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Introduction  

This supporting information contains details of the model setup and model evaluation, a 

summary of the projected emission pathways, descriptions of the additional simulations 

for addressing the effect of aerosols on projected ozone changes, and information 

regarding how the reaction rate constants for NOx-titration (NO + O3 → NO2 + O2) and 

HNO3 (OH + NO2 → HNO3) formation from the two chemical mechanisms (i.e., MOZART 

and CBMZ) are calculated and compared.
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Text S1. Details of WRF-Chem setup 

Simulations using the two chemical mechanisms from WRF-Chem adopt the same 

setup as described below. 

The simulation domain is illustrated in Figure S1. It contains 109 (south–north) × 139 

(west–east) horizontal grids at a resolution of 45 km. Vertically, the simulation contains a 

total of 29 layers from surface level at an average height of about 18 m above ground in 

eastern China to approximately 50 hPa. The analyses of surface ozone including model 

evaluation, ozone concentrations in response to 2030 emission changes and perturbations 

of nitrogen oxides (NOx), volatile organic compounds (VOCs) emissions are conducted at 

the lowest model layer.  

Simulations for all five emission scenarios (i.e., Base-2017, Limited-controls-2030, 

Current-goals-2030, Neutral-goals-2030, 1.5℃-goals-2030, see section 2. Materials and 

methods in the main text and the Text S3 of this document) are conducted for the period 

from May 29, 2017 to August 31, 2017 with the first three days discarded as model spin-

up. Simulations of ozone responses to NOx and VOCs emission perturbations are 

conducted for the period from June 28 to July 31, 2017 with the first three days as model 

spin-up and discarded as well.  

 Meteorological initial and boundary conditions are provided by National Centers for 

Environmental Prediction (NCEP) Global Data Assimilation System (GDAS)/final analysis 

(FNL) (available at https://rda.ucar.edu/datasets/ds083.3/; NCEP, 2015). Global simulation 

by Community Atmosphere Model with Chemistry (CAM-chem) (available at 

https://www.acom.ucar.edu/cam-chem/cam-chem.shtml; Lamarque et al., 2012; Emmons 

et al., 2020) is used for the chemical initial and boundary conditions. Initial and boundary 

conditions for both meteorology and chemistry reflect the conditions of summer 2017 and 

remain fixed for all of the emission scenarios. Similar to Silver et al. (2020), nudging of 

meteorological conditions is only applied above the planetary boundary layer.  

The model setup for other modules is mostly based on the settings of Silver et al. 

(2020) with some further modifications. Specifically, we continue to use the Rapid radiative 

Transfer Model for GCMs (RRTMG) (Iacono et al., 2008) for both shortwave and longwave 

radiation simulation, while the Yonsei University (YSU) planetary boundary layer physics 

scheme (Hong et al., 2006) and thermal diffusion scheme for land-surface physics are 

adopted. We use Morrison 2-moment (Morrison et al., 2009) for microphysics. Fast-J 

photolysis scheme is used for efficiently calculating photolysis rates (Wild et al., 2000), and 

both direct and indirect aerosol-radiation feedback are included.  

Text S2. Model evaluation 

For evaluating model performance, we use the surface hourly measurement data 

provided by Ministry of Ecology and Environment (MEE) to compare with simulated O3, 

NO2 and PM2.5 from the Base-2017 (using MEIC emission data of 2017 summer) by the two 

chemical mechanisms. As the main focus of this study is to predict ozone changes given 

the perturbations of emissions within China, we thus only select stations with reliable 

ozone observational data following the selection process by Weng et al. (2022) for model 

evaluation. For pre-processing the observational data, we first spatially average the 

https://rda.ucar.edu/datasets/ds083.3/
https://www.acom.ucar.edu/cam-chem/cam-chem.shtml
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measured data from all the available sites within the dimensions of corresponding model 

grid so that the averaged observational data are spatially matched with the simulated 

pollutants. Model grids without measurement sites located within are not used for model 

evaluation. We then calculate the nationwide average model result and observation for 

each hour during the simulation period (i.e., summer of 2017). The metrics for model 

evaluation used in this study include normalized mean bias (NMB), mean bias (MB) and 

Pearson correlation coefficient (r). The calculations of these metrics are documented in 

Huang et al. (2021), and we summarize them in Table S1. Metrics of NMB, MB and R are 

estimated based on nationwide averaged hourly model results and observational data. 

Results of the model evaluation using these three metrics are summarized in Table S2. 

In respect of O3, simulated and observational O3 are correlated with Pearson correlation 

coefficients (r) larger than 0.9 for both chemical mechanisms, as illustrated by the linear 

fittings in Figure S2. Besides, the average diurnal pattern of observational ozone in China 

can also be captured by both mechanisms (Figure S2c). However, in terms of overall biases 

in concentration levels, O3 is overall overestimated by 35.9% (13.0 ppb) in MOZART and a 

higher overprediction at 39.3% (14.2 ppb) in CBMZ. Using MOZART from WRF-Chem, 

Silver et al. (2020) reported a roughly 10% underprediction of O3 on average in China 

based on the simulation from 2015 to 2017, which is not similar to the overpredictions 

reported here. The difference of predictive skills between this study and Silver et al. (2020) 

may be partially due to the difference of simulation period as we conduct model evaluation 

based on the simulation for summer of 2017 (i.e., Base-2017) while simulation from Silver 

et al. (2020) covered all seasons from 2015 to 2017. It is also possible that overprediction 

of ozone may more commonly occur during summer than other seasons (e.g., Tao et al., 

2020). Besides, although the emission data we use here is from the same source (i.e., MEIC) 

as in Silver et al. (2020), we directly adopt MEIC emission data for the year 2017, while 

Silver et al. (2020) used the emission in 2015 as the base emission and further scaled for 

2016 and 2017. This difference can also contribute to the inconsistency of predictive skills 

since the accuracy of emission data is one of the key factors for model performance (e.g., 

Huang et al., 2021; Sicard et al., 2021). Apart from hourly ozone, we also assess their 

predictive skills regarding the maximum daily 8 h average (MDA8) O3 (also see Table S2). 

Expectedly, biases in MDA8 O3 are similar to hourly O3 but with weaker correlation with 

observations. Higher Pearson correlation coefficients (R) in hourly O3 than MDA8 values 

may be due to the diurnal variation of ozone is included in the hourly data, which is 

generally easier to be captured by WRF-Chem. Besides, we also provide the comparisons 

of spatial distributions of observational and modelled MDA8 ozone, as illustrated in Figure 

S4. The overall spatial distribution of MDA8 O3 can be reflected by both mechanisms, with 

less pollution over the southern regions and higher levels in the north. Nevertheless, 

overprediction of MDA8 ozone is generally found, and such overprediction is more 

remarkable in CBMZ than MOZART, consistent with the NMB and MB reported in Table S2. 

For NO2, both mechanisms are able to predict the overall concentration level of NO2 

with NMB values of MOZART and CBMZ at 18.8% and -8.92%, respectively. The lower 

simulated NO2 in CBMZ than in MOZART may be predominantly due to the stronger HNO3 

formation in CBMZ (see Figure 4 in the main text), i.e., a stronger sink for NO2. Despite the 

overall acceptable biases in NO2 (i.e., NMB within ±20%), we find that there are 
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overpredictions of NO2 during nighttime in both mechanisms, which is also reported by 

Kuik et al. (2016). This overprediction of NO2 during nighttime may be mainly due to the 

underestimation of mixing in the boundary layer (Kuik et al., 2016). 

As mentioned in the section on Materials and Methods in the main text, Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) coupled with MOZART and 

CBMZ is used for aerosol simulation. For simplicity, MOZART-MOSAIC and CBMZ-MOSAIC 

are referred to MOZART and CBMZ herein. With regard to PM2.5 simulation, MOZART has 

a higher overprediction with NMB = 54.6% (MB = 14.8 μg m-3) than CBMZ (NMB = 18.3%, 

MB = 4.98 μg m-3). Unlike O3, the overprediction using the MOZART mechanism is also 

documented by Silver et al. (2020), reporting a similar level of overprediction with NMB = 

45%. Interestingly, although the primary emissions of fine particulates are same in both 

mechanisms, CBMZ shows much lower predicted values than MOZART in this study. One 

of the main discrepancies regarding aerosol simulation in these two mechanisms is that 

MOZART includes the simulation of secondary organic aerosol (SOA) formation while 

CBMZ does not. Based on the simulation of MOZART, we find that the concentrations of 

SOA in PM2.5 fraction can take up about 31% on average over China, and a higher ~40% 

over eastern China (20–42°N, 110–130°E). Moreover, the SOA fraction can be up to over 

roughly 60% in regions nearby YRD. This suggests that the high fraction of SOA may be 

one of the main factors for contributing to the overprediction of PM2.5 in MOZART. 

In summary, nationwide hourly ozone simulations by either these two mechanisms 

correlate well with observations. The general diurnal ozone variations can also be captured 

by these two mechanisms. The overall predictive accuracies (estimated by NMB and MB) 

for O3 and PM2.5 are reasonable but not ideal, as is typical within CTM simulations of this 

kind. It should be noted that no observation-based calibration of emission levels is applied 

to all the emission data used in this study. Therefore, the predictive skills of the simulations 

here are more prone to emission uncertainties, compared to other studies (e.g., Tan et al., 

2015; Zhou et al., 2017; Zheng et al., 2019; An et al., 2021) using more refined emission 

data for regional/local scale. Besides, in an attempt to improve predictive skill, we 

conducted various tests including setting different horizontal resolutions of the 

simulations and adopting different schemes for planetary boundary layer, land-surface 

physics and radiation. However, no remarkable improvements were found in those tests. 

Noteworthy, we further conduct simulations using the chemical mechanism of MOZART-

GOCART-T1 (also known as MOZCART-T1); significant improvements of both predictive 

accuracy in O3 and PM2.5 can be found, with NMB for hourly O3 and PM2.5 at 12.9%, -2.4%, 

respectively. Nationwide hourly simulated ozone by MOZCART-T1 is well correlated with 

observation (see Figure S3). Spatial distributions and concentration levels of MDA8 ozone 

by MOZCART-T1 are in good accordance with observations (see Figure S5). Similar to 

MOZART, ozone increases in urban and industrial regions by 2030 are also predicted by 

MOZCART-T1 under the scenarios with emission reductions (i.e., Current-goals-2030, 

Neutral-goals-2030, 1.5℃-goals-2030; see Figure S6). Nevertheless, we decide not to 

choose this mechanism for our study due to MOZCART-T1’s limited considerations in 

secondary aerosol formation including evolution of nitrate, ammonium. It should be noted 

that we run MOZCART-T1 using the recommended tropospheric ultraviolet and visible 

(TUV) photolysis scheme. 
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Text S3. Summary of the 2030 emission pathways 

Emission pathways of “Baseline”, “Current-goals”, “Ambitious-pollution-Neutral-goals” 

and “Ambitious-pollution-1.5℃-goals” for the summer of 2030 from Dynamic Projection 

model for Emissions in China (DPEC) version 1.1 are used in this study. The detailed 

descriptions of all these pathways are documented by Cheng et al. (2021).  

In summary, the pathway of Baseline (denoted as “Limited-controls-2030”in this study 

to avoid confusion with “Base-2017”) represents a scenario that the end-of-pipe emission 

control measures remain unchanged at the level in 2015, while the Shared Socioeconomic 

pathway (SSP) is set at SSP4 characterized by highly inequal economic growths and energy 

demands across regions (Calvin et al., 2017), and the climate-based Representative 

Concentration Pathways (RCP) is set at 6.0, suggesting relatively unambitious actions in 

climate policy.  

The pathway of Current-goals (termed as Current-goals-2030 herein) assumes China 

will be able to achieve Nationally Determined Contribution (NDC) pledges by 2030 with 

the implementations of current released and upcoming end-of-pipe pollution control 

measures and policies. In this pathway, SSP2 and RCP4.5 are set for socioeconomic drivers 

and climate constraints, respectively.  

Ambitious-pollution-Neutral-goals (i.e., Neutral-goals-2030) represents China’s plan 

for carbon neutrality (i.e., achieving net-zero CO2 emissions by 2060 as climate constraints) 

with best available end-of-pipe controls and SSP1 for socioeconomic drivers. The pathway 

of Ambitious-pollution-1.5℃-goals (i.e., 1.5℃-goals-2030) aims for the pursuit of long-

term 1.5℃ temperature limit and air quality improvement by 2060, sharing the same end-

of-pipe controls as Neutral-goals-2030, with SSP1 and RCP1.9 as socioeconomic drivers 

and climate constraints. These two pathways share similar projected emissions of air 

pollutants given the adoption of identical pollution control technologies (Cheng et al., 

2021). However, in terms of CO2, stronger reduction in 1.5℃-goals-2030 is projected 

(Cheng et al., 2021) since more ambitious and rapid CO2 emission reductions may be 

required for achieving the 1.5℃ goal (Duan et al., 2021). 

A comparison of nationwide total emissions of NOx and non-methane VOC (NMVOC) 

in boreal summer (June, July, August) for all emission scenarios is illustrated in Figure S7 

(the spatial changes of emissions relative to 2017 summer levels are provided in Figure 

S8). Neutral-goals-2030 and 1.5℃-goals-2030 show equivalent and substantial emission 

reductions in NOx and NMVOC compared to Base-2017. Although the NOx emission 

reduction in Current-goals-2030 is not as large as Neutral-goals-2030 and 1.5℃-goals-

2030, it is still reduced by approximately 41% compared to Base-2017; while the reduction 

in NMVOC is relatively close to the reduction levels in Neutral-goals-2030 and 1.5℃-goals-

2030. On the contrary, Limited-controls-2030 shows emission increases in NOx and 

NMVOC relative to 2017 summer levels, and the total increases of NOx (about 41%) is more 

pronounced than increases of NMVOC (about 12%). 



 

 

6 

 

Text S4. The effects of aerosols on the discrepancies in predicting ozone changes  

Cheng et al. (2021) reported substantial changes in PM2.5 by 2030 following these 

emission scenarios. Dramatic increases or decreases in PM2.5 concentrations can perturb 

the radiative balance of the atmosphere or surface (Tian et al., 2019; Zhu et al., 2021) or 

alter heterogeneous chemistry (Li et al., 2019), thereby affecting ozone concentrations. 

However, it is likely that the discrepancies of ozone changes in these two mechanisms 

are primarily caused by the effects of gas-phase chemistry rather than aerosols. To 

demonstrate this, we here conduct a set of experiments by running simulations with only 

considering the gas-phase chemistry. In other words, we completely drop the aerosol 

schemes from current MOZART and CBMZ simulations. We run the simulations for both 

Base-2017 and Current-goals-2030 in CBMZ and MOZART during July as this is the typical 

month for the boreal summer. If aerosols were the dominant cause for the discrepancies 

in ozone changes, we may see substantial differences in these simulations compared to 

previous default runs. As shown in Figure S9, although slightly smaller ozone increases are 

predicted over BTH region by MOZART with only gas-phase chemistry considered, similar 

ozone discrepancies between these two mechanisms persist, suggesting differences in 

gas-phase chemistry are the main driver. 

Text S5. Reaction rate constants of NOx-titration and HNO3 formation 

In terms of reaction rate constant for NOx-titration (NO + O3 → NO2 + O2), 

calculations in both mechanisms follow the same Arrhenius expression (e.g., DeMore et al., 

1997): 

𝑘 = 𝐴 · exp⁡(
−𝐸

𝑅𝑇
) 

Where k is the rate constant; A denotes the frequency factor; E represents the 

activation energy; R is the ideal gas law constant and T is the absolute temperature 

(Brauner & Shacham, 1997). Based on the expression, the rate constant of NOx-titration is 

temperature dependent. In MOZART, A is set at 3×10-12, and 
𝐸

𝑅
 is 1500 (Emmons et al., 

2010), whereas A is 2×10-12 and 
𝐸

𝑅
 is 1400 in CBMZ (Zaveri & Peters, 1999). This gives 

MOZART a higher reaction rate constant than CBMZ from temperature above 246.63 K. 

For example, given temperature at 298 K, the rate constant for MOZART is 1.95×10-14 cm3 

molecules-1 s-1 which is higher than 1.82×10-14 cm3 molecules-1 s-1 for CBMZ. Figure S10 

illustrates the two mechanisms’ reaction rate constants of NOx-titration in response to the 

changes of temperature from 273 to 313 K, further highlighting a higher rate constant in 

MOZART within a wide range of temperature. 

For rate constant of HNO3 formation (i.e., OH + NO2 → HNO3), the calculations for 

both mechanisms are illustrated as below in the form of Troe expression, which can also 

be referred to DeMore et al. (1997) and Sun et al. (2022): 

𝑘 = (
𝑘0(𝑇)[𝑀]

1 + (𝑘0(𝑇)[𝑀]/𝑘∞(𝑇))
)0.6

{1+[log10(
𝑘0(𝑇)[𝑀]
𝑘∞(𝑇)

)]
2

}

−1
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Where [𝑀] is the air concentration in unit of molecule cm-3. The value of [M] can be 

approximately derived from the ideal gas law. For example, under 1 atm and 298 K 

conditions, the concentration of air molecules is 2.46×1019 molecules cm-3. From the 

equation above, 𝑘0(𝑇) is the low-pressure limiting rate constant, whereas 𝑘∞(𝑇) is the 

high-pressure limiting rate constant. Both 𝑘0(𝑇) and 𝑘∞(𝑇) are temperature-dependent, 

and their functions of temperature can be expanded as below: 

𝑘0(𝑇) = 𝑘0
300(𝑇/300)−𝑛 

𝑘∞(𝑇) = 𝑘∞
300(𝑇/300)−𝑚 

In MOZART, 𝑘0
300= 2.0×10-30, n = 3, 𝑘

∞
300= 2.5×10-11, m=0 (Emmons et al., 2010; 

Sander et al., 2003), whereas 𝑘0
300= 2.5×10-30, n = 4.4, 𝑘∞

300= 1.6×10-11, m=1.7 in CBMZ 

(Zaveri & Peters, 1999). Therefore, with [𝑀] = 2.46×1019 molecules cm-3 s-1 at 298 K and 

1 atm, the reaction rate constant of HNO3 formation for MOZART is 1.05×10-11 cm3 

molecules-1 s-1, which is higher than 8.83×10-12 cm3 molecules-1 s-1 in CBMZ. The higher 

reaction rate constant in MOZART than CBMZ is also reported by Visser et al. (2019).  
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Figure S1. The domain of WRF-Chem simulation (red) and the regions of three key 

megacity cluster regions with high population density, Beijing–Tianjin–Hebei (BTH, blue 

box; 114–120°E, 36–40.62°N), Yangtze River Delta (YRD, orange box; 117–123°E, 29.458–

33.238°N), Pearl River Delta (PRD, green box; 112–116°E, 21–24.111°N). The boundaries of 

the city cluster regions are the same as in Weng et al. (2022). 
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Figure S2. Comparison of nationwide hourly ozone between model predictions and 

observations for MOZART (a) and CBMZ (b) during summer of 2017 (Base-2017). Blue lines 

represent the linear fits; red lines are the 1:1 lines. Insert values are Pearson correlation 

coefficients (r). The nationwide average diurnal variation of ozone for both mechanisms 

and observations is shown in (c). 

 

 

Figure S3. Same as Figure S2, but for MOZCART-T1 mechanism.



 

 

10 

 

 

Figure S4. Spatial distributions of summertime average MDA8 ozone in 2017. Panel (a) 

shows observational values. Panel (b) and (c) show simulated values by MOZART and 

CBMZ, respectively. Spatial correlation coefficients (r) are inserted at the top left corner of 

panel (b) and (c). Each point represents the center of a model grid location. Observational 

MDA8 ozone are spatially averaged over each corresponding model grid location. 

 

 

Figure S5. Same as Figure S4, but for MOZCART-T1 mechanism.
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Figure S6. Simulated summertime average MDA8 ozone changes by MOZCART-T1 for 

each emission scenario for the year 2030, relative to Base-2017 levels.
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Figure S7. Nationwide total emissions of anthropogenic NOx, NMVOC by sectors during 

summer for all emission scenarios in this study.  

 

 

 

Figure S8. Changes of summertime NOx (a–d), NMVOC (e–h) emissions in 2030 emission 

scenarios relative to 2017 summer levels (Base-2017). The grid boxes in each subplot 

represent the three key megacity clusters of China.
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Figure S9. Simulated average MDA8 ozone changes in July for Current-goals-2030, 

relative to Base-2017 levels. The default simulations with MOZART(a). The same as (a) but 

with only gas-phase chemistry being considered (b). The default simulations with CBMZ(c). 

The same as (c) but with but with only gas-phase chemistry being considered (d).
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Figure S10. The reaction rate constant of NO + O3 → NO2 + O2 as a function of 

temperature in MOZART (red) and CBMZ (blue). 

  



 

 

15 

 

 

Table S1. Statistical metrics for NMB, MB and r. 𝑷𝒋 and𝑶𝒋 are nationwide averaged 

hourly model and observational values, respectively.  

Statistics (abbreviation) Algorithm 

Normalized mean bias (NMB) 
∑(𝑃𝑗 − 𝑂𝑗)

∑𝑂𝑗
× 100% 

Mean bias (MB) 
∑(𝑃𝑗 − 𝑂𝑗)

𝑁
 

Pearson correlation coefficient (r) 

∑[(𝑃𝑗 − 𝑃) × (𝑂𝑗 − 𝑂)]

√∑(𝑃𝑗 − 𝑃)
2
× ∑(𝑂𝑗 − 𝑂)

2
 

 

 

Table S2. Performance statistics for O3, MDA8 O3, NO2 and PM2.5 simulations by the two 

chemical mechanisms against observations. NMB and r are unitless, while unit of MB is 

ppbv for O3, NO2, and μg m-3 for PM2.5. 

Metrics Mechanisms O3 MDA8 O3 NO2 PM2.5 

NMB 
MOZART 35.9% 29.7% 18.8% 54.6% 

CBMZ 39.3% 35.8% -8.92% 18.3% 

MB 
MOZART 13.0 16.1 2.10 14.8 

CBMZ 14.2 19.4 -1.00 4.98 

r 
MOZART 0.92 0.71 0.75 0.37 

CBMZ 0.92 0.71 0.65 0.41 
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