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Background

Supporting development of Electrified Aircrafts at NASA & Industries
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➢ Potential Benefits

‒ fewer emissions, improved fuel economy, quieter flight, improved efficiency and 

maneuverability, reduced maintenance costs, and improved reliability 

➢ Challenges (Materials)

‒ High power demand, e.g., 0.5 (9 seat) to 60 MW (300 seat) total propulsive power→ larger 

currents, thus larger conductors→ huge weight/volume gain

‒ High voltage (HV), high frequency (HF) Option, up to 20 - 40 kV or higher

→ ~ 1 mm thick SOA electrical insulation→ still significant weight gain

‒ Current HV cable technologies, mostly designed for sea-level to low altitude,

not suitable for high-altitude airplane operations due to corona PD

‒ Also, other specs to meet, e.g., up to 4 kHz, 50 – 500 amps, 180 – 240 ºC+

→ Critical need for lightweight, HV, HF, high temperature, and

PD resistant electrical insulation system



Background
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➢Multilayered structures of thin polymer insulation films, e.g., Kapton PI and PFA or 

PEEK as bond layer, significantly improved dielectric breakdown voltage (VB), if well-

bonded, regardless of test conditions, Oil vs Air or AC vs DC                                                         

→ Micro-multilayer Multifunctional Electrical Insulation (MMEI) system*

Cross-section of a 19-layer MMEI, 

[0.5*HN/1*PFA]9/0.5*HN; 

Overall thickness of 0.38 mm

* E. Eugene Shin, “High Performance Multilayer Insulation Composite For High Voltage 

Applications,” United States Patent (U.S. Pat.) No. 10,546,666, January 28, 2020
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Potential MMEI performance mechanisms

• MMEI structures with higher VB, typically consisted of thinner individual layers or more # of interfaces, 

induced a significantly more torturous path for HV current flow through the insulation layers. 

• Formation or propagation of damage such as defects/voids in the MMEI structures was effectively 

suppressed with decreasing the individual layer thickness, typically less than 1 mil/25.4 µm. 

• This 3-D DZ analysis confirmed that the size of DZ was directly proportional to VB in general. 

Background
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Sequence of representative cross-sectional micrographs of the damage and failure zone

[1*HN/1*PFA]10/1*HN in air

5*HN/5*PFA/5*HN in air



Experimental:  Materials 

• Kapton® Polyimide (PI) high temperature high dielectric strength films (DuPont)

‒ Thermalimide bagging film (KBF) (Airtech), 1, 2, & 5 mil: Thermally stable film

‒ HN, 0.3, 1, & 5 mil: A general tough aromatic film, the baseline PI

‒ HPP-ST or FPC, 0.5 & 1 mil: Superior dimensional stability and adhesion

‒ CRC or CR, 1 mil: Corona resistant nano-composite film

‒ HN, 05 & 1 mil, but Si adhesive, 1 & 1.5 mil, backed film

• Perfluoroalkoxy (PFA), 0.5, 1, 2, 5, 10, 20 mil: Semi-crystalline polymer as bond layer

• Polyethylene terephthalate (PET), 2 mil: Semi-crystalline polymer as bond layer

• Polyetheretherketone (PEEK), 0.5, 2, 5 mil: Semi-crystalline/bond layer or Moisture barrier

• Teflon® PTFE, 1, 2, 3, 5, 10, 15, 20, 40, 62.5 mil: Moisture barrier

• Flexible Electrical-Insulating Mica (FEIM), 4 mil: Corona barrier

Alternative Candidates:

• CIRLEX® Kapton® sheet, 10 & 20 mil (Fralock): Proprietary adhesiveless PI laminates, 4 mil to 125 mil + thick
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Candidate Materials for MMEI, all commercial products



Results & Discussions: Full-scale Demonstrations of MMEI
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Developed 1 m long, 3-phase full-scale bus bar prototypes with MERSEN   
to demonstrate scalability, manufacturability, and commercial applicability

Prototype #1 w/ SOA insulation

Al/Si/14*PTFE/Si/1*CR/Si/14*PTFE /Si/epoxy/5*Mica

– Avg weight of insulation per conductor = 427 gram       

– Avg thickness of insulation per side = ~ 0.81 mm (32 mils)

Prototype #2 w/ MMEI insulation

Al cond./1*PFA/[1*PFA/1*HN]10/[1*PFA/1*CR]2/2*PEEK/0.3*HN 

– Avg weight of insulation per conductor = 363 gram → ~ 15% 

– Avg thickness of insulation per side = ~ 0.71 mm (28 mils) → ~ 12% 



Results & Discussions: Full-scale Demonstrations of MMEI
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Evaluated prototypes by HiPot & PD testing (ASTM D149-20) at MERSEN

• Both passed HiPot breakdown test, >15 kVAC, 
with leakage current < 0.5 mA. 

• PD performance of Prototype #1 > #2, with thick 
Mica insulation which may not be suitable for 
power cable due to its rigidity → development 
of PD resistant MMEI system under way

➢ acceptable results wrt both manufacturability 
and performance, 

➢ validated MMEI system for various HV 
applications including electric aircrafts



Results & Discussions: PD behavior, correlation with LC
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PD performance of SOA insulation materials & MMEI with CHPPE OSU 

Cone (2 mm dia.)-to-
Plate electrode setup 
in environmental 
chamber

• PDIV = f (t, P) for all material type 

• PDIV of PFA, PTFE > others at 1 atm, but all worsened at 100 torr, i.e., challenges for high altitude application  

• PDIV = A*(LC)-B per applied V, independent of material type → Practical correlations for material development

• In all cases, PDEV showed almost identical behavior as PDIV but at consistently lower values



Results & Discussions: Development of PD-resistant MMEI
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Conductive PFA nanocomposite (PFAn) & Multifunctional-Semiconductive Shield Layers (MSL) 

• To significantly enhance PD resistance of MMEI for HV applications,

✓ incorporated semiconductive shielding layers → PFAn

✓ applied the advantages of multilayering thin insulation materials

✓ combined various multifunctionalities 

Example of a thicker MSL from initial trials

0.5*PEEK

0.5*PEEK

0.5*PEEK

0.5*PFAn

0.5*PFAn

0.25*PFAn
0.5*PFA

→ MSL as a subset 

of MMEI



PD-resistant MMEI:  Materials
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Optimizations of PFAn and MSL via Solution compression-casting with:

• Dyneon™ 6900GZ aqueous Perfluoroalkoxy (PFA) dispersion (3M, Advanced 

Materials Division):  50wt% solid, 235 nm average particle size (APS), 7wt% 

polyether-based emulsifier in distilled water; melting at 310 ºC

• Conductive nano-fillers

‒ Carbon Black: 1) ACM1333864 (ALFA Chemistry), spherical particles with 150 nm 

APS; Specific surface area (SSA) >700 m²/g(CB1)

2) Ketjenblack EC600-JD (MSE supplies), electro-conductive, spherical particles with 34 

nm APS;  BTE SSA = 1270 m²/g (CB2)

‒ Graphene Powder (MSE supplies), multi-layer structures with <10 µm APS 

prepared by thermal exfoliation reduction; SSA = 400-550 m²/g (GP)

• Dispersant for CB dispersion: Marasperse CBOs-4 a highly modified sodium 

lignosulfonate based dispersant (Borregaard,  Norway)



PD-resistant MMEI:  Fabrication

1. Dispersed conductive nano-filler(s) into dH2O with dispersant

2. Mixed via ball-milling with Borosilicate beads in Resodyn Acoustic Mixer 

(LabRAM) followed by an optimized condition

3. Mixed both nano-filler dispersion (w/o beads) and PFA dispersion in 

LabRAM followed by an optimized condition→ PFAn dispersion

4. Applied thin layer of PFAn dispersion onto clean polymer insulation film, 

e.g., PEEK with high wettability

5. Dried at temperatures below 90ºC/194ºF

6. Stacked PFAn coated polymer films based on                                               

predetermined MSL layer configurations

7. Compression-casted the stacks at an air-circulated oven 

preheated to 350ºC/662ºF for 60 min, or 

Vacuum-bagged and autoclave processed for large-scale MSL

*  Co-extrusion process to be also considered for industrial-scale manufacturing
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Solution compression-casting of MSL, Step-by-step fabrication procedure:

inch



Results & Discussions: Development of PD-resistant MMEI
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Optimized PFAn compositions and MSL configurations for MSL-MMEI

• Best PFAn composition: 2.5wt% CB2+ 0.5wt% GP+ PFA, and Most effective MSL configuration:
[0.5*PEEK/0.5*PFAn]2, in terms of dispersion characteristics,  up to 300ºC, TC, VB & LC, processibility 
& layer uniformity/connectivity, inter-layer bonding integrity, and other potential multifunctionalities

‒ CB2 w/ greater SSA provided much lower electrical percolation threshold than ~20wt% of CB1 for <1,000 ·cm

‒ Adding GP increased packing density, agglomeration or degree of chain formation in addition to the anticipated thermal 

stability of semi-conductivity

In-plane electrical resistance setup

0.5" W×4.5" L 
specimens

10 mil Cu foil

Silver paste

PI tape

TC by C-Therm Trident

FLUKE 73III 
Multimeter

FLUKE 54II 
Thermometer

SEM-EDS 2-D 
map of F & C



Summary and Conclusions

• The newly developed MMEI system was further optimized and validated:

‒ Optimized MMEI structures outperformed most of the SOA insulation materials regardless of test conditions.

‒ Potential Mechanisms responsible for MMEI performance were identified experimentally via 3-D dielectric 

damage and failure mode analyses.

• Scalability, manufacturability, and commercial applicability of MMEI were successfully 

demonstrated with 1 m long, 3-phase full-scale bus bar prototypes for > 15 kVAC. 

• Unique and practical PDIV/PDEV-LC correlations were experimentally determined from various 

SOA insulation materials and MMEIs for future insulation development.

• Significant progress was made in developing PD-resistant MMEI system via incorporating 

Multifunctional-Semiconductive Shield Layers (MSL) as a subset of MMEI:

̶ Semi-conductive PFA nanocomposite, PFAn, was designed with CB and GP, and their fabrication processes 

including optimum mixing conditions for uniform/random dispersions were developed

̶ Best PFAn composition and Most effective MSL configuration were determined based on systematic process-

structure-property relations
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Future Work Plan

The following tasks are planned for improvement and implementation of the 

MMEI system:

• Material-design-process optimizations, especially for additional 

multifunctionalities such as EMI shielding, thermal management, or 

mechanicals, and development of new/modified constituent materials with 

improved performance

• More extensive, systematic performance evaluations of the MSL-MMEI 

structures/prototypes including (i) thermal-mechanical-physical 

performance characterizations including interlayer bonding integrity and   

(ii) synergistic durability assessment

• Continuation of scale up, prototype development of power cables, 

manufacturability assessment, and commercialization
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