
Powering the Next Era of Space Exploration

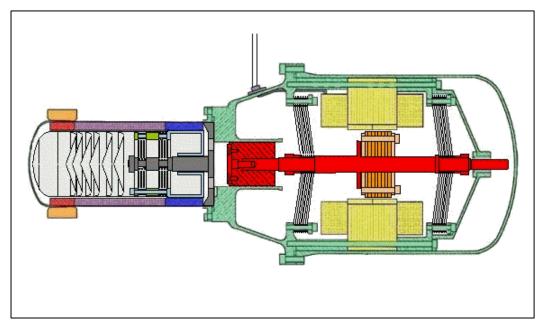
A Study on Effect of Tuning Capacitor in Dynamic Radioisotope Power Systems

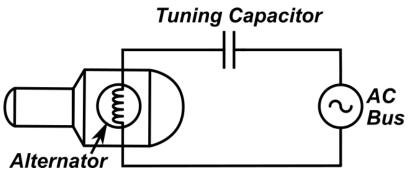
Dr. Max Yang, Nicholas Schifer

Dr. Tyler Steiner, and Matthew Stang

NASA Glenn Research Center

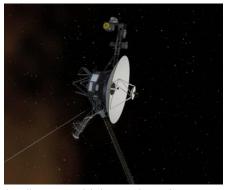
Outline



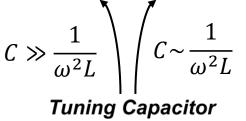

- Introduction
- Simulation Modeling Results
- Effect on Stability during Vibration
- Effect on Power Output
- Effect on Start-Up Behavior
- Conclusion

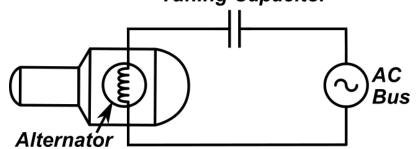
- Stirling convertors use a linear alternator to extract power from the piston motion; this requires a coil and a magnet (Faraday's law)
- The coil introduces unwanted phase shift to degrade power output as well as introduce instability; i.e., low power factor
- Tuning capacitor is added to increase power output and stability; widely accepted that tuning capacitor value will affect both the power output and stability

Introduction (2)



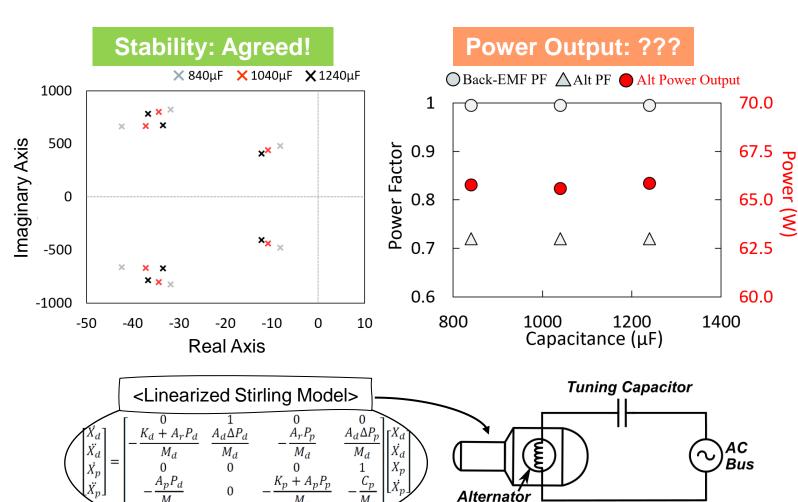
Launch




https://www.nasa.gov/feature/around-the-moon-with-nasa-s-first-launch-of-sls-with-orion

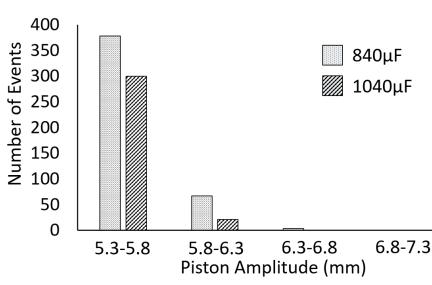
Mission

https://www.nasa.gov/mission_pages/voyager/voyag

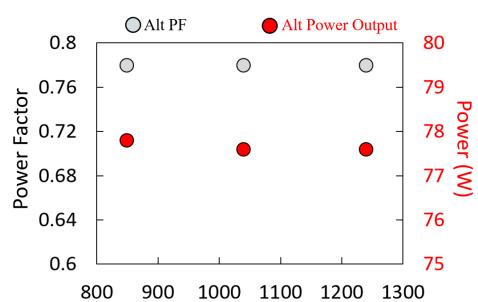


- It is widely accepted that tuning capacitor value affects both the power output and stability: "The Conventional Theory"
- Also, according to this theory, the tuning capacitor value for the maximum power output is different from that for the highest stability.
- As a result, two separate tuning capacitor values were suggested during launch and mission.
- However, recent modeling analysis suggested that this may not be correct.

- Simulation Conditions
 - A linearized Stirling model on AC Bus
 - Hot-end ~ 760°C / Cold-end ~ 40°C
 - Piston amp ~ 4.0mm
 - Operating frequency ~102Hz
 - Tuning cap value: $840\mu F$, $1040\mu F$, $1240\mu F$
- The stability results agree with the conventional theory; however, the power output results do NOT agree with it.
- Therefore, test setups were designed to check the simulation results.



Vibration Test Setup



Piston	# Events		# Events			
Amplitude	At 840μF			At 1040μF		
Test #	#1	#2	#3	#1	#2	#3
5.3 to 5.8mm	388	420	327	317	357	226
5.8 to 6.3 mm	38	85	78	20	18	27
6.3 to 6.8mm	0	4	6	0	0	1
6.8 to 7.3mm	0	0	0	0	0	0

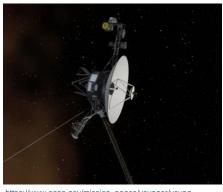
- Vibration test was conducted back in 2012 (up to 13g_{rms}).
- The vibration test was conducted with $840\mu F$ (nominal) and $1040\mu F$.
- The results suggest that $1040\mu F$ (higher cap) is more stable under vibration.
- Vibe test results in agreement with the simulation results AND with the conventional theory

Variable	$840\mu F$	$1040\mu F$	$1240\mu F$
Piston Amp	4.31mm	4.31mm	4.31mm
Power Output	77.8W	77.6W	77.6W
Alt PF	0.782	0.781	0.779
Hot-End Temp	760° <i>C</i>	760° <i>C</i>	760° <i>C</i>
Cold-End Temp	39.7° <i>C</i>	39.9° <i>C</i>	39.6°€
Alt Voltage	$15.8 V_{rms}$	$15.7V_{rms}$	$15.8V_{rms}$
Alt Current	$6.32A_{rms}$	$6.31A_{rms}$	$6.31A_{rms}$
Pressure	486psig	486psig	486psig

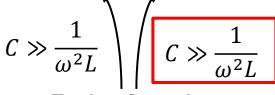
Capacitance (µF)

- This test was conducted in 2022 to understand the effect of tuning capacitor value on the power output.
- Same convertor used in the vibration test was tested.
- Test Conditions
 - Hot-end ~ 760°C / Cold-end ~ 40°C
 - Pressure ~ 490psig
 - Piston amp ~ 4.3mm
 - Operating frequency ~102Hz
 - Tuning cap value: $840\mu F$, $1040\mu F$, $1240\mu F$
- Test results show that the effect of the tuning capacitor value on the power output is negligible.
- Power output results also in agreement with the simulation results but NOT with the conventional theory.

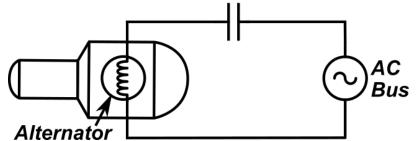
What Does This Mean?



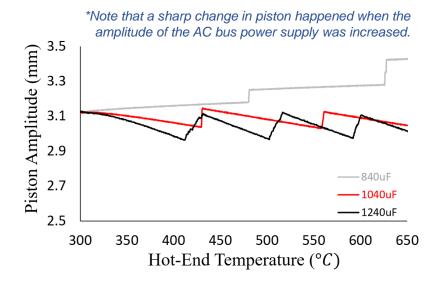
Launch

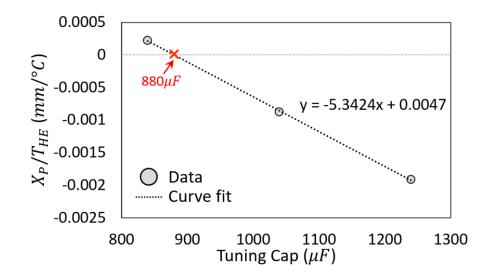


https://www.nasa.gov/feature/around-the-moon-with-nasa-s-first-launch-of-sls-with-orion

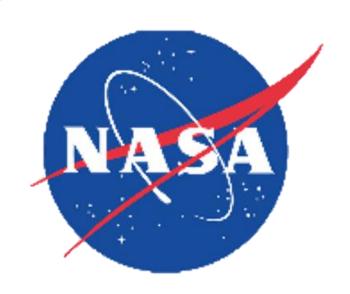

Mission

https://www.nasa.gov/mission_pages/voyager/voyag




- Previously, two separate tuning capacitor values were suggested during launch and mission.
- However, according to this study, this is not necessary; we can use a single tuning capacitor value that maximizes the stability.
- Therefore, no need for additional communication and control.

- During the power output testing, we observed that the rate of the change of the piston amplitude over hot-end temperature changed with the tuning capacitor value.
- Assuming the rate of the change of the piston amplitude over hot-end temperature is constant, the rate is inversely proportional to the tuning capacitor value.
- We believe this is related to the impedance of the tuning capacitor. Further study needed.


Conclusion

- According to the conventional theory, different tuning capacitor values are required during launch (requiring higher stability) and mission (requiring higher power output); this complicates communication and control system.
- According to the new theory presented in this paper, however, the effect of the tuning capacitor value on the power output is negligible; therefore, no need for additional communication and control.
- Also, tuning capacitor value affects the start-up behavior of the Stirling convertor; this may require a different controller design. Further study needed.

Thank you!

