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Airport noise for supersonics

The NASA Commercial Supersonic Technology project 

includes an Airport Noise research area

– Airport noise a recognized challenge

– Separate from the sonic boom challenge

Different features than subsonic aircraft

– System study motivates research in engine noise

Supersonic Technology Concept Aeroplanes for 

Environmental Studies (AIAA 2020-0263)
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Prediction Uncertainty Reduction

Currently no certification noise rule for commercial supersonic aircraft.

Regulatory Catch-22:

– OEMs have no international noise rule for product requirements.

– Regulators have no existing product for technical feasibility assessment.

FAA has led with issuance of with ‘Notice of Proposed Rule-Making’ (NPRM)

– Technical assessment influenced by NASA system studies. Uncertainties of study?

– Further progress requires international collaboration.

In June 2021, NASA initiated a Tech Challenge to reduce uncertainty in 

prediction of airport noise for supersonic aircraft.

Prior work on subsonic fan presented at 2022 Aeroacoustics conference

– Inlet Radiated Noise Predictions for the NASA Source Diagnostic Test Fan Using 

Physics-Based Simulations (AIAA 2022-2941)

Noise Prediction Uncertainties
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Two-stage fan for commercial supersonic application

Fan system designed by GE Aviation under 

NASA contract

– Inlet guide vanes

– Two rotor/stator stages

– Aerodynamic and acoustic design

Axisymmetric spike inlet

– Designed using NASA SUPIN code

• (SUPersonic INlet design and analysis tool)

– Aerodynamic cruise design augmented for subsonic 

operation:

• Upstream cowl split to create auxiliary inlet

• Struts to support center spike

• Actuators to support upstream cowl

• Gap between center spike and fan spinner

Auxiliary inlet required for off-design operation

– Mode switch expected to be around Mach 0.6

– Open for noise certification
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Inlet representation for acoustic simulation

Actran TM (turbomachinery) used for acoustic simulation

– Solves Möhring Analogy for convected wave equation

– Duct mode boundary condition for fan face

– Infinite elements for far field sound and non-reflecting boundary condition

Axisymmetric representation

– Fast simulation time

– All relevant frequencies

– Allows spinning modes

• Periodicity specified in advance

Assumptions

– Neglects spike struts

– Neglects cowl actuators

– Angle of attack
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Fan stage and operating conditions

Contract delivery included fan design and 

main operating conditions

– Three noise rating points plus takeoff

– Fixed IGVs

Jet noise varies considerably with operating 

condition

– Expected to be dominate at cutback and 

sideline

– Not considered in present report

Approach Cutback Sideline Takeoff

Flight Speed (m/s) 90 121 123 88

Fan Face Speed (m/s) 107 140 173 194

RPM 4533 5733 6672 7200

First Stage Fan BPF, Hz 1511 1911 2224 2400
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Turbomachinery simulation method

Unsteady Reynolds Averaged Navier-

Stokes (URANS) approach 

– Fewer assumptions than linearized Euler 

– Faster than LBM or LES

– Commercial turbomachinery simulation 

package FINETM/Turbo 

Non-Linear Harmonic (NLH) 

approximation

– Pre-selected set of frequencies

– Savings compared to full wheel

• Memory O(10)

• CPU time O(100)

– Steady simulations run to specified 

performance conditions

– Unsteady simulations to get 

perturbations
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Acoustic pressure perturbation

NLH simulation → complex pressure

Desired output is duct mode amplitudes

– Eigenfunction solution to wave equation in 

the inlet duct with flow

– Hand-off between turbomachinery and 

acoustic codes

Actran iTM

– Reads cgns output file from FINETM/Turbo

– Construct full wheel complex pressure

• Specify plane to extract

• Periodicity based on blade count

– Least-squares fit duct modes

– Output is table of mode amplitudes

• Complex pressure values 

– Preserve relative phase

• Incident and reflected

• Azimuthal and radial
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Results: Duct mode amplitudes

Tyler-Sofrin modes

– Rotor/stator interaction (RSI) noise

– IGV wakes interacting with Rotor 1 

– Potential field of Rotor 1 scattered by IGVs

• Produces a sound field with mode order m

m = n NB - k NV 

IGVs: NV=17

Rotor 1: NB=20
Harmonic in static frame (n)

1xBPF 2xBPF 3xBPF 4xBPF 5xBPF

Harmonic 

in 

rotating 

frame (k)

k = 0 20 40 60 80 100

k = 1 3 23 43 63 83

k = 2 -14 6 26 46 66

k = 3 -31 -11 9 29 49

k = 4 -48 -28 -8 12 32



10

Results: Sound field examples

Add flow field

– Inviscid compressible potential flow

Approach conditions

– m = -14

• One strong radial mode

• High inclination

– m = 3

• Five strong radial modes

• Low inclination

– Radial modes injected with inter-mode phases 

preserved

– Cut-off modes are evanescent and decay

Solved separately in Actran TM

– Total sound field is the complex sum

m = 3

m = -14
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Results: Far field prediction

Virtual Microphones

– 150’ (46 m) arc

– Finite elements only needed in nearfield

– Sound propagates through uniform flow

Combined radiation pattern

m = -14, radiates out auxiliary inlet

m = 3, radiates forward
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Conclusions

Noise predictions made for 1x BPF inlet radiated tone

- Four operating conditions

- Cutback and sideline about 20 dB higher than approach

- Physics-based solutions on workstations

- Hours for turbomachinery, minutes for acoustics

- Higher harmonics from post-processing same data set

- Aft fan noise subject to bypass and mixing geometry

Limitations to current method

- Missing broadband

- Likely to be predicted by analytical methods

Future work

– 3D vs 2D comparison

– Viscous flow solution

– Angle of attack

– Other distortion

Approach

Cutback Sideline

Takeoff

In-duct amplitude


