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In support of the Electrified Powertrain Flight Demonstrator and Advanced Air Transport
Technologies projects at NASA, a new tool has been developed at NASA’s Ames and Glenn
Research Centers to enable coupled engine and airframe optimization and analysis. The new
tool combines the engineering-level analysis methods and empirical models of the FORTRAN
General Aviation Synthesis Program (GASP) with the Python-based OpenMDAO framework
to provide a modular framework for efficient gradient-based optimization with the aim of
incorporating new subsystemmodels for unconventional configurations. The tool has been ver-
ified against GASP analyses of several aircraft models and mission formulations. Preliminary
efforts have been made to integrate pyCycle, a thermodynamic cycle analysis tool, to enable
simultaneous optimization of hybrid propulsion system and vehicle parameters while taking
full mission performance and constraints into account. This will improve current capabilities
to assess impacts of electrified powertrain technologies on future aircraft designs.

I. Nomenclature

Δ(·) = change or increment in a variable
' = total mission range
\ = flight path angle
+ = velocity (true airspeed unless otherwise specified)
, = vehicle or component weight
,/( = wing loading at takeoff
-LF = takeoff load factor

II. Introduction

Assessment of state-of-the-art electric aircraft propulsion (EAP) designs is critical to the pursuit of ultra-efficient
subsonic transports and achieving NASA’s aggressive fuel, emissions, and noise targets. The process of analyzing

these designs currently involves the use of trusted legacy tools relying on engineering-level methods for vehicle
synthesis and mission analysis, together with tabular engine and aerodynamic performance data. While higher fidelity
design tools can be coupled with these mission analysis tools, the resulting frameworks can be cumbersome. A
tightly-integrated framework has been developed at NASA to perform gradient-based coupled engine and airframe
optimizations, taking vehicle performance across an entire design mission into account rather than optimizing for
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particular flight conditions [1]. Under the Transformative Tools and Technologies (TTT) project, the effort aims to
support advanced technology assessments and designs for the Electrified Powertrain Flight Demonstrator (EPFD) and
Advanced Air Transport Technologies (AATT) projects at NASA.

The new tool, called General Aviation Synthesis with Python (GASPy), is based on the FORTRAN General Aviation
Synthesis Program (GASP) [2]. Initially developed at NASA Ames Research Center in the 1970s and further developed
and enhanced at the Georgia Institute of Technology’s School of Aerospace Engineering in the 1990s, GASP can size
and estimate performance of fixed-wing aircraft ranging from regional turboprop to commercial transport designs. It
continues to be updated to study impacts of advanced technology for the EPFD program. While recent extensions of the
legacy code have added support for tabular engine data with and without electric augmentation power, it is limited to the
use of a single engine design, motor size, and prescribed electrification schedule for a given analysis. Trade studies then
require the generation of multiple sets of tables, typically by a different individual or team specializing in propulsion
system design. If, for example, the vehicle-level system analyst would like to assess the impacts of a different engine
parameter, effort is again required to generate more data.

To address this limitation and promote flexibly incorporating higher fidelity subsystem models directly, GASPy was
developed as a nearly complete baseline reimplementation of GASP in Python using OpenMDAO [3]. Verification
of subsystem models has been performed using a Boeing 737 MAX 8 model, with alterations to achieve improved
test coverage for additional features not exercised by the MAX 8 model, such as a wing strut. An Embraer E190-E2
model was also created for both GASP and GASPy for further system-level testing. Detailed comparisons between
GASP and GASPy results for these models are provided by Recine et al. [4]. In addition, an electrified geared turbofan
thermodynamic cycle model implemented with pyCycle [5] has been included to perform coupled engine and airframe
optimization. This paper describes the design, construction, and initial performance assessments of GASPy.

III. Background: The General Aviation Synthesis Program
GASP performs configuration sizing and performance estimates associated with the conceptual phase of aircraft

design. It uses engineering level analysis methods across all technical disciplines to perform configuration sizing
and estimated vehicle performance characteristics. Utilizing modular discipline analysis construction and integrated
into a computational flow (Fig. 1), the focus is on capturing the interaction and synergistic effects of the various
technical disciplines. GASP determines configuration size and weight estimates, assesses aircraft performance and
economics, and is useful in performing tradeoff and sensitivity studies. By utilizing GASP, the impact of various aircraft
requirements, design factors, and advanced technologies, either singularly or collectively infused into the configuration
design, may be studied systematically. Benefits can be measured in terms of overall aircraft weights, dimensions, and
mission performance.

Six “technology” sub-modules perform the various independent functions required in the design of fixed-wing
aircraft. The six modules include geometry, aerodynamics, propulsion, weight and balance, mission performance, and
economics. The geometry module calculates the dimensions of the synthesized aircraft components based on such
input parameters as the number of passengers, aspect ratio, taper ratio, sweep angles, and the thickness to chord ratio of
wing and tail surfaces. The aerodynamics module calculates the various lift and drag coefficients of the synthesized
aircraft based on inputs related to the gross configuration geometry, flight conditions, and the type of high-lift devices.
The impacts of advanced aerodynamics technology are assessed using component-level factors for parasitic drag,
interference drag, and compressibility drag. The propulsion module determines the engine size and performance for the
synthesized aircraft based on an input reference engine performance deck, with engine scaling to meet various cruise,
takeoff, and climb requirements for the aircraft. This module can currently simulate turbojet, turbofan, turboprop, and
reciprocating engines. A propeller module estimates propeller performance, weight, and noise. Aircraft subsystem
component weights are computed based on historically-derived weight estimating relationships, with technology factors
used to assess the impact of advanced technologies on aircraft structural weight. In the mission performance module,
the taxi, takeoff, climb, cruise, descent, landing, and reserve segments of a specified mission are analyzed to compute
the total range and fuel required. Aircraft can also be sized to meet a required range. An off-design mission can also be
specified. Economic performance characteristics are estimated using manufacturing cost buildup and operational costs
related to fuel and crew costs.

The six technology modules are integrated into a single system by a control module. This integrated approach
ensures that the results from each module contain the effect of design interactions among all the modules. Starting from
a set of simple input quantities concerning aircraft type, size, and performance requirements, the synthesis is extended
to the point where all of the important aircraft characteristics are analyzed quantitatively.
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Fig. 1 GASP computational flow diagram, depicting the ordering of and feedback between subsystem analyses
for a vehicle closure problem with engine sizing. Adapted from [2].

GASP has been applied to a wide range of vehicle concepts, ranging from general aviation aircraft, thin haul and
regional turboprop and turbofan designs, and to commercial transport designs, focusing primarily on the assessment
of requirements and/or technology impacts. The assessment process typically begins with establishing a reference
baseline design based on existing aircraft configurations or study designs, with calibration of the code against published
performance characteristics of the design. Trade studies are conducted for the baseline design to assess sensitivity
of the vehicle characteristics to changes in various disciplinary performance levels in order to define the key areas
of technology development that will have the biggest impact on the overall vehicle performance, and help define the
required technology portfolio for further development. With the optimal set of technologies defined for a particular
design and mission, the impact of the combined candidate advanced technologies is assessed and overall performance
improvements resulting from the application of these advanced technologies relative to the baseline configuration are
determined.

IV. GASP Implementation with Python

A. Software Architecture
NASA’s OpenMDAO framework [3] was chosen as a basis for constructing the new GASPy tool, offering the

ability to provide or estimate subsystem derivatives and assemble them into total derivatives across the entire model.
OpenMDAO also provides solvers for resolving algebraic loops in the model, interpolation methods for using tabular data
(e.g. engine performance decks), and interfaces for a variety of optimization packages. The result is a modular system
model where subsystems of varying fidelity can be interchanged as desired, with tooling to visualize the model structure,
check for missing connections, and verify model derivatives. The resulting model can then be flexibly configured for
analyses or gradient-based optimizations.

Two different trajectory modeling libraries have been used to support ordinary differential equation (ODE) integration
for evaluating mission performance: Dymos [6] and SimuPy [7]. In both cases, the user provides OpenMDAO models
for evaluating ODEs for each flight segment and specifies how segments are linked together. As the trajectory model is
executed, derivatives of the performance metrics with respect to vehicle parameters are available to support incorporation
into the overall model for gradient-based optimization.

Dymos, itself built with OpenMDAO, primarily focuses on trajectory optimization problems via collocation, where
the state variables and any controls at a user-specified time grid become design variables in an optimization problem
with constraints to enforce dynamics. This is a convenient option in cases where there are free dynamic variables to
optimize directly, such as the angle of attack in a minimum-time-to-climb problem where a feedback controller design
isn’t the goal. It can also be extremely efficient, requiring relatively few ODE evaluations that can even be run in parallel
in some cases. Initial “guesses” for the states along the trajectory are required, however, which can be a challenge
when exploring conceptual aircraft designs or changing mission specifications. Bounds on state and control variables
throughout the trajectory are also often needed to ensure the optimizer doesn’t drive the model into an ill-specified
region.

SimuPy ismore focused on simulation, used here as a shootingmethod alternative to collocation. Its author has recently
developed methods to compute derivatives across discontinuous events such as initiation of flap deployment/retraction
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and landing gear retraction [8]. As opposed to collocation, which generally only produces a valid trajectory at the
converged solution, shooting methods produce physically valid trajectories at each optimizer iteration. This method also
introduces no additional design variables or constraints to the overall optimization problem, and initial guesses for state
variables throughout the trajectory are not required. Using an initial value problem (IVP) solver with adaptive step size,
the time points at which the ODEs are evaluated ultimately reflect the dynamics automatically, hence the time grid
doesn’t need to be specified and potentially tuned as in collocation.

In addition to the reimplementation of GASP’s table-based engine performance scaling and evaluation, a geared
turbofan engine model implemented with pyCycle [5] has been incorporated into the GASPy code. pyCycle offers
physics-based thermodynamic cycle analysis with analytic derivatives such that engine design parameters may be
incorporated into the overall design optimization problem. In the future, other tools may be substituted for GASP’s
models to increase fidelity as a vehicle concept develops to account for more complex interactions.

B. Optimization Problem Formulation

Optimizer ,initial ,cruise,final ,initial ,initial
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Geometry,
Weights,

Flaps Aero
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,payload

+rot = +stall + Δ+' + Δ+1
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Fig. 2 Simplified design structure matrix showing the overall model structure and optimization variables
for a vehicle closure problem. Computation generally flows between subsystems (green boxes) in a clockwise
direction. Subsystems output variables to the right or left and take inputs from above or below. The optimizer
at the outermost loop initiates model evaluation and drives design variables to a converged solution. Additional
input parameters from the user (not shown), may feed into any subsystems directly.

Figure 2 is a design structure matrix illustrating the general structure of the GASPy model for a vehicle sizing
problem, where the design gross takeoff weight, ,initial, is iterated on to achieve a range requirement and maintain
weight closure. Controlling execution of the model, an optimizer (blue) drives variables that feed into four key top-level
systems, depicted as green boxes along the diagonal. Inputs to the subsystems are aligned vertically and outputs are
aligned horizontally. Additional inputs from the user, specifying fixed values such as wing aspect ratio, target range,
number of passengers, etc. are not shown for simplicity. So far, GASPy has been tested using the sequential quadratic
programming algorithm provided by SNOPT [9] and the interior point algorithm provided by IPOPT [10].

First, a static analysis group takes design variables as well as fixed user inputs and computes a variety of vehicle
parameters that remain fixed throughout the mission (for a given optimizer iteration). The subsystems making up this
static analysis group follow closely the methods and equations in GASP: geometry, high-lift device aerodynamics, engine
scaling, and weights. Of primary importance in the static subsystems for the overall problem is the fuel weight (,fuel),
which is determined iteratively. The mission group consists of a series of ODEs to evaluate state rates given vehicle
parameters to compute aerodynamic performance and engine performance. The trajectory evaluation method (either
collocation or shooting) then integrates these ODEs to determine the vehicle trajectory over time. With collocation, the
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vehicle states — typically altitude, weight, and range — themselves become additional design variables with constraints
to enforce the dynamics and continuity between phases. The final weight at the end of the trajectory is compared to the
initial gross takeoff weight driven by the optimizer, after which a reserve fuel weight is added to evaluate block fuel,
which can be used as an objective to minimize. In a fixed target range mission, the range computed from the trajectory
is constrained by an equality constraint and the computed block fuel,,fuel, is combined with the empty weight and
payload weight to match the initial gross takeoff weight set by the optimizer via another equality constraint.

While the methods used within the static subsystems and the equations of motion underlying the trajectory are
the same or equivalent to those in GASP, this overall structure for achieving vehicle closure is more general than
GASP’s custom solver loop for range balance. The advantage of this structure is that it can readily be extended for
more complex performance analyses and optimizations by including additional design variables and constraints without
major structural changes to the model. For example, a single line of code could add wing aspect ratio as a design
variable. OpenMDAO would then provide the derivatives of the objective function and constraints with respect to the
additional design variable to the optimizer. The optimizer would then attempt to maintain vehicle and range closure
while potentially finding a fuel-saving design. In addition, other mission types can be implemented via simple changes
in problem formulation. Performance of a given aircraft in a short-range/economic mission may be evaluated by fixing
the design gross takeoff weight to that obtained in a vehicle closure run and varying the actual initial fuel load to achieve
the specified range. The maximum range of a fixed vehicle with a specified payload may be evaluated by fixing the
takeoff weight and maximizing the range rather than constraining it to a fixed value.

C. Model Subsystems
Static subsystems in GASPy are nearly direct ports of the GASP code to Python with OpenMDAO. Various geometry

parameters are calculated from user inputs, then component weights are computed. Within the weights subsystem, a
solver iteratively converges the wing and fuel weights, since the wing structure and fuel capacity are interrelated. High
lift devices are then sized and lift and drag increments determined for takeoff and landing. Once the static vehicle
characteristics have been determined, model execution progresses to trajectory integration.

A notable departure from GASP is how engine size is determined when it is not specified by the user, though the
scaling of table-based engine performance variables is the same. When using tabular engine data, scaling is based on an
assumption that, for a given flight condition and power setting, the specific thrust and percent corrected airflow of the
reference and scaled engines are equal [11]. The sea level static (SLS) airflow is used as the scaling variable and in
GASP, is computed directly given SLS thrust provided by the user or thrust required to meet one or more predicted
aircraft performance criteria such as a minimum rate of climb at top of climb or maximum takeoff field length. So
far in GASPy, a simpler automatic engine sizing approach has been taken, where the rate of climb at top of climb as
flown in the design mission is constrained by a lower bound, which the optimizer satisfies. Additional criteria may be
added in the future, such as 14 CFR Part 25 climb gradient requirements, requiring a separate trajectory integration
from the design mission. While it is somewhat more efficient to predict weight at the top of climb hence estimating
the corresponding achievable rate of climb before performing mission analysis, the GASPy approach gives a more
accurate minimal engine size without needing to manually adjust the weight at top of climb. With a full thermodynamic
cycle analysis supplying engine performance via pyCycle, the “size” of the engine is set by changing the airflow at the
chosen design point for the engine. Rather than becoming a simple scaling factor on thrust and fuel flow like in the
tabular engine data case, the design point cycle is analyzed within the static analysis group and parameters are passed to
off-design points within the mission ODEs.

Fig. 3 Baseline mission trajectory specification. Segment dimensions are not drawn to scale.

The trajectory specification implemented in GASPy is shown in Fig. 3. As in GASP, there are both closed-form and
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integrated flight segments. Taxi and landing are direct reimplementations of GASP in OpenMDAO. Taxi simply runs
the engine at idle power at airport altitude for a user input duration to evaluate weight change. Landing computes glide,
flare, touchdown, and groundroll characteristics via analytic expressions [2], with engine and aerodynamic performance
computed similarly to integrated flight segments. Cruise uses the Breguet range formulation, where the optimizer varies
the final cruise weight such that, together with the other flight segments, the change in vehicle weight over the entire
trajectory plus reserve fuel matches the fuel available.

The rest of the flight segments use either Dymos or SimuPy to integrate planar equations of motion. The 1976 U.S.
Standard Atmosphere model determines ambient conditions from the altitude at each point along the trajectory. The
ambient conditions are then used in both the engine and aerodynamic models. GASPy supports GASP-formatted engine
tables, parameterized by Mach number, altitude, and )4/)2 ratio or power code. There is also preliminary support for an
N+3 geared turbofan engine model with electric augmentation, implemented with pyCycle. The throttle setting for
each flight segment is specified, and the engine tables are interpolated or the pyCycle model is executed to evaluate
thrust output and fuel flow rate at each time point. The GASP aerodynamic models are also replicated in GASPy to
compute lift and drag at each time point from ambient conditions and vehicle parameters. During takeoff, lift and drag
increments due to flaps, landing gear, and ground effects are accounted for and dynamically tapered to emulate flap and
gear retraction. In level flight (the accelerate segment), the vehicle angle of attack is solved for so that lift balances the
vehicle weight at each time, and thrust provided by the engines compared to overall drag determines the acceleration.
Climb and descent use a quasi-steady model with constant equivalent airspeed and a path constraint on the flight path
angle \ ≤ \max (typically 15 degrees). The initial ascent portion of the takeoff segment also imposes the load factor
constraint -LF ≤ -LF,max (typically 1.1).

In the collocation implementation, flight segments are linked together by equality constraints between final/initial
state values of adjacent segments that the optimizer works to satisfy. This construction decouples each segment from
one another such that they can be evaluated in parallel on a given optimizer iteration. When the pyCycle model is used
for propulsion, where a single evaluation may take several seconds or more, each collocation node can also be evaluated
in parallel to greatly reduce runtime for a given optimizer iteration. In the shooting implementation, segments are
executed in series and final/initial state values between segments are matched by construction.

V. Baseline Vehicle Comparison
A Boeing 737 MAX8 vehicle model with tabular performance data for a CFM International LEAP-1B engine was

used as the baseline vehicle for both testing subsystem implementations against GASP as well as integration testing the
vehicle closure solution. The design mission specification used for verification is shown in Table 1. The vehicle has also
been used as a reference for exploring impacts of advanced technology in the EPFD program [4].

Table 1 737 MAX 8 design mission vehicle closure problem specification

Payload 36,000 lb (180 PAX)
Range 3,675 NM
Cruise Mach 0.8
Cruise Altitude 37,500 ft
Reserve fuel 4,998 lb
SLS thrust 28,690 lbf

A summary comparison of the outputs from GASP and GASPy for this vehicle is shown in Table 2. Numerical
values for GASPy are from the collocation-based mission implementation, though the outputs from shooting are nearly
identical. Figure 4 shows the overall trajectory for the case described above, showing overall good agreement between
the GASP and GASPy mission implementations. GASPy is shown to climb faster than GASP, caused by the lack of a
small acceleration term in the climb equations of motion accounting for the gradual change in true airspeed with a
constant equivalent airspeed climb. GASP uses an ad hoc finite difference approximation for this term, whereas the
GASPy implementations will require more careful treatment, accounting for change in air density with altitude and the
transition to cruise Mach or altitude, whichever occurs first. Equations of motion are shared between the collocation and
shooting implementations, so this discrepancy is shown in both and the shooting trajectory essentially passes through
the collocation nodes. Since performance at cruise dominates overall mission performance for the long-range design
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mission, the impact to the overall vehicle closure problem is relatively small. Regarding computational performance, the
SimuPy shooting implementation gives similar results in typically 3–4 iterations for a vehicle sizing problem, whereas
the Dymos collocation implementation takes roughly 20–30 iterations in part due to the additional design variables and
constraints. Run time with tabular engine performance data is similar in most cases without extensive tuning of initial
guesses for the collocation implementation. More thorough testing is needed to evaluate the tradeoffs between iteration
duration, total number of iterations, and optimization stability.

Table 2 Summary comparison of GASP and GASPy results for 737 MAX 8 closure

GASP GASPy error
GTOW (lb) 176,016 175,678 -0.19%
OEW (lb) 96,928 96,547 -0.39%
Block fuel (lb) 43,086 43,132 0.11%
Cruise L/D 18.66 18.47 -1.04%
Cruise TSFC 0.5487 0.5484 -0.05%
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Fig. 4 Comparison of converged GASP and GASPy trajectories for the 737 MAX 8 design mission. Cruise at
constant Mach and altitude is not shown, taking place between the two halves of each plot.

Convergence with the 737 MAX 8 model with the tabular engine data replaced by a notional N+3 electrified geared
turbofan high-bypass pyCycle engine model has been achieved, demonstrating progress toward coupled engine and
airframe optimization. The engine model with a top-of-climb design point runs within the static analysis group and
passes design parameters to equivalent engine models configured for off-design evaluation at arbitrary flight conditions
within the ODEs. The 737 MAX 8 vehicle closure problem with the design point engine fixed was run on NASA’s
Pleiades cluster, taking approximately 25 minutes to converge with 42 processes (one for each collocation node).
Additional work is ongoing to support automatic sizing of the design point engine to meet mission constraints (e.g. rate
of climb at top of climb), however the lack of detailed engine weight estimation is a barrier to achieving meaningful
results.
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VI. Conclusion
The new GASPy tool shows promise in offering trusted methods and models for fixed wing vehicle synthesis with

new capabilities in integrating detailed thermodynamic cycle analysis for coupled engine and airframe optimization.
It has been shown to provide similar results to GASP, but its full capabilities have yet to be tested thoroughly. In the
near future, the tool will be developed further to offer improved stability and robustness for vehicle and engine sizing
problems, tested more thoroughly with pyCycle providing engine performance, and extended to support coupling with
higher fidelity aerodynamic performance analyses. There are also efforts in progress to merge the GASPy tool with a
reimplementation of LEAPS [12], bringing together methods from FLOPS and GASP into a single modern tool for
vehicle analysis and optimization. Ultimately, in order to address the needs of the NASA programs to assess both
conceptual and high technology readiness level designs, additional tooling around the core of a tool such as GASPy will
be needed to incorporate estimation of emissions and community noise.
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