cm3, 𝑞0 = 243.1 W/cm2, and 𝑇0
= 285.93 K, (b) 𝑐 = 1.00, 𝑞2 = 10.5 W/cm4, 𝑞1 = -0.51 W/cm3, 𝑞0 = 56.7 W/cm2, and 𝑇0 = 283.15 K.
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(a) High-enthalpy condition. (b) Low-enthalpy condition.

Fig. 17 Comparison of the positive-eigenvalue variable heat flux solution and the slug back-face temperature
data with optimized variables in the zero-eigenvalue solution: (a) 𝑐 = 0.98 and 𝑇0 = 289.6 K, (b) 𝑐 = 1.03 and 𝑇0
=288.6 K.

C. Evaluation of Deduced Stagnation Heat Flux Epistemic Uncertainty
In the previous subsections, the stagnation heat flux values were evaluated through various slug element non-ideal

scenarios, including constant heat flux with one-dimensional conduction, variable heat flux with one-dimensional
conduction, and variable heat flux with two-dimensional conduction. Either optimization of the developed analytical
solutions or simplified expressions were used to quantify the stagnation heat flux values for these non-ideal slug
environments. A summary of the stagnation heat flux values is presented in Table 1 using Eqns. 25 , 7, and 29. In the
previous subsection, the stagnation heat flux value for Eqn. 28 was not considered because it does not mimic the slug
back-face thermal data in the transient phase, prior to the steady-state slope. For comparison, the stagnation heat flux
value reported using the ASTM method and the optimal stagnation heat flux value using Eqn. 25 when 𝑓𝐿 = 0 (no heat
losses), which is also presented in [3], has also been provided in the table. In the table, columns are shown for both high-
and low-enethalpy conditions that scale the results to the reference ASTM reported deduced stagnation heat flux.

Table 1 Summary of deduced stagnation heat flux values from (1) reported ASTM, (2) optimized analytical
solutions from Hightower (no losses), Eqn. 25, and Eqn. 29, and (3) computed analytical formula in Eqn. 7

.
Low-enthalpy Condition High-enthalpy Condition

Case Description Approach Ref. Stag. Heat Flux, 𝑞0
(W/cm2)

Scale with ASTM
Reported

Stag. Heat Flux, 𝑞0
(W/cm2)

Scale with ASTM
Reported

ASTM Reported [2] 56.7 1.00 243.1 1.00
Constant Heat Flux, 1D conduction, no losses [3] 60.0 1.06 245.3 1.01
Constant Heat Flux, 1D conduction, 1% loss Current work 60.6 1.07 246.7 1.02
Variable Heat Flux, 1D conduction, 1% loss Current work 58.2 1.02 237.2 0.98
Variable Heat Flux, 2D conduction, 1% loss Current work 58.6 1.03 237.0 0.98

For the low-enthalpy condition, the ASTM reported value is approximately 4.5% lower than the average of the
optimized analytical results from this work and Hightower [3]. Notice in the figures shown in Section IV.A IV.B,
the slug back-face thermal data for the low-enthalpy condition has more noise compared to the thermal traces for the
high-enthalpy condition. Having a significant cloud of noisy data could lead to errors in computing the temperature
slope with the ASTM method, which is likely what may have happened in this particular case with the low-enthalpy
condition. The approach of using the optimization with the analytical solutions prevents this issue, while the ASTM
requires the test engineer to analyze the slug back-face thermal data and be selective in the choice of points to estimate
the temperature slope. Otherwise, artificial temperatures slopes could be computed with the ASTM method, thus
introducing error in the deduced stagnation heat flux values. In the case of the high-enthalpy condition, the average of
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the optimized analytical results from this work and Hightower agree with the ASTM reported value.
Given the scaled reference values in the third and last columns in Table 1, a new stagnation heat flux bias uncertainty

range can be determined due to the non-ideal effects that the slug element could experience in a test environment. For
both enthalpy conditions, the epistemic uncertainty is evaluated to be ±2% with respect to the average of the results,
not including from the ASTM reported value. Recall in Section IV.A, simplified expressions were used to evaluate
the 𝑞(𝑟) coefficient of the spatial variation in the heat flux across the front face of the slug element. The results show
that this simple approach can estimate the stagnation heat flux to within 1% of the more sophisticated zero-eigenvalue
analytical solution optimized in Section IV.B. In addition, the simplified approach of assuming variable heat flux with
one-dimensional conduction consistently represents at or approximate to the lower bound of the epistemic uncertainty.
In a similar fashion, the optimized analytical solution for the constant heat flux case with losses and one-dimensional
thermal conduction represents the upper bound of the epistemic uncertainty consistently. Therefore, for any test
condition, one could optimize Eqn. 25 and evaluate the expression in Eqn. 7 to determine the epistemic uncertainty due
to non-ideal effects of the slug element in the arc-jet environment. From the table, one can also deduce that the primary
contribution to the epistemic uncertainty of the deduced stagnation heat flux value is the spatial variation in the heat flux
distribution on the front face of the slug element. The spatial variation in the heat flux can vary from one condition to
the other due to the nature of the freestream environments in the arc-jet test cabin; fundamental aeroheating theory of
flat-face slug calorimeter geometries suggests that the heat flux tends to increase at some degree from the center of the
slug element to the shoulder of the calorimeter housing, but the rate of increase is the uncertainty that is covered here for
different conditions, in addition to run-to-run variability for a single condition, in the freestream flow that dictates the
heat flux distribution on the slug element surface.

D. Evaluation of Deduced Stagnation Heat Flux Aleatory Uncertainty
Now that the epistemic uncertainty has been quantified in the previous subsection, a second component of the

uncertainty is addressed here. The aleatory uncertainty is a probabilistic uncertainty that can be used to determine a
cumulative density function that represents the temporal variation of the deduced stagnation heat flux over a sample time
period. For a given set of back-face slug temperature data, a temperature smoothing routine is applied in the numerical
conversion process from temperature to heat flux. Figure 18 shows an example of the temperature smoothing process for
a sample of the slug temperature trace data. The temperature smoothing routine uses a marching, or moving, window of
a linear least-squares fit. Assume that ten points are used in the linear least-squares fit for this example. The algorithm
smooths the first point of the window to point 𝑛, which is always the sixth point from the end of the window. The final
point in the window is 𝑛 + 5. The window continues to march forward in time. For 𝑛<5, the window grows in time until
the desired set of points can be obtained from the truncation at the beginning of the temperature data set. Each smoothed
temperature point is derived using the formula of a straight line for each point 𝑛 in the original temperature data set:

𝑇𝑛 = 𝑚𝑛𝑡𝑛 + 𝑏𝑛 (31)

As the routine smooths the data, the stagnation heating rate is determined using the following equation at each point 𝑛:

𝑞𝑛 = 𝜌𝐶𝑝𝐿

(
𝑇𝑛 − 𝑇𝑛−1
𝑡𝑛 − 𝑡𝑛−1

)
(32)

The choice of the number of points in the linear least-squares fit window is arbitrary. An investigation is performed
to understand the behavior of the statistics in the heat flux determinations depending on the choice of the number of
points in the fit window. For a small number of points in the fit window, a large sample size of heat flux observations
can be obtained in the steady-state region of the back-face slug temperature trace. On the other hand, a small sample
size of heat flux observations can be obtained if the number of points is too large in the fit window. Therefore, there is a
balance of the smoothing process with the number of samples in the heat flux observations. To illustrate this, Figure 19
shows the sample standard deviation dependence on the sample size of the heat flux determinations, which is driven by
the selection of the number of fit points. Notice in the figure that a saddle point (or inflection point) is formed as a
compromise of the two competing factors, which include noise reduction through linear fit smoothing and statistical
convergence with enough sample determinations. For a large sample size with limited number of fit points, there is
much noise in the heat flux determination as indicated by the high standard deviation (or variance). As one increases the
number of fit points, the statistics begin to converge and become independent of the explicit noise in the temperature data
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Fig. 18 Example of temperature smoothing process.

through the saddle (or inflection) point of the s-curve in Figure 19. If one increases the number of fit points too much,
then the statistical significance of the heat flux observations begins to show degradation and loses the convergence of
the sample standard deviation with respect to the sample size of those observations. Therefore, a compromise between
the two competing factors is required to obtain a resonable approximation of the statistics of the heat flux observations
through the smoothing routine and heat flux calculation.

Fig. 19 Dependence of the deduced heat flux sample standard deviation with competing sample size and noise
smoothing factors.

As indicated in Figure 19, which is shown for the high-enthalpy case, the optimal standard deviation at the critical
saddle/inflection point is determined to be 0.53 W/cm2 with a corresponding mean of 242.83 W/cm2. A similar approach
is applied to the low-enthalpy case in determining the inflection point of convergence between smoothing and sample
standard deviation. The results indicate an optimal standard deviation of 0.6 W/cm2 with a sample mean of 59.47
W/cm2. A chi-squared goodness of fit test confirms the null hypothesis that the heat flux determinations are sampled
from a normal distribution.
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E. Summary of Deduced Stagnation Heat Flux Uncertainty
Given the results from the previous two subsections, the evaluation of the epistemic and aleatory uncertainty inform

the generation of a probability box plot that represents the mixed uncertainty of the stagnation heat flux on the slug
calorimeter. These are informed from the optimized analytical models against the slug back-face thermal data, and the
numerical analysis of the slug data to gather temporal statistics across a period of time at the slug element’s steady state.
Figure 20 compares the current work probability box plot against the intervals used in Brune et al. [1] Historically, the
uncertainty in the deduced heat flux from the slug calorimeter temperature data, using the ASTM approach, was ±10%.
These are indicated in both figures with the red solid lines at the low- and high-enthalpy conditions. From this work,
the uncertainty has been reduced to the green solid lines through analysis performed in this section. Adopting a 95%
confidence interval to evaluate the new uncertainty in the stagnation heat flux, the value of the upper green cumulative
distribution function (CDF) bound at the 97.5% probability level and the value of the lower green CDF bound at the
2.5% probability level are used; the 95% confidence interval values are illustrated in the figures with black circles. For
the low-enthalpy case, the 95% confidence interval ranges from 57.05 to 61.81 W/cm2, or ±4% from the midpoint of the
confidence interval, which is approximate to the average of the results in Table 1. For the high-enthalpy case, the 95%
confidence interval is ranges from 235.99 to 247.75 W/cm2, or ±2.6% from the midpoint of the confidence interval,
which is approximate to the average of the results in Table 1. Note that the uncertainty is higher for the low-enthalpy
condition due to the nature of the noise inherent in the slug back-face temperature data compared to the high-enthalpy
condition. Compared to the uncertainty applied to the state-of-the-art method in Brune et al. [1], this study shows that
the uncertainty in the deduced stagnation heat flux on the slug calorimeter can be reduced by approximately 75% for the
high-enthalpy condition and approximately 60% for the low-enthalpy. If there is not a distinction in the noise of the slug
temperature traces between the two conditions, the expectation is the uncertainty reduction would follow more closely
to the high-enthalpy level of approximately 75%.

(a) High-enthalpy condition. (b) Low-enthalpy condition.

Fig. 20 Comparison of the uncertainty in the deduced stagnation heat flux used in Brune et al. [1] to the
uncertainty evaluated in this work.

With the completion of this effort, the work in Brune et al. [1] will be revisited in carrying the new uncertainty in the
deduced stagnation heat flux represented by a mixed uncertainty with two components (epistemic bias from an analysis
calibration standard and aleatory temporal variation), similar to the stagnation pressure and other arc setpoint parmeters.
The validation comparison will be conducted between the CFD prediction and facility measurement uncertainty in both
stagnation heat flux and pressure metrics. Then, a follow-on calibration of the CFD model will be conducted, using a
form of a Bayesian inference approach, to get the model prediction and measurement uncertainty bounds to match with
modifications to the CFD model input parameters that warrant adjustment due to lack of analysis or test data. In other
words, CFD uncertain parameters with justification simply from expert opinion, or without a reference or analysis to
backup the variation of a specific parameter, will be included in the modification process of the model calibration to
match prediction and data uncertainty at some threshold of validation error.
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V. Conclusion
In summary, an uncertainty analysis is peformed on the deduced stagnation heat flux environment of a slug

calorimeter for conditions that span the performance envelope of the Hypersonic Materials Environmental Test System
facility located at NASA Langley Research Center. Analytical solutions are developed for boundary-value problems on
the slug element accounting for non-ideal effects, including spatial variation in the slug heat flux, multi-dimensional
thermal conduction, and back-face losses, which departs from the state-of-the-art method derived from the American
Society of Testing and Materials standard procedure. Boundary-value problem definitions are informed by preliminary
finite element thermal analysis of the slug calorimeter assembly (including both slug and housing) and just the slug
element. The analytical solutions are presented in a general sense and in a truncated form from error analysis. Validation
through a least squares approach via optimization indicates good agreement between the developed analytical models
and available slug back-face thermal data. The compilation of optimization results show that the appropriate epistemic
uncertainty of the deduced stagnation heat flux on the slug calorimeter is at most ±2.5% for both a high- and low-enthalpy
test condition. In addition, a numerical approach is used to determine the aleatory (probabilistic) uncertainty component
in the slug stagnation heat flux by applying a marching least-squares slope routine through the steady-state portion
of the slug back-face thermal response. Results indicate a compromise between the number of samples and the filter
frequency of slug back-face thermal data points when evaluating the standard deviation of the deduced stagnation heat
flux statistics. When combining the mixed uncertainty (both aleatory and epistemic), the interval of uncertainty in
the deduced stagnation heat flux is determined to be up to ±4%, which is at least 60% reduction from the standard
uncertainty used in the state-of-the-art method. Future work includes a feedback loop of new mixed uncertainty shown
in this work on the slug calorimeter to update the validation comparison of uncertainty in the computational fluid
dynamics model predictions against measurement uncertainty. In addition, model calibration of the computational fluid
dynamics model via a Bayesian-inference approach will also be considered to obtain the optimal validation between
prediction and measurement uncertainty.
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Appendix
In Section III.B.1 - III.B.3, multiple analytical solutions were presented and claimed to satisfy their initial respective

boundary-value problems. The purpose of the appendix is to provide a detailed description of how Eqns. 4 and 16 were
derived, and to mathematically prove, the claim of satisfying their boundary value-problems. It should be noted that the
process of deriving and verifying Eqn. 15 is similar to the work shown in Section B of the Appendix.

A. Derivation and Verification of the Constant Heat Flux Solution
As noted in Section III.B.1 , Eqn. 4 satisfies the governing equation 𝑇𝑥𝑥 = 1

𝛼
𝑇𝑡 (Eqn. 2) whose initial and boundary

conditions were given in Eqn. 3: 𝑇 (𝑥, 0) = 𝑇0, 𝑇𝑥 (0, 𝑡) = − 𝑞0
𝑘
, 𝑇𝑥 (𝐿, 𝑡) = − 𝑓𝐿𝑞0

𝑘
. Assume the solution is of the form

𝑇 (𝑥, 𝑡) = (steady state) + (transient) = 𝑣(𝑥, 𝑡) + 𝑤(𝑥, 𝑡). (33)

For the steady-state solution, use the separation of variables 𝑣(𝑥, 𝑡) = 𝑓 (𝑥) +𝑔(𝑡). This choice creates a nonhomogeneous
initial-boundary value problem as follows:

𝑣𝑥𝑥 =
1
𝛼
𝑣𝑡 (34)

𝑣𝑥 (0, 𝑡) = 𝑓 ′ (0) = −𝑞0
𝑘

(35)

𝑣𝑥 (𝐿, 𝑡) = 𝑓 ′ (𝐿) = − 𝑓𝐿𝑞0
𝑘

(36)

𝑣(𝑥, 0) = 𝑔(0) = 𝑇0. (37)

Plugging in the required partial derivatives into Eqn. 34 gives the equivalence 𝑓 ′′ (𝑥) = 1
𝛼
𝑔′ (𝑡). This equation

only holds if 𝑓 ′′ (𝑥) = 1
𝛼
𝑔′ (𝑡) = _ for some constant _, which gives two ordinary differential equations, 𝑓 ′′ (𝑥) = _ and

𝑔′ (𝑡) = 𝛼_. Standard integration gives 𝑓 (𝑥) = _
2 𝑥

2 + 𝑐1𝑥 + 𝑐2 and 𝑔(𝑡) = 𝛼_𝑡 + 𝑐3 where each 𝑐𝑖 is a constant.
The values of _, 𝑐1 and 𝑐3 can be found using the boundary and inital conditions:

𝑓 ′ (0) = _(0) + 𝑐1 = −𝑞0
𝑘

−→ 𝑐1 = −𝑞0
𝑘

(38)

𝑓 ′ (𝐿) = _𝐿 + 𝑐1 = − 𝑓𝐿𝑞0
𝑘

−→ _ = −𝑐1
𝐿

− 𝑓𝐿𝑞0
𝑘𝐿

=
𝑞0
𝑘𝐿

− 𝑓𝐿𝑞0
𝑘𝐿

=
(1 − 𝑓𝐿)𝑞0

𝑘𝐿
(39)

𝑔(0) = 𝛼_(0) + 𝑐3 = 𝑇0 −→ 𝑐3 = 𝑇0 (40)
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With substitution, 𝑣(𝑥, 𝑡) = (1− 𝑓𝐿 )𝑞0
2𝑘𝐿 𝑥2 − 𝑞0

𝑘
𝑥 + 𝑐2 + (1− 𝑓𝐿 )𝛼𝑞0

𝑘𝐿
𝑡 + 𝑇0. Using the energy balance equation,

1
𝐿

∫ 𝐿

0
𝑣(𝑥, 𝑡)𝑑𝑥 = 𝑇0 +

(1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
, (41)

it can be shown 𝑐2 =
(2+ 𝑓𝐿 )𝑞0𝐿

6𝑘 . Therefore, the steady-state solution is

𝑣(𝑥, 𝑡) = 𝑓 (𝑥) + 𝑔(𝑡) = (1 − 𝑓𝐿)𝑞0
2𝑘𝐿

𝑥2 − 𝑞0
𝑘
𝑥 + (2 + 𝑓𝐿)𝑞0𝐿

6𝑘
+ (1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
+ 𝑇0. (42)

For 𝑇 (𝑥, 𝑡) = (steady state) + (transient) = 𝑣(𝑥, 𝑡) +𝑤(𝑥, 𝑡) to satisfy its initial-boundary value problem, 𝑤(𝑥, 𝑡) ≠ 0
must satisfy the following initial-value problem:

𝑤𝑥𝑥 =
1
𝛼
𝑤𝑡 (43)

𝑤𝑥 (0, 𝑡) = 0 (44)
𝑤𝑥 (𝐿, 𝑡) = 0 (45)
𝑤(𝑥, 0) = 𝑇0 − 𝑣(𝑥, 0) = − 𝑓 (𝑥). (46)

To find a nonzero solution to Eqn. 43, use the separation of variables 𝑤(𝑥, 𝑡) = 𝜙(𝑥)\ (𝑡). Taking partial derivatives
and plugging into our governing equation gives the separable equation 𝜙′′ (𝑥)\ (𝑡) = 1

𝛼
𝜙(𝑥)\′ (𝑡). With some rearranging,

the separable equation becomes 𝜙′′ (𝑥 )
𝜙 (𝑥 ) =

\ ′ (𝑡 )
𝛼\ (𝑡 ) which only holds if 𝜙′′ (𝑥 )

𝜙 (𝑥 ) =
\ ′ (𝑡 )
𝛼\ (𝑡 ) = −𝑑2 for some nonzero constant 𝑑.

This results in two ordinary differential equations, 𝜙′′ + 𝑑2𝜙 = 0 and \′ + 𝛼𝑑2\ = 0.
The first equation can be solved using the characteristic equation 𝜎2 + 𝑑2 = 0. The roots of this equation are

𝜎 = ±𝑑𝑖 which correspond to solutions 𝜙1 (𝑥) = cos(𝑑𝑥) and 𝜙2 (𝑥) = sin(𝑑𝑥). Therefore, the general solution is
𝜙(𝑥) = 𝐴 cos(𝑑𝑥) + 𝐵 sin(𝑑𝑥) where 𝐴 and 𝐵 are constants.

The second differential equation can be solved by the integrating factor,

`(𝑡) = 𝑒
∫
𝛼𝑑2𝑑𝑡 = 𝑒𝛼𝑑

2𝑡 . (47)

Multiplying by `(𝑡), gives the equation 𝑒𝛼𝑑2𝑡\′ + 𝛼𝑑2𝑒𝛼𝑑
2𝑡\ = 0 of which the left-hand side is the derivative of the

product `\. Therefore,

\ (𝑡) = 1
`

∫
0𝑑𝑡 = 𝐶𝑒−𝛼𝑑2𝑡 (48)

for some constant 𝐶.
Equation 44 gives the relation 𝜙′ (0)\ (𝑡) = 0 which must hold for every 𝑡. Thus, 𝜙′ (0) = 0 implying −𝐴𝑑 sin(0) +

𝐵𝑑 cos(0) = 0 or simply 𝐵𝑑 = 0. Since 𝑑 ≠ 0, 𝐵 = 0. Similarly, Eqn. 49 gives the relation 𝜙′ (𝐿)\ (𝑡) = 0 which again
must hold for every 𝑡. Therefore, 𝜙′ (𝐿) = 0. That is, −𝐴𝑑 sin(𝑑𝐿) + 𝐵𝑑 cos(𝑑𝐿) = 0 or simply −𝐴𝑑 sin(𝑑𝐿) = 0. Note
𝐴 ≠ 0, for if both 𝐴 and 𝐵 are zero then 𝑤(𝑥, 𝑡) = 0. It must be the case that sin(𝑑𝐿) = 0 since 𝑑 ≠ 0. Hence, 𝑑𝐿 = 𝑛𝜋

for positive integers 𝑛. In particular, 𝑑𝑛 = 𝑛𝜋
𝐿

where 𝑛 is any positive integer. The family of solutions obtained from
these computations are 𝜙𝑛 (𝑥) = 𝐴𝑛 cos

(
𝑛𝜋𝑥
𝐿

)
and \𝑛 (𝑡) = 𝐶𝑛𝑒

−𝛼( 𝑛𝜋
𝐿 )2

𝑡 . Putting this together we have the transient
solution

𝑤(𝑥, 𝑡) =
∞∑︁
𝑛=1

𝑎𝑛𝑒
−𝛼( 𝑛𝜋

𝐿 )2
𝑡 cos

(𝑛𝜋𝑥
𝐿

)
(49)

where 𝑎𝑛 = 𝐴𝑛𝐶𝑛.
Equations 46 and 49 gives

∞∑︁
𝑛=1

𝑎𝑛 cos
(𝑛𝜋𝑥
𝐿

)
= − 𝑓 (𝑥) = − (1 − 𝑓𝐿)𝑞0

2𝑘𝐿
𝑥2 + 𝑞0

𝑘
𝑥 − (2 + 𝑓𝐿)𝑞0𝐿

6𝑘
. (50)
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The cosine Fourier series gives 𝑎𝑛 to be

𝑎𝑛 =
2
𝐿

∫ 𝐿

0
− 𝑓 (𝑥) cos

(𝑛𝜋
𝐿

)
𝑑𝑥 =

2𝑞0𝐿 [(−1)𝑛 𝑓𝐿 − 1]
𝑘𝜋2𝑛2 . (51)

Therefore, the general solution for 𝑇 (𝑥, 𝑡) is

𝑇 (𝑥, 𝑡) = 𝑇0 +
(1 − 𝑓𝐿)𝑞0

2𝑘𝐿
𝑥2 − 𝑞0

𝑘
𝑥 + (2 + 𝑓𝐿)𝑞0𝐿

6𝑘
+ (1 − 𝑓𝐿)𝛼𝑞0𝑡

𝑘𝐿
+ 2𝑞0𝐿

𝑘𝜋2

∞∑︁
𝑛=1

[
(−1)𝑛 𝑓𝐿 − 1

𝑛2

]
𝑒−𝛼( 𝑛𝜋

𝐿 )2
𝑡 cos

(𝑛𝜋𝑥
𝐿

)
(52)

as claimed.
While the details of the derivation of 𝑇 (𝑥, 𝑡) have been provided, it still needs to be verified that 𝑇 (𝑥, 𝑡) satisfies the

initial-boundary problem. The left-hand side of the governing equation is

𝑇𝑥𝑥 =
(1 − 𝑓𝐿)𝑞0

𝑘𝐿
− 2𝑞0
𝑘𝐿

∞∑︁
𝑛=1

[(−1)𝑛 𝑓𝐿 − 1]𝑒−𝛼( 𝑛𝜋
𝐿 )2

𝑡 cos
(𝑛𝜋𝑥
𝐿

)
(53)

while the right-hand side is

1
𝛼
𝑇𝑡 =

1
𝛼

[
(1 − 𝑓𝐿)𝛼𝑞0

𝑘𝐿
− 2𝛼𝑞0

𝑘𝐿

∞∑︁
𝑛=1

[(−1)𝑛 𝑓𝐿 − 1]𝑒−𝛼( 𝑛𝜋
𝐿 )2

𝑡 cos
(𝑛𝜋𝑥
𝐿

)]
=

(1 − 𝑓𝐿)𝑞0
𝑘𝐿

− 2𝑞0
𝑘𝐿

∞∑︁
𝑛=1

[(−1)𝑛 𝑓𝐿 − 1]𝑒−𝛼( 𝑛𝜋
𝐿 )2

𝑡 cos
(𝑛𝜋𝑥
𝐿

)
.

(54)

Since the left and right-hand sides agree, 𝑇 (𝑥, 𝑡) satisfies the partial differential equation.
The last item that needs to be verified is 𝑇 (𝑥, 𝑡) satisfies the initial and boundary conditions:

𝑇𝑥 (0, 𝑡) = 𝑣𝑥 (0, 𝑡) + 𝑤𝑥 (0, 𝑡) = −𝑞0
𝑘

+ 0 = −𝑞0
𝑘

(55)

𝑇𝑥 (𝐿, 𝑡) = 𝑣𝑥 (𝐿, 𝑡) + 𝑤𝑥 (𝐿, 𝑡) = − 𝑓𝐿𝑞0
𝑘

+ 0 = − 𝑓𝐿𝑞0
𝑘

(56)

𝑇 (𝑥, 0) = 𝑣(𝑥, 0) + 𝑤(𝑥, 0) = 𝑓 (𝑥) + 𝑇0 − 𝑓 (𝑥) = 𝑇0. (57)

Therefore, 𝑇 (𝑥, 𝑡) satisfies the one-dimensional initial-boundary value problem.
In Section III.B.1, it was claimed the solution satisfing the two-dimensional heat equation,

𝑇𝑥𝑥 + 𝑇𝑟𝑟 =
1
𝛼
𝑇𝑡 −

1
𝑟
𝑇𝑟 , (58)

with boundary and initial conditions

𝑇𝑟 (0, 𝑥, 𝑡) = 0 𝑇𝑥 (𝑟, 0, 𝑡) = −𝑞0
𝑘

𝑇 (𝑟, 𝑥, 0) = 𝑇0.

𝑇𝑟 (𝑟0, 𝑥, 𝑡) = 0 𝑇𝑥 (𝑟, 𝐿, 𝑡) = − 𝑓𝐿𝑞0
𝑘

(59)

is 𝑇 (𝑥, 𝑡) (Eqn. 4). The first step in showing this is to assume the solution is of the form 𝑇 (𝑟, 𝑥, 𝑡) = (steady state) +
(transient) = 𝑣(𝑟, 𝑥, 𝑡) + 𝑤(𝑟, 𝑥, 𝑡). From here, the method for deriving 𝑇 (𝑟, 𝑥, 𝑡) is identical to the one used to derive
Eqn. 16 in Section B of the Appendix. However, one differerence to this solution is the computation of the coefficients
in the steady-state series. Both 𝐴𝑛 and 𝐵𝑛 are zero since their Fourier series computations involve the integral,∫ 𝑟0
0 𝑟𝐽0 (𝑝𝑛𝑟)𝑑𝑟 =

(𝑟0 )2𝐽1 (𝛼𝑛 )
𝛼𝑛

= 0. Recall 𝛼𝑛 is a root of 𝐽1 for all positive integers 𝑛. With these calculations, the
choice of separation of variables for the steady-state solution,

𝑣(𝑟, 𝑥, 𝑡) = 𝑓 (𝑟, 𝑥) + 𝑔(𝑡) = [homogeneous solution + particular solution] + 𝑔(𝑡) = 𝑓𝐻 (𝑟, 𝑥) + 𝑓𝑝 (𝑟, 𝑥) + 𝑔(𝑡) (60)

22



results in 𝑓𝐻 (𝑟, 𝑥) = 0 which reduces 𝑓 (𝑟, 𝑥) to 𝑓𝑝 (𝑟, 𝑥). As 𝑓𝑝 (𝑟, 𝑥) is a polynomial in only the variable 𝑥,
the steady-state solution, 𝑣(𝑟, 𝑥, 𝑡), is independent of 𝑟. For the transient solution, the separation of variables
𝑤(𝑟, 𝑥, 𝑡) = 𝑅(𝑟)𝑋 (𝑥)𝜏(𝑡) coupled with the initial condition, 𝑇 (𝑟, 𝑥, 0) = − 𝑓𝑝 (𝑟, 𝑥), eventually leads to 𝑤(𝑟, 𝑥, 𝑡) = 0.
Since a nonzero transient solution is desired, it is concluded that 𝑤(𝑟, 𝑥, 𝑡) must be independent of 𝑟, which leads to
𝑤(𝑟, 𝑥, 𝑡) = 𝑤(𝑥, 𝑡) from Eqn. 4. Since 𝑣(𝑟, 𝑥, 𝑡) = 𝑣(𝑥, 𝑡) and 𝑤(𝑟, 𝑥, 𝑡) = 𝑤(𝑥, 𝑡) from Eqn. 4, 𝑇 (𝑟, 𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) as
claimed.

To show 𝑇 (𝑥, 𝑡) satisfies the two-dimensional heat equation, take appropriate partial derivatives of 𝑇 (𝑥, 𝑡) and
plug into the two-dimensional governing equation. Note 𝑇𝑥𝑥 and 𝑇𝑡 were computed in Eqns. 53 and 54 and
𝑇𝑟 (𝑟, 𝑥, 𝑡) = 𝑇𝑟 (𝑥, 𝑡) = 0 for all values of 𝑟 since 𝑇 (𝑥, 𝑡) is independent of 𝑟. Plugging in the respective derivatives
into the governing equation yields the partial differential equation, 𝑇𝑥𝑥 = 1

𝛼
𝑇𝑡 . By previous work, 𝑇 (𝑥, 𝑡) satisfies this

differential equation.
For the boundary conditions, it is clear 𝑇𝑟 (0, 𝑥, 𝑡) = 0 = 𝑇𝑟 (𝑟0, 𝑥, 𝑡) for all 𝑥, 𝑡. Futhermore, equations 55 - 57 show

𝑇𝑥 (𝑟, 0, 𝑡) = 𝑇𝑥 (0, 𝑡) = − 𝑞0
𝑘

, 𝑇𝑥 (𝑟, 𝐿, 𝑡) = 𝑇𝑥 (𝐿, 𝑡) = − 𝑓𝐿𝑞0
𝑘

, and 𝑇 (𝑟, 𝑥, 0) = 𝑇 (𝑥, 0) = 𝑇0 as desired. In conclusion,
𝑇 (𝑥, 𝑡) is a solution to both the one-dimensional and two-dimensional initial-boundary value problems with constant
heat flux.

B. Deriviation and Verification of the Variable Heat Flux Solution (Zero-Eigenvalue Root)
For the derivation of Eqn. 16, assume again the general solution is of the form

𝑇 (𝑥, 𝑟, 𝑡) = 𝑣(𝑟, 𝑥, 𝑡) + 𝑤(𝑟, 𝑥, 𝑡) = (steady state) + (transient). (61)

Similar to the constant heat flux solution, this choice gives two initial boundary-value problems:

𝑣𝑥𝑥 + 𝑣𝑟𝑟 = 1
𝛼
𝑣𝑡 − 1

𝑟
𝑣𝑟 𝑤𝑥𝑥 + 𝑤𝑟𝑟 = 1

𝛼
𝑤𝑡 − 1

𝑟
𝑤𝑟

𝑣𝑟 (0, 𝑥, 𝑡) = 0 𝑤𝑟 (0, 𝑥, 𝑡) = 0
𝑣𝑟 (𝑟0, 𝑥, 𝑡) = 0 𝑤𝑟 (𝑟0, 𝑥, 𝑡) = 0
𝑣𝑥 (𝑟, 0, 𝑡) = − 𝑞 (𝑟 )

𝑘
𝑤𝑥 (𝑟, 0, 𝑡) = 0

𝑣𝑥 (𝑟, 𝐿, 𝑡) = − 𝑓𝐿𝑞 (𝑟 )
𝑘

𝑤𝑥 (𝑟, 𝐿, 𝑡) = 0
𝑣(𝑟, 𝑥, 0) = 𝑇0 𝑤(𝑟, 𝑥, 0) = 𝑇0 − 𝑣(𝑟, 𝑥, 0)

(62)

As previously stated, the separation of variables choice for the steady-state solution is 𝑣(𝑟, 𝑥, 𝑡) = 𝑓 (𝑟, 𝑥) + 𝑔(𝑡).
Thus, the boundary and intial conditions become

𝑓𝑟 (0, 𝑥) = 0, 𝑓𝑟 (𝑟0, 𝑥) = 0, 𝑓𝑥 (𝑟, 0) = −𝑞(𝑟)
𝑘

𝑓𝑥 (𝑟, 𝐿) = − 𝑓𝐿𝑞(𝑟)
𝑘

, 𝑔(0) = 𝑇0. (63)

Plugging into Eqn. 58 and separating the variables gives 𝑓𝑥𝑥 + 𝑓𝑟𝑟 + 1
𝑟
𝑓𝑟 = 1

𝛼
𝑔𝑡 = 𝛽

2 where 𝛽 is the separation constant.
This results in two differential equations, 𝑔𝑡 = 𝛼𝛽2 and 𝑓𝑥𝑥 + 𝑓𝑟𝑟 + 1

𝑟
𝑓𝑟 = 𝛽2.

Integrating the first equation with respect to 𝑡 gives 𝑔(𝑡) = 𝛼𝛽2𝑡 + 𝑐1. Applying the initial condition 𝑔(0) = 𝑇0,
implies 𝑐1 = 𝑇0. Therefore, 𝑔(𝑡) = 𝛼𝛽2𝑡 + 𝑇0.

For the second nonhomogeneous differential equation, the general solution must be of the form 𝑓 (𝑟, 𝑥) = 𝑓ℎ (𝑟, 𝑥) +
𝑓𝑝 (𝑟, 𝑥) where 𝑓ℎ (𝑟, 𝑥) satisfies 𝑓𝑥𝑥 + 𝑓𝑟𝑟 + 1

𝑟
𝑓𝑟 = 0 and 𝑓𝑝 (𝑟, 𝑥) is any particular solution satisfying 𝑓𝑥𝑥 + 𝑓𝑟𝑟 + 1

𝑟
𝑓𝑟 = 𝛽2.

Assume 𝑓ℎ (𝑟, 𝑥) = 𝐹 (𝑟)𝐺 (𝑥). This will transform the differential equation into𝐺′′𝐹 +𝐺𝐹′′ + 1
𝑟
𝐺𝐹′ = 0 or equivalently

𝐺′′

𝐺
+ 𝐹′′

𝐹
+ 1

𝑟
𝐹′

𝐹
= 0. Separating the variables, gives

𝐺′′

𝐺
= −𝐹

′′

𝐹
− 1
𝑟

𝐹′

𝐹
= 𝑝2 (64)

where 𝑝 is some real constant. The two resulting differential equations are 𝐺′′ − 𝑝2𝐺 = 0 and 𝐹′′ + 1
𝑟
𝐹′ + 𝑝2𝐹 = 0.

The first ODE has characteristic equation 𝜎2 − 𝑝2 = 0 whose roots are 𝜎 = ±𝑝. Therefore, 𝐺 (𝑥) = 𝐴 cosh(𝑝𝑥) +
𝐵 sin(𝑝𝑥). The second ODE can be rewritten in the form 𝑟2𝐹′′ + 𝑟𝐹′ + 𝑝2𝑟2𝐹 = 0 and has general solution
𝐹 (𝑟) = 𝐶𝐽0 (𝑝𝑟) + 𝐷𝑌0 (𝑝𝑟) where 𝐽0 is the Bessel function of the first kind of order zero and 𝑌0 is the Bessel function
of the second kind of order zero. In order to make 𝐹 (𝑟) defined at 𝑟 = 0, 𝐷 must be zero. Therefore, the general solution
simplifies to 𝐹 (𝑟) = 𝐶𝐽0 (𝑝𝑟). In conclusion,

𝑓ℎ (𝑟, 𝑥) = [𝐴 cosh(𝑝𝑥) + 𝐵 sinh(𝑝𝑥)]𝐽0 (𝑝𝑟). (65)
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The method of undetermined coefficients suggests 𝑓𝑝 (𝑟, 𝑥) is of the form 𝑓𝑝 (𝑟, 𝑥) = 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0. Taking

derivatives and plugging into the nonhomogeneous equation will give 𝑎2 =
𝛽2

2 while 𝑎1 and 𝑎0 can be any real numbers.
Therefore, the general solution for 𝑓 (𝑟, 𝑥) = [𝐴 cosh(𝑝𝑥) + 𝐵 sinh(𝑝𝑥)]𝐽0 (𝑝𝑟) + 𝛽2

2 𝑥
2 + 𝑎1𝑥 + 𝑎0.

With the results from above, the general solution for the steady-state solution is 𝑣(𝑟, 𝑥, 𝑡) = [𝐴 cosh(𝑝𝑥) +
𝐵 sinh(𝑝𝑥)]𝐽0 (𝑝𝑟) + 𝛽2

2 𝑥
2 + 𝑎1𝑥 + 𝑎0 + 𝛼𝛽2𝑡 + 𝑇0. However, the boundary conditions of the steady-state initial-

boundary value problem still need to be satisfied. Note 𝑣𝑟 (𝑟, 𝑥) = 𝑓𝑟 (𝑟, 𝑥) = −𝑝 [𝐴 cosh(𝑝𝑥) + 𝐵 sinh(𝑝𝑥)]𝐽1 (𝑝𝑟), so
𝑣𝑟 (0, 𝑥) = 𝑓𝑟 (0, 𝑥) = 0 since 𝐽1 (0) = 0. Also, for 𝑣𝑟 (𝑟0, 𝑥) = 𝑓𝑟 (𝑟0, 𝑥) = −𝑝 [𝐴 cosh(𝑝𝑥) + 𝐵 sin(𝑝𝑥)]𝐽1 (𝑝𝑟0) = 0 for
all 𝑥, then 𝑝𝑟0 must be a root of 𝐽1. Therefore, we define 𝑝𝑛 =

𝛼𝑛

𝑟0
where 𝛼𝑛 (𝑛 = 1, 2, 3, . . . ) is any positive root of 𝐽1.

Thus, the new form of 𝑓 (𝑟, 𝑥) becomes

𝑓 (𝑟, 𝑥) =
∞∑︁
𝑛=1

[𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)]𝐽0 (𝑝𝑛𝑟) +
𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0. (66)

The partial of 𝑓 (𝑟, 𝑥) with respect to 𝑥 is 𝑓𝑥 (𝑟, 𝑥) =
∑∞

𝑛=1 𝑝𝑛 [𝐴𝑛 sinh(𝑝𝑛𝑥) + 𝐵𝑛 cosh(𝑝𝑛𝑥)]𝐽0 (𝑝𝑟) + 𝛽2𝑥 + 𝑎1. The
boundary condition 𝑓𝑥 (𝑟, 0) = − 𝑞 (𝑟 )

𝑘
gives the relation

−𝑞(𝑟)
𝑘

= 𝑎1 +
∞∑︁
𝑛=1

𝑝𝑛𝐵𝑛𝐽0 (𝑝𝑛𝑟). (67)

With some rearrangement, this relation is equilvalent to

−𝑞(𝑟)
𝑘

− 𝑎1 =

∞∑︁
𝑛=1

𝑝𝑛𝐵𝑛𝐽0 (𝑝𝑛𝑟). (68)

Using a Fourier series for 𝐽0, we obtain

𝑝𝑛𝐵𝑛 =

−
∫ 𝑟0
0

(
𝑞 (𝑟 )
𝑘

+ 𝑎1

)
𝑟𝐽0 (𝑝𝑛𝑟)𝑑𝑟∫ 𝑟0

0 𝑟𝐽2
0 (𝑝𝑛𝑟)𝑑𝑟

=
−2

𝑘 (𝑟0)2 [𝐽0 (𝛼𝑛)]2

∞∑︁
𝑚=0

(−1)𝑚 (𝛼𝑛)2𝑚

22𝑚 [𝑚!]2

[
𝑞2 (𝑟0)4

2𝑚 + 4
+ 𝑞1 (𝑟0)3

2𝑚 + 3

]
. (69)

With some algebra and reindexing, 𝐵𝑛 simplifies to

𝐵𝑛 =
−2

𝑘 𝑝𝑛 [𝐽0 (𝛼𝑛)]2

∞∑︁
𝑚=1

(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−2 [(𝑚 − 1)!]2

[
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
. (70)

The final boundary condition 𝑓𝑥 (𝑟, 𝐿) = − 𝑓𝐿𝑞 (𝑟 )
𝑘

, gives the relation

− 𝑓𝐿𝑞(𝑟)
𝑘

= 𝛽2𝐿 + 𝑎1 +
∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 sinh(𝑝𝑛𝐿) + 𝐵𝑛 cosh(𝑝𝑛𝐿)]𝐽0 (𝑝𝑛𝑟) (71)

which is equivalent to

− 𝑓𝐿𝑞(𝑟)
𝑘

− 𝛽2𝐿 − 𝑎1 =

∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 sinh(𝑝𝑛𝐿) + 𝐵𝑛 cosh(𝑝𝑛𝐿)]𝐽0 (𝑝𝑛𝑟). (72)

Again, using a Fourier series associated to 𝐽0, gives

𝑝𝑛 [𝐴𝑛 sin(𝑝𝑛𝐿) + 𝐵𝑛 cosh(𝑝𝑛𝐿)] =

∫ 𝑟0
0

[
− 𝑓𝐿𝑞 (𝑟 )

𝑘
− 𝛽2𝐿 − 𝑎1

]
𝑟𝐽0 (𝑝𝑛𝑟)𝑑𝑟∫ 𝑟0

0 𝑟𝐽2
0 (𝑝𝑛𝑟)𝑑𝑟

. (73)
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In particular,

𝐴𝑛 = − 𝐵𝑛 cosh(𝑝𝑛𝐿)
sinh(𝑝𝑛𝐿)

− 2
(𝑟0)2𝑝𝑛 sinh(𝑝𝑛𝐿) [𝐽0 (𝛼𝑛)]2

∫ 𝑟0

0

[
𝑓𝐿𝑞(𝑟)
𝑘

+ 𝛽2𝐿 + 𝑎1

]
𝑟𝐽0 (𝑝𝑛𝑟)𝑑𝑟

= − 𝐵𝑛 cosh(𝑝𝑛𝐿)
sinh(𝑝𝑛𝐿)

− 2
(𝑟0)2𝑝𝑛 sinh(𝑝𝑛𝐿) [𝐽0 (𝛼𝑛)]2

∫ 𝑟0

0

𝑓𝐿

𝑘

(
𝑞2𝑟

2 + 𝑞1𝑟
)
𝑟𝐽0 (𝑝𝑛𝑟) +

(
𝑓𝐿𝑞0
𝑘

+ 𝛽2𝐿 + 𝑎1

)
𝑟𝐽0 (𝑝𝑛𝑟)𝑑𝑟

= − 𝐵𝑛 cosh(𝑝𝑛𝐿)
sinh(𝑝𝑛𝐿)

− 2
(𝑟0)2𝑝𝑛 sinh(𝑝𝑛𝐿) [𝐽0 (𝛼𝑛)]2

(
𝑓𝐿

𝑘

∞∑︁
𝑚=0

(−1)𝑚 (𝛼𝑛)2𝑚

22𝑚 [𝑚!]2

[
𝑞2 (𝑟0)4

2𝑚 + 4
+ 𝑞1 (𝑟0)3

2𝑚 + 3

])
− 2

(𝑟0)2𝑝𝑛 sinh(𝑝𝑛𝐿) [𝐽0 (𝛼𝑛)]2

(
𝑓𝐿𝑞0
𝑘

+ 𝛽2𝐿 + 𝑎1

)
(𝑟0)2𝐽1 (𝛼𝑛)

𝛼𝑛

= − 𝐵𝑛 cosh(𝑝𝑛𝐿)
sinh(𝑝𝑛𝐿)

+ 𝑓𝐿

sinh(𝑝𝑛𝐿)

[
−2

𝑘 𝑝𝑛 [𝐽0 (𝛼𝑛)]2

∞∑︁
𝑚=0

(−1)𝑚 (𝛼𝑛)2𝑚

22𝑚 [𝑚!]2

[
𝑞2 (𝑟0)2

2𝑚 + 4
+ 𝑞1𝑟0

2𝑚 + 3

] ]
+ 0

= − 𝐵𝑛 cosh(𝑝𝑛𝐿)
sinh(𝑝𝑛𝐿)

+ 𝑓𝐿𝐵𝑛

sinh(𝑝𝑛𝐿)

=𝐵𝑛

[
𝑓𝐿 − cosh(𝑝𝑛𝐿)

sinh(𝑝𝑛𝐿)

]
.

(74)
Combining all the above work gives the steady-state solution,

𝑣(𝑟, 𝑥, 𝑡) = 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0 +

∞∑︁
𝑛=1

[𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) (75)

= 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0 +

∞∑︁
𝑛=1

𝐵𝑛

[(
𝑓𝐿 − cosh(𝑝𝑛𝐿)

sinh(𝑝𝑛𝐿)

)
cosh(𝑝𝑛𝑥) + sinh(𝑝𝑛𝑥)

]
𝐽0 (𝑝𝑛𝑟). (76)

Note 𝛽2, 𝑎1, and 𝑎0 are constants in the steady-state solution that are yet to be determined. Since the value of 𝑎1 and
𝑎0 can be any real number, these are chosen to coincide with the coefficients in model 9 :

𝑎1 = −
𝑞𝑎𝑣𝑔

𝑘
and 𝑎0 =

(2 + 𝑓𝐿)𝑞𝑎𝑣𝑔𝐿
6𝑘

. (77)

𝛽2 was computed by solving

𝛽2 =

∫ 2𝜋
0

∫ 𝑟0
0 𝑟 (1 − 𝑓𝐿)𝑞(𝑟)𝑑𝑟𝑑\

𝑘𝐿𝜋(𝑟0)2 =
(1 − 𝑓𝐿)𝑞𝑎𝑣𝑔

𝑘𝐿
. (78)

For the transient solution, use the method of separation of variables and assume 𝑤(𝑟, 𝑥, 𝑡) = 𝑅(𝑟)𝑋 (𝑥)𝜏(𝑡). Taking
appropriate derivatives and plugging into the differential equation, gives the separable equation

𝑅𝑋 ′′𝜏 + 𝑅′′𝑋𝜏 =
1
𝛼
𝑅𝑋𝜏′ − 1

𝑟
𝑅′𝑋𝜏. (79)

Dividing each term by 𝑅𝑋𝜏 along with some rearranging gives

𝑋 ′′

𝑋
+ 𝑅

′′

𝑅
+ 1
𝑟

𝑅′

𝑅
=

1
𝛼

𝜏′

𝜏
= −_2 (80)

where −_2 is the separation constant. This gives the two differential equations, 𝜏′ +𝛼_2𝜏 = 0 and 𝑋′′

𝑋
+ 𝑅′′

𝑅
+ 1

𝑟
𝑅′

𝑅
= −_2.

The second equation can be separated futher in the following way

𝑋 ′′

𝑋
= −𝑅

′′

𝑅
− 1
𝑟

𝑅′

𝑅
− _2 = −𝑣2 (81)

where −𝑣2 is some nonzero constant. Thus, there are three ordinary differential equations that need to be solved:
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1) 𝜏′ + 𝛼_2𝜏 = 0

2) 𝑋 ′′ + 𝑣2𝑋 = 0

3) 𝑟2𝑅′′ + 𝑟𝑅′ + (_2 − 𝑣2)𝑟2𝑅 = 0.
The first equation has solution 𝜏(𝑡) = 𝐶𝑒−_𝛼𝑡 which can be derived using the integrating factor, 𝑒_2𝛼𝑡 . The second

and third differential equations can be solved with techniques used in the derivation of 𝑓ℎ (𝑟, 𝑥) in the steady solution.
The solutions from these methods are 𝑋 (𝑥) = 𝐴 cos(𝑣𝑥) + 𝐵 sin(𝑣𝑥) and 𝑅(𝑟) = 𝐷𝐽0 (𝑠𝑟) where 𝑠2 = _2 − 𝑣2.

Using the boundary conditions, gives

𝑤𝑟 (0, 𝑥, 𝑡) = 𝑅′ (0) = −𝑠𝐷𝐽1 (𝑠 · 0) = 0 (82)
𝑤𝑟 (𝑟0, 𝑥, 𝑡) = 𝑅′ (𝑟0) = −𝑠𝐷𝐽1 (𝑠 · 𝑟0) = 0 (83)
𝑤𝑥 (𝑟, 0, 𝑡) = 𝑋 ′ (0) = −𝑣𝐴 sin(𝑣 · 0) + 𝑣𝐵 cos(𝑣 · 0) = 𝑣𝐵 = 0 (84)
𝑤𝑥 (𝑟, 𝐿, 𝑡) = 𝑋 ′ (𝐿) = −𝑣𝐴 sin(𝑣𝐿) + 𝑣𝐵 cos(𝑣𝐿) = 0 (85)

Notice the first boundary condition is satisfied since zero is a root of 𝐽1. The second boundary condition holds as
long as 𝑠𝑟0 is a root of 𝐽1. For Eqn. 23, the value of 𝑠 was chosen to be zero implying all eigenvalues are zero. The
third boundary condition implies 𝐵 = 0 since 𝑣 is assumed to be nonzero. Last, the fourth boundary condition gives
−𝑣𝐴 sin(𝑣𝐿) = 0 after substitution. Since neither 𝐴 nor 𝑣 is zero, it must be sin(𝑣𝐿) = 0. Therefore, 𝑣𝐿 = 𝑧𝜋 for some
integer 𝑧. Thus, the eigenvalues are 𝑣𝑧 = 𝑧 𝜋

𝐿
for all postiive integers 𝑧.

The solutions to the three differential equations above are
1) 𝜏(𝑡) = 𝐶𝑧𝑒

−𝑣2
𝑧𝛼𝑡

2) 𝑋 (𝑥) = 𝐴𝑧 cos(𝑣𝑧𝑥)

3) 𝑅(𝑟) = 𝐷𝐽0 (0 · 𝑟) = 𝐷

and each satisfy their respective inital-value problem. Therefore, the transient solution is

𝑤(𝑟, 𝑥, 𝑡) =
∞∑︁
𝑧=1

𝐸𝑧𝑒
−𝑣2

𝑧𝛼𝑡 cos(𝑣𝑧𝑥) (86)

where 𝐸𝑧 = 𝐴𝑧𝐶𝑧𝐷.
The initial condition 𝑤(𝑟, 𝑥, 0) = 𝑇0 − 𝑣(𝑟, 𝑥, 0) is equivalent to 𝑤(𝑟, 𝑥, 0) = ∑∞

𝑧=1 𝐸𝑧 cos(𝑣𝑧𝑥) = − 𝑓 (𝑟, 𝑥). A cosine
Fourier series can be used to find the value of 𝐸𝑧 ,

𝐸𝑧 =
2
𝐿

∫ 𝐿

0
− 𝑓 (𝑟, 𝑥) cos(𝑣𝑧𝑥)𝑑𝑥 =

(−1)𝑧+1 (2𝛽2𝐿 + 2𝑎1) + 2𝑎1

𝐿𝑣2
𝑧

− 2
𝐿

∞∑︁
𝑛=1

𝑝𝑛𝐵𝑛 [(−1)𝑧 𝑓𝐿 − 1]
𝑝2
𝑛 + 𝑣2

𝑧

. (87)

Substituting in 𝐵𝑛 and simplifying gives

𝐸𝑧 =
(−1)𝑧+1 (2𝛽2𝐿 + 2𝑎1) + 2𝑎1

𝐿𝑣2
𝑧

+
∞∑︁
𝑛=1

∞∑︁
𝑚=1

[(−1)𝑧 𝑓𝐿 − 1]
𝑘𝐿 (𝑝2

𝑛 + 𝑣2
𝑧) [𝐽0 (𝛼𝑛)]2

[
(−1)𝑚−1 (𝛼𝑛)2𝑚−2

22𝑚−4 [(𝑚 − 1)!]2

] [
𝑞2 (𝑟0)2

2𝑚 + 2
+ 𝑞1𝑟0

2𝑚 + 1

]
.

(88)

Now that the steady-state and transient solutions have been derived, the solution to the two-dimensional boundary
value problem is

𝑇 (𝑟, 𝑥, 𝑡) = 𝑣(𝑟, 𝑥, 𝑡) + 𝑤(𝑟, 𝑥, 𝑡) (89)

= 𝑇0 + 𝛼𝛽2𝑡 + 𝛽2

2
𝑥2 + 𝑎1𝑥 + 𝑎0 +

∞∑︁
𝑛=1

[𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) +
∞∑︁
𝑧=1

𝐸𝑧𝑒
−𝑣2

𝑧𝛼𝑡 cos(𝑣𝑧𝑥)

(90)
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To ensure the computations in deriving𝑇 (𝑟, 𝑥, 𝑡) are correct, it is necessary to verify𝑇 (𝑟, 𝑥, 𝑡) satisfies the initial-boundary
value problem. To start this process, first take the appropriate partial derivatives of 𝑇 (𝑟, 𝑥, 𝑡):

𝑇𝑥 = 𝛽2𝑥 + 𝑎1 +
∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 sinh(𝑝𝑛𝑥) + 𝐵𝑛 cosh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) −
∞∑︁
𝑧=1

𝑣𝑧𝐸𝑧𝑒
−𝑣2

𝑧𝛼𝑡 sin(𝑣𝑧𝑥) (91)

𝑇𝑥𝑥 = 𝛽2 +
∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) −

∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) (92)

𝑇𝑟 = −
∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽1 (𝑝𝑛𝑟) (93)

𝑇𝑟𝑟 = −
∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽′1 (𝑝𝑛𝑟) (94)

𝑇𝑡 = 𝛼𝛽
2 −

∞∑︁
𝑧=1

𝑣2
𝑧𝛼𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) (95)

Plugging into the governing equation, 𝑇𝑥𝑥 + 𝑇𝑟𝑟 = 1
𝛼
𝑇𝑡 − 1

𝑟
𝑇𝑟 , the left-hand side simplifies to

𝛽2 +
∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽0 (𝑝𝑛𝑟) −

∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) −

∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽′1 (𝑝𝑛𝑟)

(96)

= 𝛽2 −
∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) +

∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] [𝐽0 (𝑝𝑛𝑟) − 𝐽′1 (𝑝𝑛𝑟)] (97)

In order to show the right-hand side is equal to the left-hand side of the governing equation, the following identity will
be needed

𝐽0 (𝑝𝑛𝑟) − 𝐽′1 (𝑝𝑛𝑟) =
1
𝑝𝑛𝑟

𝐽1 (𝑝𝑛𝑟). (98)

The work below provides the details on why this identity holds.

𝐽0 (𝑝𝑛𝑟) − 𝐽′1 (𝑝𝑛𝑟) =
∞∑︁

𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚

22𝑚 [𝑚!]2 −
∞∑︁

𝑚=0

(−1)𝑚 (2𝑚 + 1) (𝑝𝑛𝑟)2𝑚

22𝑚+1 [𝑚!(𝑚 + 1)!]
=

∞∑︁
𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚

22𝑚+1 [𝑚!(𝑚 + 1)!]
[2(𝑚 + 1) − (2𝑚 + 1)]

(99)

=

∞∑︁
𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚

22𝑚+1 [𝑚!(𝑚 + 1)!]
[2𝑚 + 2 − 2𝑚 − 1)] =

∞∑︁
𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚

22𝑚+1 [𝑚!(𝑚 + 1)!]
(100)

=

∞∑︁
𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚

22𝑚+1 [𝑚!(𝑚 + 1)!]

(
𝑝𝑛𝑟

𝑝𝑛𝑟

)
=

1
𝑝𝑛𝑟

∞∑︁
𝑚=0

(−1)𝑚 (𝑝𝑛𝑟)2𝑚+1

22𝑚+1 [𝑚!(𝑚 + 1)!]
=

1
𝑝𝑛𝑟

𝐽1 (𝑝𝑛𝑟) (101)

Now substituting in the right hand side of the governing equation gives

1
𝛼

[
𝛼𝛽2 −

∞∑︁
𝑧=1

𝑣2
𝑧𝛼𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥)

]
− 1
𝑟

[
−

∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽1 (𝑝𝑛𝑟)
]

(102)

= 𝛽2 −
∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) +

1
𝑟

∞∑︁
𝑛=1

𝑝𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] 𝐽1 (𝑝𝑛𝑟) (103)

= 𝛽2 −
∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) +

∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)]

(
1
𝑟 𝑝𝑛

)
𝐽1 (𝑝𝑛𝑟) (104)
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= 𝛽2 −
∞∑︁
𝑧=1

𝑣2
𝑧𝐸𝑧𝑒

−𝑣2
𝑧𝛼𝑡 cos(𝑣𝑧𝑥) +

∞∑︁
𝑛=1

𝑝2
𝑛 [𝐴𝑛 cosh(𝑝𝑛𝑥) + 𝐵𝑛 sinh(𝑝𝑛𝑥)] [𝐽0 (𝑝𝑛𝑟) − 𝐽′1 (𝑝𝑛𝑟)] (105)

Therefore, 𝑇 (𝑟, 𝑥, 𝑡) is a solution to the two-dimensional partial differential equation.
Using the steady-state and transient initial-value problems, the initial and boundary conditions for 𝑇 (𝑟, 𝑥, 𝑡) are

easily checked:

𝑇𝑟 (0, 𝑥, 𝑡) = 𝑣𝑟 (0, 𝑥, 𝑡) + 𝑤𝑟 (0, 𝑥, 𝑡) = 0 + 0 = 0 (106)
𝑇𝑟 (𝑟0, 𝑥, 𝑡) = 𝑣𝑟 (𝑟0, 𝑥, 𝑡) + 𝑤𝑟 (𝑟0, 𝑥, 𝑡) = 0 + 0 = 0 (107)

𝑇𝑥 (𝑟, 0, 𝑡) = 𝑣𝑥 (𝑟, 0, 𝑡) + 𝑤𝑥 (𝑟, 0, 𝑡) = −𝑞(𝑟)
𝑘

+ 0 = −𝑞(𝑟)
𝑘

(108)

𝑇𝑥 (𝑟, 𝐿, 𝑡) = 𝑣𝑥 (𝑟, 𝐿, 𝑡) + 𝑤𝑥 (𝑟, 𝐿, 𝑡) = − 𝑓𝐿𝑞(𝑟)
𝑘

+ 0 = − 𝑓𝐿𝑞(𝑟)
𝑘

(109)

𝑇 (𝑟, 𝑥, 0) = 𝑣(𝑟, 𝑥, 0) + 𝑤(𝑟, 𝑥, 0) = 𝑣(𝑟, 𝑥, 0) + 𝑇0 − 𝑣(𝑟, 𝑥, 0) = 𝑇0. (110)

Thus, 𝑇 (𝑟, 𝑥, 𝑡) satisfies the two-dimensional boundary value problem as desired.
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