

Scaling Electric Machines to a Megawatt and Material Options

<u>Andrew A. Woodworth</u>, William R. Sixel, Tiffany S. Williams, Witold Fuchs, Marisabel Kelly, Diana Santiago, Kristina Vailonis and Evan Pineda NASA Glenn Research Center, Cleveland, Ohio 44135 USA

> Baochau. N. Nguyen Universities Space Research Association, Cleveland, Ohio 441235

> > Paria Naghipour HX5 LLC, Brook Park, Ohio 44142 USA

2023 AIAA/IEEE – Electric Aircraft Technologies Symposium, June 14-16, 2023 San Diego, CA

The Challenge of Scaling to a MW

Distributed

- Electric aircraft propulsion requires MW scale electric machines
- Must scale power dense machines from ~250kW
 - Increase speed*
 - Increase electric loading*
 - \succ Increase rotor diameter \checkmark

		Rotor Diameter	Power	Power Density	Speed
	Motor	(mm)	(MW)	(kW/kg)	(krpm)
Distributed	High Efficiency Mega Watt Motor (HEMM)-NASA [1]	300	1.42	16	6.8
	Univ. of Illinois Urbana Champaign (UIUC) Motor [2]	263	1	13.8	18
Concentrated	Univ. of Wisconsin (UW) Motor[3]	191	1	23.7	20

1."High Efficiency Megawatt Motor Preliminary Design," R. Jansen et al. AIAA Propulsion and Energy 2019 Forum. 2019.,

2."A high-speed, high-frequency, air-core PM machine for aircraft application," A. Yoon, et al. 2016 IEEE Power and Energy Conference at Illinois (PECI). IEEE, Champaign, IL, 2016.

3."Design and testing of a modular high-speed permanent-magnet machine for aerospace propulsion," J. Swanke, et al. 2021 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE, 2021.

Network Model-Scaling Challenges (SOA material system)

	Rotor Diameter	Winding	Slot Liner	Iron Conduction	Convection and	
	(mm)	Resistance	Resistance	Resistance (%)	Contact	
		(%)	(%)		Resistance (%)	_
Concentrated	50	14	62	8	15	
	100	23	51	13	13	
UW	> 200	34	37	19	9	Note: I
	300	40	30	23	7	therma
	500	47	21	27	5	
	700	51	16	29	4	SOA n
	1000	54	12	31	3	used in
Distributed	50	8	57	5	30	
	100	15	51	8	26	 Wind
	-> 200	24	41	13	21	3 W/r
	300	31	35	17	18	•Slot l
	500	39	26	21	14	0.1 W
	700	44	21	24	11	
	1000	49	16	26	8	

Note: resistance = hermal resistance

SOA materials values used in calculations:

- Winding conductivity:
 3 W/m · K
- Slot liner conductivity: 0.1 W/m · K

SOA material thermal conductivities published in:

A. Woodworth, et. al. "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and

Energy 2021 Forum, 2021, p. 3275.

www.nasa.gov

Advanced Materials in a Distributed Wound Motor

	Rotor Diameter (mm)	Winding Resistance (%)	Slot Liner Resistance (%)	Iron Conduction Resistance (%)	Convection and Contact Resistance (%)
UIUC III HEMM III	50	5	24	10	61
	100	9	21	17	53
	200	15	17	26	42
	300	18	14	33	35
	500	23	10	41	26
	700	25	8	46	21
	1000	28	6	50	16

Advanced Material Properties

Note: resistance = thermal resistance

- Winding conductivity: 10 W/m•K
- Slot liner conductivity: 0.6 W/m•K

Advanced material prosperities published in:

Woodworth, A., Williams, T. S., Kelly, M., Sixel, W., Shin, E. E., Nguyen, B. N., and Naghipour, P., "Potential of Materials to Impact Megawatt-Scale Electric Machines," *AIAA Propulsion and Energy 2021 Forum*, 2021, p. 3275.

Advanced Materials in a Distributed Wound Motor

Multiscale Model

- Outer hotspots can be 10 °C higher than the interiors hotspots
- Outer areas are not homogenous

Material Solutions

Thermoplastic-BN Composites

Can be made into many different shapes and forms (extrusion, injection molded) [1]

[1] A. Woodworth, et al., "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and Energy 2021 Forum, 2021, p. 3275. www.nasa.gov

Material Solutions

Polyimide-BN Composite Films (magnet wire coating) Previously shown to have a thermal conductivity up to 2.5 W/m·K [1]

PI-BN coated and cured film on a Cu 0.81-mm (20 AWG) wire

[1] A. Woodworth, et al., "Potential of Materials to Impact Megawatt-Scale Electric Machines," AIAA Propulsion and Energy 2021 Forum, 2021, p. 3275. www.nasa.gov

20 um

20 µm

Polymer polyvinylpyrrolidone (PVP) [C₆H₉NO]_n + boron oxide (B₂O₃) as spun fibers

Conclusion

- Network thermal model gives an indication of the role of materials as a function of rotor diameter
- Network model demonstrates a diminishing return for increasing slot liner thermal conductivity beyond 0.7 W/m · K and highlights a need to bring different solutions
- Multiscale modeling revealed unexpected hotspots, higher predicted temperatures and significant thermal gradients on the microlevel
- Novel material solutions are enabling to scaling electric machines to MW power levels

Acknowledgments

- NASA Advanced Air Transport Technologies project's Power and Propulsion sub project ~Amy Jankovsky
- > NASA Transformational Tools and Technologies (Microthermal Modeling)

Electric Machine Insulation Solutions Development Team

- Tiffany Williams
- Witold Fuchs
- Maricela Lizcano
- Eugene Shin
- Paria Naghipour
- Baochau. N. Nguyen
- Daniel Scheiman
- Marisabel Kelly
- Kathy Chuang
- Will Sixel
- Linda McCorkle

Additional modeling support from

• Evan Pineda

Special Thanks to:

- Brett Bednarcyk
- Tom Tallerico

Thank you!

Presenter: Dr. Andrew Woodworth Hybrid Electric Aircraft Materials Technical Lead Materials Chemistry and Physics Branch/ Materials and Structures Division/ NASA Glenn Research Center Email: andrew.a.woodworth@nasa.gov