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1. Abstract 
Water flow into the Great Salt Lake has declined rapidly over the last forty years due to human withdrawals and climate change. As a result of declining lake levels, over 50% of the lakebed is now exposed. Dust storms may grow in frequency and intensity across Northern Utah as lakebed dust becomes airborne under specific meteorological conditions. In our research project, we utilized satellite imagery from Terra and Aqua, Sentinel-5P, CALIPSO, Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI-2, Suomi NPP, ground sensor environmental data, and demographic data to understand the relationship between lake desiccation and dust, and the impact of pollution upon the communities surrounding the Great Salt Lake. By plotting changes in Lake Surface Area against Aerosol Optical Depth (AOD) over our study period (2010-2022), we found an inverse relationship (R2=0.3423) between lake surface area and dust levels within our study area. We conducted a Vertical Feature Mask (VFM) and Extinction Coefficient Plot, from which we identified that during dust events, the aerosol type is mainly polluted dust and the aerosol height is 200 meters from the surface. Lastly, we created bivariate choropleth maps, which demonstrate which census tracts within our study area are most vulnerable to AOD (a proxy for PM2.5 from dust), NO2 and HCHO (precursors to ozone). In summary, our findings revealed that declining lake levels are associated with an increase in intensity of dust events, and these dust events will particularly impact residents of Tooele County and the west side of Salt Lake City. Project resources support partner needs by informing targeted air monitoring efforts, lakebed management practices, and advocacy efforts for GSL stewardship.
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[bookmark: _Toc334198720]2. Introduction
[bookmark: _Toc334198721]2.1 Background Information
[bookmark: _Int_tRmpD5Sq][bookmark: _Int_iNX9Hy5s]The Great Salt Lake (GSL) is a terminal saline lake located in Northern Utah. As water inflow to the GSL basin decreases, more lakebed is exposed and becomes susceptible to erosion. Our research examines how airborne lakebed dust impacts Utah’s air quality. Our study area includes Box Elder, Cache, Rich, Weber, Tooele, Davis, Morgan, Salt Lake, Summit, Utah, and Wasatch Counties. Special attention is on the Weber, Tooele, Davis, and Salt Lake Counties because they lay adjacent to the GSL and are projected to be the most impacted by lakebed dust (Figure 1). 
[image: ]
Figure 1: Overview Map of Northern Utah, USA. The study area are the counties shaded in purple.
The period of interest for this study was 2010 – 2022, determined by partner input and data availability. This period included enough variations in GSL water level to fully analyze the behavior and relationship between lakebed exposure and air quality while excluding periods with abnormally elevated lake levels due to past flooding all over Utah state (Fisher, 1985), to avoid misleading data. Our study period included historically low lake levels. First, in 2016 there was a “dry spell”. Second, in 2021 the lake’s historic low began when one hundred percent of Utah state was declared under extreme or exceptional drought (Hall, et al., 2021). Lastly in 2022, low levels overcame the historic values of the previous year. The study period also included years where lake levels were higher, 2011-2012 and 2017-2018, which the team examined for comparison purposes. The GSL’s 2023 level was 1277.11 meters above sea level (USGS, 2023), which represented a surface water level decrease of 3.4 meters (48% volume) since 1847, when compared with its natural mean level of 1282.29 meters calculated by Wurtsbaugh et al., (2016).
The water level elevation fluctuations of GSL closed basin depend on the input (precipitation, streamflow, groundwater) and output (evaporation, diversion) of water throughout the watershed (Mohammed & Tarboton, 2019; Wine et al., 2019; Baxter & Butler, 2020). In 2023, the lake level had declined to historical lows, exposing over 50% of the lakebed due to human water development and climatic factors. Null and Wurtsbaugh (2020) report “consumptive water uses in the watershed have depleted inflows by approximately 39%.” Temperature increases and drought persistence amplifies lake desiccation. (Baxter & Butler, 2020). 
Previous researchers studied aerosols in Salt Lake City and dust transport from the GSL via remote sensing, such as Michalsky & LeBaron (2013). Others have used MODIS satellite imagery, such as Hahnenberger & Nicoll (2014) who identified dust plumes and assessed dust source area characteristics. Our research builds upon past studies by examining more recent dust patterns between 2010-2022 and utilizing a suite of five satellites and multiple ground sensors to study air pollution.
Lake pollutants can become exposed lakebed contaminants and are susceptible to mobilization from land to air with a growing exposed lakebed. The eastern Great Basin has surfaces comprised of particles that suspend into the air when winds surpass the friction velocity thresholds which makes the GSL lakebed, also referred to as playa, a point source of dust regional dust transport (Hahnenberger & Nicoll, 2012). The Eastern Great Basin of the United States experiences a seasonal and diurnal pattern of dust storms, influencing high dust concentrations primarily during the spring season annually and in the afternoon diurnally. During Dust Event Days (DEDs), there are elevated airborne particulate matter (PM) levels in populated regions, particularly surrounding Salt Lake City, Utah. To the west of the GSL, coal burning and mining activities deposit and discharge heavy metals into the lake. The trace metal dust content that is deposited along the Wasatch Front has exceeded EPA regulatory limits (Putman et al., 2022). Health costs caused by the GSL’s particulate matter pollution are currently estimated at between $3.2 million to $13.6 million and are projected to grow (Martin & Nicholson Environmental Consultants, 2019).
2.1.1 Environmental Justice Considerations
The relationship between the GSL and humans has existed for centuries (Baxter & Butler, 2020; Trentelman, 2020) and for some, like the Shoshone, Ute, Goshute, and Paiute peoples, it has existed since time immemorial (University of Utah Environmental Humanities, 2022). While the Indigenous peoples of the region have been able to coexist with the lake, studies and oral histories show it is the colonizing population that have negatively impacted the lake levels (Baxter & Butler, 2020; University of Utah Environmental Humanities, 2022). Since 1885, settlers have focused their efforts on building dams, reservoirs, pipelines, canals, and pumps to extract water from the tributary rivers (Null & Wurtsbaugh, 2020). With a growing population, researchers estimate water diversion practices will continue to deplete water inflow to the GSL, thus further reducing lake levels.
The exposed lakebed poses a health risk for the surrounding communities and has the potential to exacerbate the already existing air inequalities. Today, the demographics in many large cities reflect the Home Owners' Loan Corporation (HOLC) redlining maps created in the 1930s. Not only has redlining perpetuated in modern segregation, but it has also resulted in environmental injustice towards minority groups. In Salt Lake City, residents who live in previously redlined areas on the west side of the city are exposed to pollution sources at a higher concentration when compared to their majority white counterparts on the East side (Jones, 2021). Dust from the drying GSL threatens to exacerbate existing environmental health inequities.
2.2 Project Partners & Objectives
The Utah Department of Natural Resources, Division of Forestry, Fires, and State Lands (FFSL) is responsible for managing forest health, wildland fires, and sovereign land. They are primarily concerned with management of the GSL lakebed, and thus are interested in the relationship between lakebed exposure and associated air pollution. Although FFSL uses remote sensing regularly, they do not currently use any NASA Earth observation-derived products. They will use project findings to inform lakebed management practices, specifically regarding the identification of dust hotspots. Another partner, the Utah Department of Environmental Quality, Division of Air Quality (DAQ) is responsible for ensuring the state compliance of federal and state air quality standards to protect and improve the health of the state’s air, land, and water resources. DAQ is interested in integrating current instrumentation and Earth observations to better analyze emissions, high wind events, and lakebed-derived dust transport. Additionally, Westminster College’s Great Salt Lake Institute, Dust^2, Great Salt Lake Coalition, Utah Physicians for Healthy Environment, and Westside Coalition partnered as collaborators, as depicted in Appendix A.
To support project partners’ decision-making needs, we first plotted changes in lake surface area and aerosol optical depth (AOD) over time and calculated the relationship between these variables. We determined aerosol height and type on DED’s to understand the health effects of dust storms. We then mapped how social vulnerability and pollution exposure compound upon each other to provide partners with a better understanding of neighborhoods or corridors with highly susceptible populations based on dust exposure, sociodemographic indicators, and additional air quality hazards. We created a tutorial for partners to expand their capacities in the technical aspects of remote sensing and GIS and produced visual and storytelling materials regarding the changes occurring at and around the GSL for partners to engage with and educate members of the legislature and the public.
[bookmark: _Toc334198726]3. Methodology
3.1 Data Acquisition 
3.1.1 Earth Observations
The team acquired data from numerous Earth observing satellite instruments and analyzed data from 2010 to 2022 (Table 1). First, our team acquired data to identify annual dust season air pollution patterns. The Multi-Angle Implementation Atmospheric Correction (MAIAC) data from MODIS on the Terra and Aqua satellites provided average AOD and related parameters throughout seasons with high dust pollution to compare to lake surface area changes. Dust levels were elevated within our study area during the meteorological season of spring, including March, April, and May (MAM); therefore, we narrowed the temporal scope of our MODIS data to March 1st – May 30th and calculated the 95th percentile of AOD levels across that period for each year from 2010 – 2022. Sentinel-5p TROPOMI provided data on two pollutants of interest with public health implications, nitrogen dioxide (NO2) and formaldehyde (HCHO), both precursors to ground-level ozone (O3). It also provided data on carbon monoxide (CO) to differentiate lake-derived dust from that of wildfires. The Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI satellites provided surface reflectance values used to quantify lake surface area changes over the study period. Next, for our point-in-time case studies, we identified 1 DED from MODIS AOD that matched with meteorological data recorded at Salt Lake International Airport (KSLC) from 2010-2022 (Labs, 2021). The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provided aerosol thickness, height, and classification with the use of the VFM and Extinction Coefficient. We obtained CALIPSO data by filtering the orbit track by coordinates, using NASA ASDC sub setter, and extracted one sample from CALIPSO VFM profile and Aerosol Extinction Coefficient on July 9, 2021. 

Table 1
List of sensors and data products utilized for this project.
	Satellite
	Sensor
	Product: Dataset
	Date Ranges
	Source

	Annual Dust Season Air Pollution Averages

	Terra/Aqua*
	MODIS
	MAIAC Land Aerosol Optical Depth Daily L2G 1km: MCD19A2 V006
	Mar. 1st to May 30th, 2010-2022
	GEE

	Sentinel-5P
	TROPOMI
	Tropospheric NO2 1-Orbit L2 5.5km x 3.5km V1: S5P_L2__NO2_HiR
	Jan. 1st to Dec. 31st, 2019-2022
	GEE

	
	
	Tropospheric Formaldehyde HCHO 1-Orbit L2 7km x 3.5km: S5P_L2__HCHO_Hir
	Jan. 1st to Dec. 31st, 2019-2022
	GEE

	
	
	Carbon Monoxide CO Column 1-Orbit L2 7km x 7km: S5P_L2_CO
	Mar. 1st to May 30th, Aug. 1st to Oct 31st, 2019-2022
	GEE

	Landsat 5, 7, 8
	TM/ETM+/ OLI
	JRC Yearly Water Classification History, v1.4: JRC/GSW1_4/YearlyHistory
	Annual, 2010-2021
	GEE

	Point-in-Time Case Study

	CALIPSO
	CALIOP
	VFM: CAL_LID_L2_05kmAPro-Standard-V4
	1 high-dust day between 2010-2022

	ASDC (Subset)
NASA LARC

	
	
	Aerosol Profile Product (aerosol extinction): CAL_LID_L2_05kmAPro-Standard-V4
	1 high-dust day between 2010-2022
	ASDC (Subset)
NASA LARC


*Terra/Aqua MODIS dataset was also used in the case study.
3.1.2 Ancillary Datasets
The team acquired data from numerous ancillary datasets from in-situ sensors, demographic datasets, and mapping resources from 2016 to 2022 (Table 2). We acquired daily air quality index values of NO2, O3, and PM2.5 from the Ground Sensor Air Quality System (AQS) of the Environmental Protection Agency (EPA) for 2019 and 2022. We also acquired AOD measurements from AERONET. To create the vulnerability maps, we overlayed the air quality data with social vulnerability factors. Our team utilized EJScreen, the Environmental Justice Screening and Mapping Tool, from the EPA as the data source. EJScreen utilizes data from the 5-year American Community Survey from 2016-2020. Lastly, we used digitized HOLC neighborhood grade vectors from the 1938 HOLC to overlay historic redlining maps on contemporary Salt Lake City boundaries. We obtained the study area shapefiles from the Utah Geospatial Resource Center.


Table 2
Social, Environmental, and Validation Datasets.
	Data Name
	Data Type
	Year(s)
	Institutional Data Source

	Ground Sensor Air Quality System (AQS)
	CSV text file of daily air quality index records of NO2, CO, O3, and PM2.5
	2019, 2022
	Environmental Protection Agency (EPA)

	AERONET AOD Level 2 (Aerosol Robotic Network)
	AOD Daily Average 

	2021
	NASA/PHOTONS

	Environmental Justice Screening Tool (EJScreen)
	CSV text file of community vulnerabilities
	2016-2019
	Environmental Protection Agency (EPA)

	Salt Lake City Residential Security Map
	Digitized HOLC neighborhood grade (redlining) vectors
	1938
	Mapping Inequality, Home Owners Loan Corporation

	Utah Census Tracts 2020, City, County, and State Boundaries
	Utah county and census track Shapefiles
	2020
	Utah Geospatial Resource Center


3.1.3 USGS Lake Level 
Additionally, we validated lake surface areas derived from the Landsat 5, 7, 8 Joint Research Centre (JRC) Global Surface Water Mapping Layers product (Pekel et al., 2016) with lake water level from the North and South arms of the GSL. To do this, we used measurements from USGS stream gages located at the main discharge locations of major runoff inflows. The USGS public records of approved time series of surface water levels from the GSL watershed (2010-2021) were retrieved from two-gauge sites (Table 3).
Table 3
Water level gauge overview. (USGS, 2023).
	USGS Water Level Data

	GSL Arm
	 Gage 
Name
	Gage 
Number
	Hydrologic Unit 
16020310
	Latitude
NAD27
	LongitudeNAD27

	North
	GSL Near Saline, UT (GSLNS)
	10010100
	Box Elder County
	41°15'19"
	112°29'46"

	South
	GSL at Saltair Boat Harbor, UT (GSLSBH)
	10010000
	Salt Lake County
	40°43'53"
	112°12'46"


3.2 Data Processing
3.2.1 Processing for Dust and Air Quality Indicator Map Package
To process our MODIS data, we first created a shapefile of our counties of interest in ArcGIS Pro, uploaded it to GEE, and identified the MAIAC tile that overlapped with our study area. We then applied a cloudy pixel mask for our data. To do this, we used the MAIAC Data User’s Guide to identify the Quality Assurance (QA) filter to find the QA bit value, or “Best Quality” AOD which is 0000. This bit value combines cloud and adjacent masks associated with clear, cloudless skies for the MCD19A1 dataset (Lyapustin, 2018). Then, we created a binary in which only data with the 0000-bit value was displayed, and all other bit values were set as “null.” Once QA masks were set, we filtered our data to show the 95th percentile of AOD levels for MAM of each year in our study period, from 2010 to 2022. Lastly, we applied a conversion factor of 0.001 to rescale monthly and daily AOD data after exporting it from GEE to be comparable with EPA ground data. In addition, we used Carbon Monoxide (CO) column measurements from TROPOMI to discriminate wildfires events from dust response in MODIS AOD for the seasonal dust trends and case study, since large concentrations of CO are released during wildfire events but not during dust events. We used our sample from CALIPSO VFM profile and extracted 532 nm Extinction Coefficient plot using Python script during the DED on July 9, 2021 (AOD levels > 95th percentile) to display only the layer of aerosols classified by subtype and determine aerosol height and thickness. We then converted the altitude of the layer from sea level to ground level. Lastly, we calculated AOD from the CALIPSO extinction coefficient. 
To understand lakebed extent and calculate yearly surface area averages, we used the JRC Yearly Water Classification History. This is a preprocessed dataset masked for cloud and water with pixel classifications of no data, non-water, seasonal water, and permanent water for the output of annual historical classification of water seasonality over the study period. We created a polygon in GEE to define our GSL boundaries of interest. Next, we analyzed the annual average lake surface area by aggregating pixels in each respective classification in the area. We derived annual water class maps and assessed temporal distribution trends of surface water changes from 2010 to 2021, utilizing the permanent water classification. Lastly, we derived statistics on the extent and change of GSL water surfaces and visualized temporal surface area trends on time plots.
3.2.2 Processing for Dust and Air Quality Vulnerability Map Package
We used TROPOMI data to determine the presence and distribution of two non-dust-related health-harming pollutants, NO2 and HCHO. We refined the TROPOMI data to fit our study area and used the QA bit filter to mask cloudy pixels using the same processes applied for our MODIS data. We calculated the 95th percentile of each pollutant for 2019. We used these data, in addition to the 95th percentile AOD levels for 2019, for an up-to-date visualization of pollutant concentration and distribution for our pollution vulnerability map. 
Informed by partner feedback about which demographic characteristics are the most salient indicators of social vulnerability, we included the following variables from the EPA’s EJScreen: Low Income, Minority, Age under 5, and Age over 65. EJScreen classifies each census tract based on what percentile its population falls into for each of our selected variables. We downloaded the data from the EJ screen into a single CSV text file where it was modified in R to only include numerical and normalized data values in preparation for a Principal Component Analysis.

3.3 Data Analysis
3.3.1 Data Analysis for Air Quality Indicator Map Package
We extracted daily AOD values within Salt Lake County and validated these with daily PM2.5 levels from the EPA Ground Sensor AQS. We compared variable trends with a scatterplot of AOD and PM2.5 for annual and meteorological seasons, respectively. We then performed a linear regression analysis to determine the correlation and validate the satellite data with in-situ data from Salt Lake County. Additionally, AOD data from the AERONET ground network was integrated to assess MODIS AOD reliability.
We used USGS gauge station data to compare and validate satellite data, assuming decreased lake surface area correlates with decreasing lake surface elevation levels. Annual lake elevation data from water gauge stations in the North and South GSL arms were utilized to cross reference annual lake surface area trends from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI JRC derived products. We compared annual variable trends with plotted lake surface area and elevation levels at each gauge station. We also created a plot and calculated linear regression to determine the correlation and relationship between lake surface area and average gauge station elevation level over time. Additionally, we analyzed the relationship between AOD and lake surface area. We plotted and compared temporal changes between the average lake surface area and 95th percentile AOD levels at the annual level and the MAM season between 2010 and 2022. Then, we performed a linear regression to determine the correlation between AOD and lake surface area over time. Moreover, EPA Ground Sensor AQS were also utilized to validate the tropospheric gases in 2022 measured by TROPOMI. We cross-plotted ground sensor data (NO2 and O3) in relation to satellite data (NO2 and HCHO) to compare variable trends. We then calculated linear regression in Salt Lake County to determine the correlation and validate the satellite data.
For our DED case study, we analyzed the VFM plot, MODIS AOD, and KSLC ground stations and selected the high dust event day of July 9, 2021. We then determined the subtypes of the extracted aerosol layer such as smoke, polluted dust, clean continental, polluted continental, dust, and clean marine. Lastly, we analyzed the aerosol extinction coefficient plot and defined the aerosol mixing layer distance from the surface and its thickness in kilometers. We compared the calculated AOD from CALIPSO with MODIS AOD.

3.3.2 Data Analysis for Dust and Air Quality Vulnerability Map Package 
To conduct a bivariate analysis for our vulnerability map, we refined our variables for social vulnerability into one aggregated variable. To do this, we conducted a Principal Component Analysis (PCA) for social vulnerability in R. The PCA produced an index of aggregated vulnerability across our study area at the census tract level, which we then visualized in a map by joining the PCA spreadsheet to a shapefile of our census tracts. Using zonal statistics, we took the maps of 95th percentile concentrations of AOD, NO2 and HCHO averaged from 2019 and calculated the mean concentrations of each pollutant, for each census tract, in our study area. We derived four maps displaying social vulnerability, dust (AOD), NO2, and HCHO spatially across the census tracts in our study area. Lastly, we created three bivariate choropleth maps displaying how dust (AOD), NO2, and HCHO compound upon social vulnerability across the census tracts in our study area. The map color codes areas where there are both high pollution concentrations and high social vulnerability, resulting in an accurate visualization of pollution vulnerability.

[bookmark: _Toc334198730]4. Results & Discussion
4.1.1 Seasonal Trends
Lake Surface Area Visualization, Trends and Validation
We mapped GSL temporal trends using concentric rings that depict annual average lake surface area, from the high to low water year in our study period, 2011 and 2021 respectively, that accounted for a 22.67% decrease from 2011 to 2021 (Figure 2A). A steady decline in surface area is observed over our study period (R2=0.5096) (Figure 2B). We used lake surface area as a proxy for changes in water level of the GSL over time. Due to the presence of a causeway that bisects the lake, the water level of the North and South Arms of the lake are different. Thus, to validate our lake satellite-derived surface area data, we plotted the average lake surface area in MAM against the MAM North and South arm gauge station water readings (Figure B1A). Then, we averaged the North and South arm readings and plotted lake surface area against the average value (Figure B1B). Lastly, we computed a linear regression of average surface area in km2 and average water level in ft, which resulted in an R2 of 0.862, showing that lake surface water level and area correlated significantly during MAM (Figure B1C). This indicated that the surface area measurements derived from satellite imagery were supported by ground level gauge station readings.

(A)                                                                  (B)
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Figure 2. Annual JRC GSL surface area. (A.) Annual JRC GSL lake surface area map shows the highest (2011) and lowest (2021) surface water level years within the study period of 2010–2022. (B.) Annual JRC GSL surface area timeseries with a linear regression for the years 2010–2021.

AOD Trends and Validation
We calculated the 95th percentile of AOD of MAM for each year in our 2010-2022 study period (Figure 3A). We then calculated the mean of the MAM values and plotted the data. (Figure 3B). This data tells us how the worst dust days (those falling within the 95th percentile) within the MAM dust season fluctuated over our study period and highlights the consistent and prevalent issue of dust pollution in the region. 
(A)	                                                                          (B)
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Figure 3. MAM 95th Percentile AOD: 
(A) Annual Monthly MAM 95th Percentile AOD Bar Chart, 2010-2022, 
(B) Annual MAM 95th Percentile Mean AOD Bar Chart, 2010-2022.
Given that we used AOD as a proxy for PM2.5, a health harming pollutant within our study area, we plotted daily AOD values (obtained from a 1 km buffer around the EPA station) against daily PM2.5 from EPA ground-station 490353006 (Hawthorne) within Salt Lake County boundaries on March 2019 to validate our AOD data. From this graph, we calculated the linear regression between the two variables, which resulted in an R2 of 0.1053, indicating a poor correlation between AOD and PM2.5 at this station (Figure B2A). Additionally, AERONET AOD daily average data from March 2019 at Dugway, Utah station 40.102N, 113.214W(Gupta & Lind, 2023) was integrated to validate MODIS AOD. The linear regression showed a moderate correlation between the two variables with a value of R2 of 0.5355, indicating that the AOD measurements derived from satellite imagery were moderately supported by ground level readings (Figure B2B & B2C).
Lake Surface Area and AOD Correlation
We determined what proportion of variance in AOD can be explained by lake surface area. Thus, we plotted the average lake surface area for MAM against 95th percentile AOD for MAM (Figure 4A). We then calculated the linear regression, which resulted in an R2 of 0.3423. The results indicate that 95th percentile AOD and lake surface area follow the same low positive trend and there is a linear relationship between the two variables during MAM season, showing that increasing lakebed exposure positively correlated with elevated dust levels (Figure 4B). 











(A)						         (B)
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Figure 4. MODIS AOD and JRC GSL Surface Area Correlation: 
(A) Annual MAM Mean 95th Percentile AOD and Mean MAM Surface Area Timeseries, 2010-2022, 
(B) Annual MAM Mean AOD and GSL Surface Area Linear Regression, 2010-2022. 
MAM AOD Differentiation from Wildfires
To support that within the dust season period of MAM high AOD responses that we obtained are related to dust events rather than wildfires, we plotted 95th percentile CO and corresponding AOD from TROPOMI in two different seasons MAM (study season) and August, September, October (ASO) (wildfire season). We conducted this analysis for the period from 2019 to 2022 due to TROPOMI data availability. We plotted 95th percentile mean response from both CO and AOD at MAM season which showed that CO maintained a low level during this season and maintained a flat behavior. Considering AOD spikes, this confirmed that AOD response during MAM season is restricted to dust rather than wildfires events (Figure B3A & B3B). We also plotted 95th percentile mean response from both CO and AOD in the ASO season for the period from 2019 to 2022, where CO follows AOD high values, an expected behavior for wildfires (Figure B3C).
HCHO and NO2 Trends and Validation
We plotted annual MAM AOD, annual AOD, annual HCHO, and annual NO2 per county throughout our study period to understand dust effect on air quality in the counties of interest with a finer scale analysis (Figure 5A, 5B, 5C, 5D). We utilized data for HCHO and NO2 from 2019 to 2022 due to the limited timeline of TROPOMI. Additionally, we also utilized a consistent EPA AQS to validate the HCHO and NO2 in 2022 measured by TROPOMI. Given that we used HCHO as a proxy for O3, we plotted daily HCHO from a 1-km station buffer and daily Max 8-hour O3 Concentration from EPA ground-station 490353006 (Hawthorne) within Salt Lake County boundaries in 2022 to validate our TROPOMI HCHO data (Figure B4A). We calculated the linear regression between the two variables, which resulted in an R2 of 0.7388, indicating a good correlation between HCHO and O3 at this station (Figure B4B). Next, we plotted daily TROPOMI NO2 from a 1-km station buffer and daily Max 1-hour NO2 concentration from EPA ground-station 490353006 (Hawthorne) within Salt Lake County boundaries in 2022 to validate our TROPOMI NO2 data as well (Figure B4C). We calculated the linear regression between the two variables, which resulted in an R2 of 0.8548, indicating a good correlation between TROPOMI NO2 and NO2 at this station (Figure B4D). Validation for HCHO and NO2 indicated that the gas measurements derived from satellite imagery were supported by ground level air quality sensor readings.




(A)                                                              (B)
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Figure 5. MODIS AOD and TROPOMI HCHO/NO2 per County:
(A) Annual MAM Mean 95th Percentile AOD Timeseries per County, 2010-2022, (B) Annual Mean 95th Percentile AOD Timeseries per County, 2010-2022, (C) Annual 95th Percentile HCHO Timeseries per County, 2019-2022, (D) Annual 95th Percentile NO2 Timeseries per County, 
2019-2022.
4.1.2 Case Studies
We selected the DED on July 9, 2021, during which AOD levels were high. This date also had available MODIS and CALIPSO data during the June, July, August (JJA) season recorded by KSLC meteorological station (Figure 6D). We created an Extinction Coefficient Plot to depict Aerosol Height and thickness for our selected DED (Figure 6A). This informed us where aerosols were in the atmosphere during the dust event. The plot demonstrates that the altitude of the dust layer was approximately 200 meters when converted to ground level with an approximate thickness of 5.5 kilometers. We used the same DED to produce a VFM, which informed us of the type of aerosols present on the high AOD day (Figure 6B). The plot demonstrates that the predominant aerosol subtype was polluted dust. Additionally, we plotted AOD and CO from TROPOMI for the DED, relative to that of a particular wildfire event, finding a low CO level in the DED indicating the high AOD response was related to dust events and not from wildfire influence (Figure 6C). AOD value was 0.11 from CALIPSO Extinction profile, comparable to MODIS value of 0.14 AOD.
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Figure 6. DED Case Study: July 9, 2021:
(A) DED Aerosol Subtype VFM, (B) CALIPSO Aerosol Height and Thickness, (C) CALIPSO Dust from wildfire differentiation, (D) KSLC Salt Lake International Airport Dust Event by Month per Season.
4.1.3 Vulnerability Maps
We completed a PCA utilizing the demographic data established in 3.2.2. The eigenvalues resulted in two principal components that contained variables with significant correlation. The first component consisted of an eigenvalue of 1.964 and an eigenvector with components as follows: low income (0.877), minority population (0.879), and under age 5 (0.648). The second component consisted of an eigen value of 1.032 and eigen vectors for each of the variables are as follows: over age 64 (0.973), under age 5 (0.268). These values contributed to a vulnerability score for each census tract, used in our bivariate choropleth maps. 

We derived four preliminary maps displaying social vulnerability, dust (AOD), NO2, and HCHO spatially across the census tracts in the study area (Figure C1A, C1B, C1C, C1D). We created three bivariate choropleth maps to show how pollution levels disproportionately impact different census tracts across the study area (Figure 7A, 7B, 7C). These maps take two variables and overlay them to depict how the variables interact and compound upon each other. For each map, one variable was social vulnerability, created by the PCA, and the second variable was AOD, NO2, or HCHO. AOD was shown as mean 95th percentile AOD for MAM 2019 by census tract. HCHO and NO2 were shown as mean 95th percentile pollutant for 2019 by census tract. 
       (A)
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Figure 7. Pollution Vulnerability Maps: 
(A) 95th Percentile Dust (AOD) Vulnerability Map, (B) 95th Percentile NO2 Vulnerability Map, 
(C) 95th Percentile HCHO Vulnerability Map.
We utilized Salt Lake City and Ogden HOLC redlining maps to explore the potential relationship between historically redlined classifications and spatial pollution vulnerability. We created three bivariate choropleth maps for historically redlined areas in Salt Lake City (Figure 8A, 8B, 8C). We created three additional bivariate choropleth maps for historically redlined areas in the city of Ogden (Figure C2A, C2B, C2C, C2D).
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Figure 8. Pollution Vulnerability Maps and Redlining Grades for Salt Lake City: 
(A) 95th Percentile Dust (AOD) Vulnerability Map, (B) 95th Percentile NO2 Vulnerability Map, 
(C) 95th Percentile HCHO Vulnerability Map.
[bookmark: _Toc334198734]4.1 Analysis of Results
Our plots and maps depicted a steady decline in the lake surface area over time (R2=0.5096), with a 26% decrease from the 2011 high water year to the 2021 low water year. The 95th percentile mean AOD for each individual MAM month within the dust season in our study period showed fluctuations for the worst dust pollution over time from 2010-2022. The correlation plot between the MAM average lake surface area and MAM 95th percentile AOD displayed a linear regression (R2=0.3423) showing that lake surface area and AOD had a low positive relationship and followed a similar trend over time. Increasing lakebed exposure was correlated with elevated dust levels. 
Plots overlaying AOD and CO in two different seasons, MAM and ASO, supported that within MAM, high AOD responses that we obtained are related to dust events rather than wildfires. In MAM, CO is low when AOD is low, and CO remains low when AOD spikes. In ASO, CO follows AOD high values, an expected behavior for wildfires. Plotting the AOD measurements for March 2021 from MODIS and an AERONET ground sensor, a linear relationship was found between both (R2=0.5) indicating moderate correlation with satellite data. 

Our plots of 95th percentile MAM AOD and 95th percentile annual HCHO and NO2 by county from 2019-2021, revealed an uneven distribution of pollution across counties in our study area. High relative AOD was consistently seen in Tooele County. High relative HCHO was seen in Davis County in 2021. High relative NO2 was seen in Salt Lake and Davis Counties in 2021, with a greater impact on Salt Lake County. 2021 generally seemed to be a high year for poor air quality and associated health risks when analyzing both ozone precursor gases, which was also a low water surface area year.
The altitude of the aerosol layer, for the selected bounding box in our study area, is around 1.5 km from the surface. The thickness of the aerosol layer is around 5.5 km. The VFM proves that the aerosol subtype was mainly polluted dust which was ~200 m from the surface when reference to ground level. Since this polluted dust fell within the planetary boundary layer (an area of relatively mixed air that extends about ~2 km from the ground surface) anything under 500 meters can have a significant adverse impact on human health.
Our maps of zonal statistic means of the 95th percentile MAM AOD revealed that AOD was highest along the I-15 corridor, census tracts directly overlapping or adjacent to the GSL, and highest in the census tract in Tooele County. The maps of 95th percentile annual NO2 and 95th percentile HCHO by census tract for 2019 also revealed high HCHO and NO2 along the I-15 corridor, as well as high relative HCHO in Davis County and NO2 in Salt Lake County. Our map of social vulnerability revealed the highest social vulnerability within census tracts were west of I-15 in Salt Lake City. In our bivariate choropleth maps, census tracts that were darker purple had higher pollution vulnerability, as this indicated an overlap of both high pollution levels and high social vulnerability. Pollution vulnerability was highest in census tracts along the I-15 corridor, particularly on the west side of Salt Lake City. We overlaid historic redlining maps for Ogden and Salt Lake City with the pollution vulnerability maps. There was not a strong relationship between poor HOLC grades and pollution vulnerability in Ogden. Salt Lake City census tracts that fell within regions that received a “C” or “D” grade, denoting neighborhoods that were “definitely declining” or “hazardous” respectively, had higher AOD, HCHO, and NO2 vulnerability than census tracts that received “A” or “B” grades, denoting neighborhoods that were “Best” or “Still Desirable.” 
4.2 Uncertainties, Limitations & Future Work
Including additional metrics in our social vulnerability PCA, such as rates of asthma, infant mortality, medically underserved populations, would result in a spatial vulnerability map that better indicates populations with sensitivity to air pollution. These metrics would capture public health vulnerabilities related to dust and pollution exposure. The JRC product utilized for the lake surface area did not provide 2022 data; therefore, utilizing a dataset that depicts most recent conditions can be helpful in the future. 
No clear linear relationship was derived between AOD and PM2.5 in the MODIS data validation process, posing an uncertainty in the ability to utilize AOD measurements as an indication of harmful PM present towards the ground surface. This might indicate that the relationship between dust and PM2.5 is far more complex than expected. To utilize AOD as a proxy for PM exposure, the creation of a model considering factors such as meteorological conditions, seasonal patterns, and aerosol height would be helpful.
Partners expressed interest in exploring dust transport and settling, snowpack albedo impacts, and toxic metal composition of regional dust. Additional research can decipher the relative contributions of PM point sources to distinguish dust mobilization from natural processes and anthropogenic activities, considering that playas in intermountain corridors and disturbed land are ground-level hotspots for dust plume production and long-range transport during strong wind events (Hahnenberger & Nicoll, 2012).
[bookmark: _Toc334198735]Due to lack of data availability of CALIPSO on dust event days identified by MODIS, only one case study was performed in this project, which fell outside of the MAM dust season. Additional case studies can provide a better picture of aerosol composition and location to determine public health implications. While MODIS provided high-quality data on AOD for our study period, it is scheduled to be out of orbit in February of 2023, resulting in unusable measurements. Its successor, Suomi NPP VIIRS, was launched in 2011 and continues to capture the imagery that MODIS captured with improved spatial resolution. The MAIAC dataset of Suomi NPP VIIRS provides aerosol optical thickness (AOT), particle size, and particle type, while offering a potential transition from MODIS to VIIRS as a future data source to address research with similar project scopes. This project lacked access to Suomi NPP VIIRS MAIAC data.
5. Conclusions
Through our project, we demonstrated that NASA Earth observation data, when combined with ancillary datasets, can provide valuable information about patterns in lake level decline, pollution exposure, and social vulnerability. As Utah stakeholders work to mitigate and adapt to GSL decline and associated air pollution hazards, they may use our project results to craft prudent, data-driven interventions. Through our feasibility study, we have demonstrated that NASA Earth observations are a valuable tool for visualizing environmental hazards to craft responsible solutions.
We identified a 22.67% decrease in surface area of the GSL from 2011-2021, which was correlated (R2=0.3423) with elevated dust season AOD. This provides evidence to our partners that declining lake levels may worsen the frequency and intensity of dust events during the MAM dust season each year. Through our VFM and Extinction Profile Coefficient, we determined that during the dust event case study on July 9, 2021, the aerosols were classified as polluted dust and were located roughly 200 meters from the surface. 200 meters falls within the elevation to be considered hazardous to human health. From this case study, we can determine that dust events may adversely impact the health of Northern Utah residents. 
Additionally, we mapped the distribution of AOD, NO2 and HCHO across census tracts to determine which regions are the most impacted by pollution and how health-harming air pollution concentrations are distributed across Northern Utah. We overlayed our social vulnerability map with our pollution exposure maps to create AOD, NO2, and HCHO vulnerability maps. By adding maps on the distribution of social vulnerability by age, race, and income, we show how pollution and demographic characteristics compound upon each other to result in census tracts that are most vulnerable to air pollution. This may inform targeted advocacy, resource, or monitoring interventions in the worst impacted census tracts. 
Our most salient finding across all our pollution maps was that census tracts along the I-15 corridor, particularly on the west side of Salt Lake City, experience the highest levels of AOD, NO2, and HCHO pollution vulnerability. When overlaying the HOLC redlining grades with our pollution vulnerability maps in Salt Lake City, we see a clear relationship between poor grades with higher levels of pollution vulnerability. This implicates that the legacy of historically unjust redlining policies has present-day impacts, with heightened pollution exposure and public health effects for residents on the west side.
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7. Glossary
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time
MODIS – Moderate Resolution Imaging Spectroradiometer
AERONET – Is ground-based remote sensing Aerosol Robotic Network.
Aerosol Optical Depth (AOD) – “The measure of aerosols (e.g., urban haze, smoke particles, desert dust, sea salt) distributed within a column of air from the instrument (Earth's surface) to the top of the atmosphere” (Slutsker & Gupta, 2023).
ArcGIS Pro – Geographic Information System (GIS) Software.
CALIOP – Cloud-Aerosol Lidar and Infrared with Orthogonal Polarization, source/sensor onboard of CALIPSO satellite.
CO – Carbon Monoxide, used for dust and wildfire differentiation.
Earth Observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and biological systems over space and time.
Extinction coefficient – High extinction coefficient indicates high absorption and scattering of light and high associated aerosols present in the atmosphere, which can be comparable with ground sources.
GEE – Google Earth Engine, earth observations processing software.
HCHO – Formaldehyde used as a proxy for ozone.
Lidar – Light Detection and Raging, also known as laser imager.
MAIC – Multi-Angle Implementation of Atmospheric Correction, combines AOD measurements from Terra and Aqua Satellites.
MCD19A1 – a Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua combined Multi-Angle Implementation of Atmospheric Correction (MAIAC) Land Surface Bidirectional Reflectance Factor gridded Level 2 data product produced daily at 500 meter (m) and 1 kilometer (km) pixel resolutions. 
MODIS – Moderate Resolution Imaging Spectroradiometer.
NO2 – Nitrogen Dioxide used as a proxy for ozone.
Particulate Matter (PM) – “A term for a mixture of solid particles and liquid droplets found in the air. PM10 are inhalable particles, with diameters that are generally 10 micrometers and smaller; and PM2.5 are fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller” (US Environmental Protection Agency, 2022). 
Terminal Saline Lake – A lake that falls within a “land locked drainage network where water does not drain into large water bodies such as rivers connected to oceans” and instead experiences water losses “through water percolation underground and evapotranspiration” (Yapiyev, et. al.,2017). Terminal lakes become saline when solutes remain in the body of water during evapotranspiration.  
Vertical Feature Mask (VFM) – Describes vertical and horizontal distribution of aerosol layers only, displaying the aerosol type for all the layers.
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9. Appendices
Appendix A: Collaborating Partners
Table A1
GSL HAQ Collaborating Partner Organizations.
	Collaborators
	Sector
	Description
	Objective

	Westminster College Great Salt Lake Institute
	Academic
	Encourage students to explore and care about Utah’s natural features.
	Provide data to conduct a GSL-related analysis and to better understand the region’s persistent air quality issues.

	Dust^2 (Dust across a Desert-Urban-Summit Transect group) ()
	Academic
	Perform collaborative research investigating the impacts of dust on the ecology of the southwestern US.
	Provide scientific input on airborne dust research and to use results to understand how GSL dust impacts the larger watershed.

	Great Salt Lake Coalition
	Non-Profit
	A consortium of advocacy organizations working to protect the GSL
	Intend to use deliverables to advocate for stewardship of the GSL to the public and policymakers.

	Utah Physicians for a Healthy Environment (UPHE)
	Non-Profit
	Promote science-based education and interventions to improve the environment and public health.
	Intend to use results to generate public-facing content about health impacts resulting from the drying GSL.

	Westside Coalition
	Non-Profit
	Advocate for the health, safety, and quality of life of six west side communities in Salt Lake City.
	To better understand dust composition/interactions and air quality vulnerability within the west side communities. Intend to report results to legislature, policy makers, and press.









Appendix B: Satellite Data Validation
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Figure B1. JRC GSL SA Validation with USGS Gauge Stations: (A) Annual MAM GSL SA and MAM North and South Arm Gauge Station Readings Timeseries, 2010-2021, (B) Annual MAM GSL SA and MAM Averaged Gauge Station Readings Timeseries, 2010-2021, (C) Annual MAM Average GSL SA and MAM Average Water Level Linear Regression, 2010-2021.
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Figure B2. MODIS AOD Validation with EPA AQS and AERONET:
(A) MODIS AOD and EPA Hawthorne Station PM2.5 Linear Regression, March-2019, (B) Monthly MODIS AOD and AERONET PM2.5 Timeseries, March-2021, (C) MODIS AOD and AERONET PM2.5 Linear Regression, March-2021.
(A)
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(B)                                                                              (C)
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Figure B3. MODIS AOD and TROPOMI CO Differentiation from Wildfire Dust:
(A) Annual MAM Mean 95th Percentile AOD and CO Timeseries with Table, 2019-2022, (B) Annual MAM Mean 95th Percentile AOD and CO Timeseries, 2019-2022, (C) Annual ASO Mean 95th Percentile AOD and CO Timeseries, 2019-2022.
(A)[image: ] (B) [image: ] (C)[image: ] (D) [image: ]
Figure B4. TROPOMI HCHO/NO2 Validation with EPA AQS:
(A) TROPOMI HCHO and EPA Hawthorne Station O3 Timeseries, 2022, (B) TROPOMI HCHO and EPA Hawthorne Station O3 Linear Regression, 2022, (C) TROPOMI NO2 and EPA Hawthorne Station NO2 Timeseries, 2022, (D) TROPOMI NO2 and EPA Hawthorne Station NO2 Linear Regression, 2022.
Appendix C: Maps
(A)                                                                          (B)
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Figure C1. Social Vulnerability and Pollution Maps:
(A) Social Vulnerability by Census Tract, (B) 95th Percentile Dust (AOD) Map, 2019-2022, (C) 95th Percentile NO2 Map, 2019-2022, (D) 95th Percentile HCHO Vulnerability Map.
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Figure C2. Pollution Vulnerability Maps and Redlining Grades for Ogden City:
(A) 95th Percentile Dust (AOD) Vulnerability Map, (B) 95th Percentile NO2 Vulnerability Map, 
(C) 95th Percentile HCHO Vulnerability Map.
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