
April 2023

NASA/TM−20230006507

NESC-RP-18-01313

Flight Mechanics Analysis Tools

Interoperability and Component Sharing

Heather Koehler/NESC

Langley Research Center, Hampton, Virginia

Edwin Dove

Goddard Space Flight Center, Greenbelt, Maryland

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA scientific and technical information (STI)

program plays a key part in helping NASA maintain

this important role.

The NASA STI program operates under the auspices

of the Agency Chief Information Officer. It collects,

organizes, provides for archiving, and disseminates

NASA’s STI. The NASA STI program provides access

to the NTRS Registered and its public interface, the

NASA Technical Reports Server, thus providing one

of the largest collections of aeronautical and space

science STI in the world. Results are published in both

non-NASA channels and by NASA in the NASA STI

Report Series, which includes the following report

types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase of

research that present the results of NASA

Programs and include extensive data or theoretical

analysis. Includes compilations of significant

scientific and technical data and information

deemed to be of continuing reference value.

NASA counterpart of peer-reviewed formal

professional papers but has less stringent

limitations on manuscript length and extent of

graphic presentations.

• TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain minimal

annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or

co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign

scientific and technical material pertinent to

NASA’s mission.

Specialized services also include organizing

and publishing research results, distributing

specialized research announcements and feeds,

providing information desk and personal search

support, and enabling data exchange services.

For more information about the NASA STI program,

see the following:

• Access the NASA STI program home page at

http://www.sti.nasa.gov

• Help desk contact information:

https://www.sti.nasa.gov/sti-contact-form/

and select the “General” help request type.

https://www.sti.nasa.gov/sti-contact-form/

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2023

NASA/TM−20230006507

NESC-RP-18-01313

Flight Mechanics Analysis Tools

Interoperability and Component Sharing

Heather Koehler/NESC

Langley Research Center, Hampton, Virginia

Edwin Dove

Goddard Space Flight Center, Greenbelt, Maryland

Available from:

NASA STI Program / Mail Stop 148

NASA Langley Research Center

Hampton, VA 23681-2199

Fax: 757-864-6500

Acknowledgements

The team wishes to acknowledge the support received from the different flight

mechanics tool development teams and their supporting managers not represented

in the Team Members table for assisting with tool updates and allowing the team

members listed to participate in the assessment.

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not

constitute an official endorsement, either expressed or implied, of such products or manufacturers by the

National Aeronautics and Space Administration.

NESC Document #: NESC-RP-18-01313 Page #: 1 of 38

NASA Engineering and Safety Center
Technical Assessment Report

Flight Mechanics Analysis Tools Interoperability and Component Sharing

TI-18-01313

NESC Lead – Heather Koehler

Technical Lead – Edwin Dove

April 11, 2023

NESC Document #: NESC-RP-18-01313 Page #: 2 of 38

Report Approval and Revision History

NOTE: This document was approved at the April 11, 2023, NRB.

Approved:

 NESC Director

Version Description of Revision Office of Primary
Responsibility Effective Date

1.0 Initial Release Heather Koehler,
NASA Technical
Fellow for Flight
Mechanics, MSFC

03/30/2023

TIMMY WILSON Digitally signed by TIMMY WILSON
Date: 2023.04.24 17:24:06 -04'00'

NESC Document #: NESC-RP-18-01313 Page #: 3 of 38

Table of Contents
1.0 Notification and Authorization ... 5
2.0 Signatures ... 6
3.0 Team Members .. 7

3.1 Acknowledgements ... 7
4.0 Executive Summary ... 8
5.0 Assessment Plan ... 9
6.0 Problem Description and Background ... 9

6.1 Introduction ... 9
6.2 Background ... 10
6.2.1 MONTE .. 10
6.2.2 GMAT ... 11
6.2.3 Copernicus .. 12
6.3 Proposed Solutions and Deliverables .. 13

7.0 Assessment Summary .. 15
7.1 GMAT-MONTE Interoperability ... 15
7.1.1 Data & Component Integration ... 15
7.1.2 Mission Shadow Operations ... 18
7.2 GMAT-Copernicus Interoperability ... 20
7.3 MONTE-Copernicus Interoperability ... 24
7.3.1 Trajectory Reverse Engineering ... 26
7.3.2 NRHO/Gateway Use Case .. 28
7.3.3 Europa Clipper Moon Flybys Visualization Use Case ... 29
7.3.4 Icy Moons Multiple Shooting Use Case ... 30
7.3.5 Enceladus Orbiter Use Case.. 30
7.3.6 Flyby Use Case ... 31

8.0 Findings, Observations, and NESC Recommendations.. 32
8.1 Findings .. 32
8.2 Observations ... 32
8.3 NESC Recommendations ... 33

9.0 Alternate Technical Opinion(s) .. 34
10.0 Other Deliverables ... 34
11.0 Lessons Learned ... 34
12.0 Recommendations for NASA Standards and Specifications .. 36
13.0 Definition of Terms .. 36
14.0 Acronyms and Nomenclature ... 36
15.0 References ... 38

NESC Document #: NESC-RP-18-01313 Page #: 4 of 38

List of Figures

Figure 1. MONTE: Landing Site Statistical Hazard Avoidance ... 10
Figure 2. GMAT: Launch, through Lunar Flyby, to Lunar Capture using Solar Electric Propulsion

(SEP) ... 11
Figure 3. Copernicus: Near Rectilinear Halo Orbit (NRHO) to Distant Retrograde Orbit (DRO)

Transfer in the Earth Moon System... 13
Figure 4. SoS Integration .. 14
Figure 5. GMAT API Stack .. 16
Figure 6. Lucy GMAT-MONTE Shadow Operations Plan .. 19
Figure 7. Lucy GMAT-MONTE EGA Shadowing Results .. 20
Figure 8. Lucy GMAT-MONTE EGA Trajectory Compared to Reference MIRAGE Trajectory 20
Figure 9. Previous GMAT 3D Graphics Interface (OrbitView) ... 21
Figure 10. GMAT <=> Copernicus Shared Graphics Components .. 22
Figure 11. Copernicus OpenFrames 3D Graphics Implementation .. 23
Figure 12. GMAT OpenFrames 3D Graphics Implementation .. 23
Figure 13. Copernicus Updates for Interoperability (Fortran, Python, and C++) 24
Figure 14. MONTE-Copernicus Differences .. 25
Figure 15. Tool Interoperability Illustration ... 26
Figure 16. Multiple-Shooting Forward-Backward Propagation Scheme.. 27
Figure 17. LLO to NRHO Trajectory ... 29
Figure 18. MONTE to Copernicus Europa Clipper Visualization .. 29
Figure 19. Icy Moons QPO Visualization .. 30
Figure 20. Dynamical Sensitive Trajectory in Low-Fidelity to High-Fidelity Transfer 31
Figure 21. Europa Clipper Multiple-Flyby Architecture .. 32

List of Tables

Table 1. Assessment Deliverables ... 14

NESC Document #: NESC-RP-18-01313 Page #: 5 of 38

1.0 Notification and Authorization
The primary stakeholders for this assessment are the flight mechanics analysts, engineers, and
tool developers, as well as the chief engineers and project managers for existing and future
programs, projects, and/or tasks that involve mission analysis, navigation, trajectory
optimization, and mission operations to any destination (e.g., Earth orbit, Sun, planet, comet,
asteroid, halo orbit, Lagrange point, and distant retrograde orbits). Several key stakeholders
include Sam Schreiber, Director of the Flight Dynamics Facility (FDF) at Goddard Space Flight
Center (GSFC); Russell Carpenter, Space Science Missions Operations (SSMO) Deputy Project
Manager/Technical Lead at GSFC; and Melissa McGuire, Deep Space Gateway (DSG)
Trajectory Design Lead at Glenn Research Center.

NESC Document #: NESC-RP-18-01313 Page #: 6 of 38

2.0 Signatures
Submitted by: NESC Lead

. Heather Koehler

Significant Contributors:

Mr. Edwin Dove

Signatories declare the findings, observations, and NESC recommendations compiled in the
report are factually based on data extracted from program/project documents, contractor reports,
and open literature, and/or generated from independently conducted tests, analyses, and
inspections.

EDWIN
DOVE

Digitally signed by EDWIN
DOVE
Date: 2023.04.21
16:29:50 -04'00'

Heather
Koehler

Digitally signed by
Heather Koehler
Date: 2023.04.24
09:28:41 -05'00'

NESC Document #: NESC-RP-18-01313 Page #: 7 of 38

3.0 Team Members

Name Discipline Organization
Core Team
Heather Koehler NESC Lead MSFC
Edwin Dove Technical Lead GSFC
Daniel Murri Former NESC Lead LaRC
Michael Shoemaker Former Technical Lead GSFC
Michael Mahoney Former Technical Lead GSFC
Steve Hughes Former Technical Lead GSFC
Darrel Conway GMAT Developer GSFC/Thinking Systems
John McGreevy GMAT Developer GSFC/Emergent Space Technologies LLC
Noble Hatten GMAT Developer GSFC
John McGreevy GMAT Developer GSFC/Emergent Space Technologies LLC
Alex Campbell GMAT Developer GSFC/Emergent Space Technologies LLC
Jairus Elarbee GMAT Developer GSFC/Emergent Space Technologies LLC
Steve Cooley GMAT Developer GSFC
Ravi Mathur Copernicus Developer JSC/Emergent Space Technologies LLC
Jerry Condon Copernicus Developer JSC
Jacob Williams Copernicus Developer NASA/Jacobs Technology
Anubhav Kamath Copernicus Developer NASA/Jacobs Technology
Randy Eckman Copernicus Developer JSC
Powtawche Valerino MONTE/Copernicus Analyst MSFC
Roby Wilson MONTE Developer JPL
Ted Drain MONTE Developer JPL
Scott Evans MONTE Developer JPL
Ricardo Restrepo MONTE Analyst JPL
Consultants
Joel Parker ODTBX Lead GSFC
Business Management
Linda Moore Program Analyst LaRC/MTSO
Assessment Support
Missy J. Strickland Project Coordinator LaRC/AMA
Linda I. Burgess Planning and Control Analyst LaRC/AMA
Leanna S. Bullock Technical Editor LaRC/AMA

3.1 Acknowledgements
The team wishes to acknowledge the support received from the different flight mechanics tool
development teams and their supporting managers not represented in the Team Members table
for assisting with tool updates and allowing the team members listed to participate in the
assessment.

NESC Document #: NESC-RP-18-01313 Page #: 8 of 38

4.0 Executive Summary
Several NASA centers have developed independent flight mechanics tools to meet the science
needs of missions. This assessment sought to explore the ways to increase the interoperability of
three specific tools: Copernicus from Johnson Space Center (JSC), the General Mission Analysis
Tool (GMAT) from Goddard Spaceflight Flight Center (GSFC), and the Mission-Analysis
Operations Navigation Toolkit Environment (MONTE) from the Jet Propulsion Laboratory
(JPL). All of these tools are utilized in various spaceflight regimes and mission lifecycles
(e.g., design, analysis, operations) to generate a variety of products (e.g., maneuver planning,
orbit determination, error analysis, trade study, flight products). Each tool was built over the
years with specific goals unique to each center, which were based on the science missions they
supported, and naturally lead to variations in their capabilities. Before this assessment, these
tools were not integrated and could not easily share data, models, or components. The goal of the
assessment was to improve interoperability and component sharing of these flight mechanic tools
to increase Agency efficiency and reduce cost.

To achieve the goal of the assessment it was important to analyze a framework that could
establish a connection between the tools and allow users to leverage the strengths of each tool
based on their needs. The underlying concept that arose was one of incorporating the tools into
an enterprise System of Systems (SoS) that exposes components/functionality via interfaces like
Application Programming Interfaces (APIs) and plugins. The common technology selected to
enable the integration of data and components was the Python programming language. Efforts
associated with this assessment integrated work to leverage Python in the flight mechanics tools
as well as strengthen pre-existing development and expand it beyond its original scope.

The assessment was divided into three main high-level task development areas: 1) GMAT-
MONTE interoperability, 2) GMAT-Copernicus interoperability, and 3) MONTE-Copernicus
interoperability. Each of these tasks resulted in an improvement in the ability to
interface/integrate with additional tools (e.g., Jupyter notebooks, Orbit Determination Toolbox
(ODTBX), virtual reality (VR) headsets). These three tasks had different milestones that were
adjusted because of the COVID-19 pandemic.

This assessment achieved its goal of improving interoperability between legacy flight mechanics
tools at different NASA centers and helped pave a path forward for increased Agency-wide
collaboration. The Copernicus three-dimensional (3D) graphics technology was successfully
integrated into GMAT with advancements in that technology shared between the tools. It is
recommended that the Python interfaces that the tools used to integrate data and components
should be maintained, as well as the capability for the tools to leverage the Spacecraft Planet
Instrument “C-matrix” Events (SPICE) toolkit to ingest and export trajectories. In addition,
Copernicus, GMAT, and MONTE users should upgrade to the latest tool version to take
advantage of the features that enabled the interoperability between the tools. Lastly, changes to
the NASA software release process are recommended to enable broader distribution of source
code and these tools which will enable wider use of the new features described in this report.

NESC Document #: NESC-RP-18-01313 Page #: 9 of 38

5.0 Assessment Plan
The first objective of this assessment was to develop an enterprise SoS that exposes, via APIs,
unique capabilities available in GMAT, Copernicus, and MONTE for reuse among those tools
and for use in other tools/systems/environments. The second objective was to complete the
integration of the OpenFrames 3D graphics component, developed for Copernicus, into GMAT
and deprecate GMAT’s legacy 3D graphics component thereby eliminating some component
duplication. The third objective was for the core flight mechanic tool development teams to
document lessons learned for using NASA’s flight dynamics systems in an SoS environment,
and document policies and procedures to promote increased sharing and collaboration between
centers.

The beneficial outcome of this effort to the Agency was to reduce duplication of effort via
component reuse and sharing among NASA’s enterprise tools, reduce cost, reduce risks, increase
inter-center collaboration, and increase Agency technical capability.

Based on the objectives, the assessment work was divided into four technical tasks:
1. GMAT-MONTE interoperability development
2. GMAT-Copernicus interoperability development
3. MONTE-Copernicus interoperability development
4. Flight mechanic tool implementation lessons learned

Each task is described individually in later sections where a task overview and a summary of the
activities performed are provided. The key deliverables are presented in Table 1 for all tasks and
the SoS integration is visually represented in Figure 4 and supplemental deliverables are listed in
Section 10. Software Usage Agreements (SUA) were in place at the onset of this assessment that
allowed sharing of MONTE, GMAT, and Copernicus between the software development teams
and tool users. Additionally, no special requirements were needed for facilities or tools to
perform the work in this assessment.

The initial assessment plan was approved by the NASA Engineering and Safety Center (NESC)
Review Board (NRB) on May 17, 2018, and consisted of a detailed schedule mapping out the
work items necessary to produce the deliverables in Table 1 that are aligned with the
aforementioned technical tasks. The original period of performance for the assessment plan was
from the NRB approval date to the end of the third quarter of 2020, but due to the COVID-19
pandemic and assessment team staffing turnover the final assessment completion date was
delayed until the end of the first quarter of 2023.

6.0 Problem Description and Background
6.1 Introduction
NASA centers utilize a variety of flight mechanics tools to support projects and analysis efforts
that often are isolated to their own tool ecosystems. Despite the flight mechanics tool ecosystems
being developed independently, there are many areas where unique attributes can be leveraged to
allow for interoperability and component sharing between tools. This assessment explored the
interoperability of NASA flight mechanics tools, including Copernicus, GMAT, and MONTE.
At the onset of this assessment none of the tools were integrated or shared data, models, or
components. This assessment involved the design, implementation, testing, and deployment of
interfaces to support the interoperability of the NASA institutional flight mechanics tools and the

NESC Document #: NESC-RP-18-01313 Page #: 10 of 38

potential for interoperability beyond those tools. Copernicus, GMAT, and MONTE tools are a
subset of NASA’s enterprise systems for navigation and mission design and support more than
30 projects for design, analysis, and operations. These systems support capabilities spanning the
disciplines of orbit determination, trajectory optimization, error analysis, and operational flight
product generation. Improving the interoperability and component sharing of these tools can lead
to increased efficiency and reduce the cost of flight mechanics analyses Agencywide.

6.2 Background
6.2.1 MONTE

MONTE is a Python-based set of modules for trajectory design, navigation, and control that is
suitable for all phases of non-atmospheric spaceflight [ref. 1]. MONTE is nominally designed for
JPL’s interplanetary missions but is suitable for most Earth-orbiting and lunar missions and is
being used by other NASA centers. See Figure 1 for an example of a MONTE performance
result. MONTE is delivered in two versions: the Project Edition and the Design Edition. The
Project Edition is the full-featured version of MONTE utilized by JPL to perform trajectory
design, orbit determination, and flight-path control for deep-space missions [ref. 1]. The Design
Edition cannot perform statistical orbit determination. It can perform covariance analysis and
trajectory design required for mission studies, but the processing of measurements required for
orbit determination has been disabled [ref. 3]. The variation in the MONTE edition a user is
allowed to obtain is due to export control restrictions.

Figure 1. MONTE: Landing Site Statistical Hazard Avoidance

MONTE’s design began in 1998 as a successor to JPL’s Double Precision Trajectory and Orbit
Determination Program (DPTRAJ/ODP) navigation tool that dated to the 1960s. In 2007,
MONTE was utilized in its first operational mission and by 2012 powers all JPL navigation
services [ref. 4]. MONTE is a primarily Python-based application that runs on Linux with its

NESC Document #: NESC-RP-18-01313 Page #: 11 of 38

core code components utilizing C++. The source code for the C++ layer MONTE is not
distributed [ref. 3]. MONTE is in active development and integrates new functionality based on
stakeholder inputs.

6.1.1.1 Software Owner

MONTE is a product of the JPL Mission Design and Navigation Section with sponsorship from
NASA’s Multi-mission Ground System and Services/ Advanced Multi-Mission Operations
System (MGSS/AMMOS) Program Office. MONTE is property of the California Institute of
Technology [ref. 4].

6.1.1.2 Software Acquisition Process

MONTE can be licensed from JPL for government, academic, and commercial use. Users
interested in obtaining the MONTE tool can formally request the software via JPL’s Software
Release website (https://download.jpl.nasa.gov/ops/request/request_introduction.cfm) [ref. 3].

6.2.2 GMAT

GMAT is designed to model, optimize, and estimate spacecraft trajectories in flight regimes
ranging from low Earth orbit (LEO) to lunar applications, interplanetary trajectories, and other
deep space missions [ref. 5]. GMAT is a feature-rich system containing high-fidelity space
system models, optimization and targeting, built-in scripting and programming infrastructure,
and customizable plots, reports and data products to enable flexible analysis and solutions for
custom and unique applications. GMAT can be driven from a fully featured, interactive
Graphical User Interface (GUI), from a custom script language, or via API [ref. 6]. See Figure 2
for an example of the GMAT tool.

Figure 2. GMAT: Launch, through Lunar Flyby,

to Lunar Capture using Solar Electric Propulsion (SEP)

NESC Document #: NESC-RP-18-01313 Page #: 12 of 38

Resources can be configured to meet the needs of specific applications and missions. GMAT
contains an extensive set of available resources that can be separated into physical model
resources and analysis model resources. Physical resources include spacecraft, thruster, tank,
ground station, formation, impulsive burn, finite burn, planet, comet, asteroid, moon, barycenter,
and libration point. Analysis model resources include differential corrector, propagator,
optimizer, estimator, 3D graphics, x-y plot, report file, ephemeris file, user-defined variable,
array, and string, coordinate system, custom subroutine, MATLAB function, and data [ref. 5].

GMAT design began in 2002 with the first public production release in 2013. GMAT’s core
codebase is written in C++ and is capable of interfacing with MATLAB, Python, and Java.
GMAT is in active development and integrates new functionality based on stakeholder inputs.

6.2.2.1 Software Owner

The GSFC Navigation and Mission Design Branch and Ground Software Systems Branch work
jointly to perform project management, design, implementation, and integration testing activities.
External stakeholders contribute to design, implementation, testing, and documentation. The
GMAT team uses a collaborative development model that enables innovation and actively
involves the public and private sectors stakeholders.

6.2.2.2 Software Acquisition Process

GMAT is an open-source tool that is licensed under Apache License 2.0 and is publicly available
from https://sourceforge.net/projects/gmat/files/GMAT/.

6.2.3 Copernicus

Copernicus is a generalized spacecraft trajectory design and optimization system capable of
solving a wide range of trajectory problems (e.g. planet or moon centered trajectories, libration
point trajectories, planet-moon transfers and tours, and all types of interplanetary and
asteroid/comet missions) [ref. 7]. Copernicus is capable of using multiple spacecraft and
propulsion systems, utilizes integrated GUI and 3D graphics, includes flexible segment and
plugin architecture, and allows for selectable mission fidelity from simple to complex. It is
capable of supporting an extensive range of missions: impulsive/low high thrust, multi body,
planet centered/inter planetary, and multi body transfers/trajectories [ref. 8]. See Figure 3 for an
example of a Copernicus tool.

Copernicus started in 2001 as a Windows-only Fortran 77/90 and Compaq Visual Fortran
application. Eventually it transitioned to being cross platform and is currently utilizing Intel
Fortran 2019 and Python 3.8. Copernicus is in active development and continuously adding
improvements and modernization. New features get added to the Fortran and Python components
based on stakeholder feedback [ref. 8].

NESC Document #: NESC-RP-18-01313 Page #: 13 of 38

Figure 3. Copernicus: Near Rectilinear Halo Orbit (NRHO) to Distant Retrograde Orbit (DRO)

Transfer in the Earth Moon System

6.2.3.1 Software Owner

Copernicus started at the University of Texas at Austin in August 2001. In June 2002, a grant
from the Johnson Space Center (JSC) was used to develop the first prototype which was
completed in August 2004. In the interim, support was also received from NASA's In Space
Propulsion Program and from the GSFC Flight Dynamics Vehicle Branch. The first operational
version (v1.0) was completed in March 2006. The initial development team consisted of
Dr. Cesar Ocampo and graduate students at the University of Texas at Austin Department of
Aerospace Engineering and Engineering Mechanics. Since March 2007, primary development of
Copernicus has been at the JSC Flight Mechanics and Trajectory Design Branch [ref. 7].

6.2.3.2 Software Acquisition Process

In accordance with NASA's obligations under mandating legislation, JSC makes Copernicus
available free of charge to other NASA centers, government contractors, and universities, under
the terms of a US government purpose license [ref. 7]. Individuals eligible can download the
software from https://software.nasa.gov/software/MSC-26673-1 [ref. 9].

6.3 Proposed Solutions and Deliverables
Through the work of this assessment the MONTE, GMAT and Copernicus flight mechanics tools
from the various NASA centers were enhanced to improve tool interoperability. Over the
development history of each flight mechanics tool the science mission needs resulted in unique
features being prominent. Copernicus’ 3D graphics capabilities, MONTE’s high fidelity
dynamics modeling, and GMAT’s detailed scripting environment tied to a GUI are a sliver of the
strengths of each tool. This assessment sought to increase interoperability between the tools to
allow the NASA community to better leverage the tool that meets their needs.

NESC Document #: NESC-RP-18-01313 Page #: 14 of 38

The deliverables associated with this assessment primarily come in the form of released software
and are documented in Table 1. Each tool uses an existing SUA provided by the controlling
center’s Software Release Authority (SRA). Note that the core tools are routinely released under
existing SUAs. and each team is experienced with managing releases of their system in
alignment with NASA software release requirements. The SoS integration is visually represented
in Figure 4.

Table 1. Assessment Deliverables
Deliverable Deliverable Content Recipient/Availability
MONTE Plugin Software

Application/Executable,
Documentation, Supplemental
Scripts

Government/Contractors,
Commercial Use, Academia

Copernicus Software
Application/Executable,
Documentation

Government/Contractors,
Academia

GMAT API and plugin Software
Application/Executable,
Documentation, Source Code,
Supplemental Scripts

Open Source
(Apache 2.0 License)

OpenFrames Shared Library Software
Application/Executable,
Documentation, Source Code

Open Source
(Apache 2.0 License)

NESC Assessment Report
(NASA Technical
Memorandum (TM))

Final Report/Lessons Learned NASA projects

Figure 4. SoS Integration

NESC Document #: NESC-RP-18-01313 Page #: 15 of 38

7.0 Assessment Summary
7.1 GMAT-MONTE Interoperability
To achieve interoperability between GMAT and MONTE, as presented in Figure 4, the
interfaces between the tools needed to be examined and expanded upon, when necessary.
MONTE’s dynamics modeling capabilities was known to be a strength and GMAT’s scripting
interface paired with its GUI was a strength. While GMAT could also do high-fidelity dynamics
modeling for several orbit regimes and use cases there were some aspects where MONTE had
more capabilities (e.g., more complicated structural modeling). Based on these strengths, the
functionality desired between the tools resulted in the following tasks:

 Data integration – sharing key data between systems (e.g., ephemerides, covariance,
maneuvers)

 Component integration – integrating core components (e.g., dynamics, propagation)
between tools

 Shadow operations – showcasing the tools can work together with mission data

GMAT was originally designed to utilize a script-based method to capture inputs or a GUI that
translates user inputs into a script. This method alone hinders external applications from fully
interacting with the tool. External applications could alter script contents prior to runtime but
could not interact during runtime with the exception of exporting output to a file. As GMAT’s
development progressed, additional interfaces were included that allowed function calls to
MATLAB and Python during execution. The additional interface for function calls to robust
programming languages were a good start but this was limited to GMAT mostly fulfilling the
role of a driving application where a limited number of its activities were available to external
applications during runtime. An API was required to realize the full potential of an external
application being able to drive the various GMAT capabilities and supplement additional
features from that external application. MONTE’s interface since inception was utilizing a
Python interface and was well suited to pass information GMAT needed to support the
interoperability efforts of this assessment.

The shadow operations task would involve GMAT utilizing MONTE’s dynamics modeling that
provided increased customization of dynamics models, versus GMAT’s dynamics modeling and
performing shadow maneuvers for an in-operation mission. During the shadow operations, users
would observe how the GMAT-MONTE results compared with the primary flight mechanics’
operations tool.

7.1.1 Data & Component Integration

The GMAT API design focused on users being able to access GMAT components in a user-
friendly manner from external applications [refs. 10 and 11]. This was achieved by utilizing the
Simplified Wrapper and Interface Generator (SWIG). SWIG is an interface compiler that
connects programs written in C and C++ with scripting languages (e.g., Perl, Python, Ruby, and
Tcl). It works by taking the declarations found in C/C++ header files and using them to generate
the wrapper code that scripting languages need to access the underlying C/C++ code [ref. 12].

The initial GMAT API development utilized the following milestones:
1. User-needs survey: Identify API components that are broadly applicable to users, while

selecting two key components for exposure and use case development that demonstrate
the interface functionality.

NESC Document #: NESC-RP-18-01313 Page #: 16 of 38

2. Initial API design and core code updates: Design API interfaces, helper functions, and
style guide. Update the key GMAT architectural code interfaces to adhere to design and
style.

3. API test system development: Build test system structures and components based on the
existing GMAT test system that exercise the features exposed to users through the API.

4. Component exposure 1: Expose first set of key component(s) identified in the user-needs
survey.

5. Component exposure 2: Expose second set of key component(s) identified in the user-
needs survey.

6. Demonstration and documentation: Provide a demonstration of the ready to use API
showcasing the added functionality, supporting documentation, and stakeholder
recommendations for future updates.

Preliminary prototyping by the GMAT team used the SWIG library to expose core GMAT
functionality to Python and Java, and through those interfaces MATLAB could also be used
from/by GMAT. Feedback from users and stakeholders for these interfaces, along with the
SWIG prototyping, led to the GMAT API component stack seen in Figure 5. GMAT’s code base
classes are exposed through this interface using language-specific wrappers that allow users to
interact with the GMAT classes.

Figure 5. GMAT API Stack

Producing an API system comparable in quality to the other GMAT production-ready systems
required a rigorous set of system tests to exercise the system features. Developers leveraged the
preexistent MATLAB-based GMAT test system that runs nightly and performs thousands of
tests for the application. Test system structures and components based on the core GMAT test
system were built by the API development team to exercise the features exposed to users through
the API. This required expanding the test system to incorporate MATLAB-Python and
MATLAB-Java interfaces. Utilizing this approach of reusing pre-existing test architecture
avoided the costly expense of developing separate test harnesses for the three target languages
(i.e., MATLAB, Java, and Python). During the course of the assessment, and as additional
functionality was added to the GMAT API, new tests were added, and regression testing was
performed in the nightly builds with the other GMAT functionality.

NESC Document #: NESC-RP-18-01313 Page #: 17 of 38

The initial GMAT API development allow users to perform the following GMAT actions:
 Component access: state conversions, dynamics models, propagation, and measurement

modeling
 Scripting controls: load scripts, change settings and values, and run scripts

Some examples of GMAT API’s potential over the standard scripting functionality are:
 External application providing real-time tracking data to provide the user with real-time

GMAT-generated measurement model output to display on a user-generated website that
allow for advanced capabilities like real-time maneuver evaluation and tracking data
anomaly detection.

 External application driver providing a variety of flight mechanic tool capabilities to a
user in a larger system where GMAT is one of the many flight mechanic tools used.

 Performing a coverage analysis tool trade study by evaluating over 100 configurations.
 Performing an upper stage launch vehicle dispersions trade study utilizing a flexible

assortment of hardware configurations.
 Jupyter notebook executing a GMAT script and displaying results live to the output.

A set of helper functions were woven into the design of the GMAT API to alleviate the need of a
user to understand details of GMAT class structure implementation by encapsulating backend
calls in a simplified manner. Most users prefer a less detailed level than a class by class or object
by object interaction. The design of these helper functions came to fruition by the developers
identifying two groups of users of the GMAT API:

1. Those familiar with GMAT and want to use the API to run GMAT scripts, making API
calls to adapt their scripts along the way

2. Those that want to use capabilities provided by GMAT inside of models that they are
running in a tool like MATLAB or Python, or in a compiled application written in a
language like Java.

These API helpers are exposed through the SWIG interface layer for use by API users. The
incorporation of class and object-level helper functions for classes that are identified as “API
ready” help to address inconsistencies of user expected naming conventions to how the GMAT
base systems are labeled. A beta version of the GMAT API was included in the GMAT 2020a
public release. Feedback from this release of the GMAT API prompted additional helper
functions.

The GMAT 2020a release contained the GMAT API functionality associated with data sharing
with external applications including ephemerides, covariance, and maneuvers. In March 2022,
design work to allow GMAT to have the ability to ingest dynamics modeling to support the
shadowing effort began. The GMAT 2022a release contained additional enhancements to the
GMAT API and an external force model plugin to expose components that would enable the
ingestion of external dynamics modeling during propagation [ref. 13]. The production version of
the GMAT API without the beta designation was included in the GMAT 2022a public release.

To fulfill the task associated with integrating MONTE dynamics into GMAT for the shadow
operations, an external-force model plugin was needed. The integration of MONTE dynamics
into GMAT could not be accomplished through the API and would have required making
changes to GMAT. Instead of making an interface for this specific to GMAT-MONTE, the more
general approach of calling any force model in Python was used. The plugin route enabling
dynamics sharing between MONTE and GMAT is built on a more general-purpose

NESC Document #: NESC-RP-18-01313 Page #: 18 of 38

implementation, allowing propagation of any Python-based dynamics model in GMAT. MONTE
dynamics sharing is a specific case of a general capability, implemented in GMAT, of dynamics
sharing. MONTE’s dynamics are exposed in Python, so they can be used via this generic
channel. The GMAT 2022a release contains an alpha version of the GMAT external force model
plugin that added the necessary hooks to fulfill the SoS integration, seen in Figure 4, to share key
data and components between tools.

7.1.2 Mission Shadow Operations

The original in-operation shadowing effort to exercise the interoperability between GMAT and
MONTE was planned for 2020, but the COVID-19 pandemic hampered development schedules
and alternative plans were made. Part of the pivot made by the development teams was to switch
the mission of the in-operation shadowing to the Lucy spacecraft that launched in October 2021
[ref. 14]. The agreement for the shadowing effort was that it would be a “do no harm” activity
where none of the actions/outcomes would impact nominal spacecraft operations. The FDF
analysts, Lucy operations staff, MONTE developers, and GMAT developers worked closely for
this shadowing effort. The Deep Space Maneuvers (DSM) that target an Earth Gravity Assist
(EGA) event was selected for the shadow operations. A GMAT 2022a equivalent build was used
for the shadowing effort and MONTE version 152.

The Lucy team’s primary means of producing a spacecraft burn plan utilizes Orbit Determination
(OD) products generated from the Multiple Interferometric Ranging Analysis using GPS
Ensemble (MIRAGE) navigation tool in combination with the Evolutionary Mission Trajectory
Generator (EMTG) tool. Deep Space Network (DSN) tracking data gets fed into EMTG to
generate an initial medium-fidelity burn plan then that plan is fed back into MIRAGE to generate
the final high-fidelity burn plan that is used to perform maneuvers. The GMAT-MONTE
shadowing effort was designed to utilize the same DSN tracking data fed through MIRAGE to
generate OD products. The DSN tracking data used for primary operations is fed into MONTE
then coupled with a reference trajectory ephemeris from the primary operations medium-fidelity
EMTG solution to feed into GMAT maneuver scripts. These GMAT scripts utilize the tracking
data to establish where the spacecraft is and reference trajectory to target the maneuver along
with MONTE dynamics modeling through propagations to generate a high-fidelity burn plan.
The Lucy primary burn plan approach with the GMAT-MONTE shadowing effort is illustrated
in Figure 6.

NESC Document #: NESC-RP-18-01313 Page #: 19 of 38

Figure 6. Lucy GMAT-MONTE Shadow Operations Plan

For the shadowing effort to work, the following activities needed to be complete:
1. Set up MONTE navigation
2. Integrate GMAT with MONTE
3. Generate scripting to retarget the maneuvers
4. Utilize operations data to perform shadow operations

The FDF analysts created custom scripting on their systems to be able to process the Lucy Delta-
Differential One-Way Ranging (DDOR) data coming from DSN and transform it into a
TRK-2-34 format that can be ingested by several navigation tools. The OD configuration for
MONTE was set to be comparable with the fidelity of Lucy’s primary navigation tool.

Pre-release builds of GMAT were utilized as necessary to test the capabilities of its external
force model plugin dynamics model sharing with MONTE since the GMAT public release with
the desired features would not happen until after the Lucy maneuver that targets the first EGA.
The custom Lucy GMAT script points to a MONTE Python script to use high-fidelity modeling
of Lucy dynamics, tuned to replicate the forces imparted on the spacecraft similar to the
operations OD tool, at each propagation step. When the GMAT external-force model plugin was
using MONTE’s dynamics models, GMAT’s internal dynamics models were disabled. This
meant that GMAT scripting and visualizations were used while being taking advantage of
MONTE’s dynamics modeling strengths.

Three different Lucy EGA burn plan results were compared for this assessment:
1. Primary MIRAGE configuration utilizing six-plate spacecraft structural model
2. GMAT-MONTE configuration utilizing six-plate spacecraft structural model
3. GMAT configuration using a cannonball structural model of the spacecraft

The results of these configurations are summarized in Figure 7. DSM1 occurred on June 7, 2022,
and targeted EGA1 took place on October 16, 2022. The scripts for both tools performed
targeting for EGA1 and EGA2, which is scheduled to occur in December 2024. Figure 8 shows a
position comparison of the trajectory, in radial, in-track, cross-track, and range representations,
generated by the GMAT-MONTE shadow solution to the primary MIRAGE solution. Since the

NESC Document #: NESC-RP-18-01313 Page #: 20 of 38

targeting sequence focused on a target of the EGA events, it was noticed both solutions were
near zero difference at those points. All other times the dynamics were slightly different for each
tool. This was unavoidable due to there being slight differences in the tools no matter how
closely it was attempted to synchronize the settings between the tools. Utilizing a simplified
spacecraft cannonball model can produce close enough solutions when high accuracy is not
needed but for a highly sensitive problem more complicated structural models are needed. The
dynamics modeling needed for the DSMs are sensitive enough to necessitate the higher fidelity
structural modeling for consistent results. For the first DSM, the GMAT cannonball
configuration diverged from the MIRAGE solution, but the GMAT-MONTE configuration was
within about a 1% difference of the MIRAGE solution. These GMAT-MONTE results
successfully showcased interoperability between the tools during shadow operations is possible.
During the shadowing efforts there were several lessons learned that are presented in Section 11.

Figure 7. Lucy GMAT-MONTE EGA Shadowing Results

Figure 8. Lucy GMAT-MONTE EGA Trajectory Compared to Reference MIRAGE Trajectory

7.2 GMAT-Copernicus Interoperability
To achieve interoperability between GMAT and Copernicus, as presented in Figure 4, the
interfaces between the tools required examination and expansion, when necessary. Copernicus’
3D graphics capabilities were mature and a strength and GMAT’s scripting paired with its GUI

NESC Document #: NESC-RP-18-01313 Page #: 21 of 38

and high-fidelity modeling were a strength. Based on these strengths, the functionality desired
between the tools resulted in the task to utilize a common 3D graphics engine.

Prior to this assessment, GMAT and Copernicus used independent 3D graphics interfaces for
their respective tool’s code base. GMAT’s original 3D graphics interface (OrbitView) was not
optimized to function in tandem with the high-fidelity dynamics calculations it was performing
and any attempts to upgrade using the existent codebase would have been a prohibitive effort.
Figure 9 shows the original OrbitView 3D graphics interface. Copernicus’ 3D graphic interface
utilized OpenFrames and OpenSceneGraph for over a decade. OpenFrames is an API that
provides the ability to add interactive 3D graphics to any application and OpenSceneGraph is a
toolkit that provides cross-platform scene graph management, which is a concept that groups
objects with similar characteristics together. OpenSceneGraph is used by application developers
in fields (e.g., as visual simulation, games, VR, scientific visualization, and modelling). These
graphics components greatly reduce the burden on the developers to be as familiar with the
intricacies of writing complex 3D graphics code. OpenFrames and OpenSceneGraph were
developed over several Small Business Innovation Research (SBIR) initiatives and released to
the public under the Apache 2.0 Open Source License [refs. 15, 16, 17]. OpenFrames and
OpenSceneGraph being open source lent themselves to be great candidates to replace GMAT’s
OrbitView.

Figure 9. Previous GMAT 3D Graphics Interface (OrbitView)

GMAT being able to leverage the same 3D graphics engine as Copernicus would allow GMAT
to utilize existing robust graphics capabilities and extend the OpenFrames flight mechanics

NESC Document #: NESC-RP-18-01313 Page #: 22 of 38

graphics API for trajectory visualization. Copernicus would benefit from improvements invested
in the common graphics components by receiving the same updates that provide new
functionality. Bug fixes made to the common 3D graphics interface would benefit both tools.

Prior to this assessment, integration of the GMAT specific OpenFrames/OpenSceneGraph
graphics components was started under a SBIR effort and rated at a Technology Readiness Level
(TRL) of 6, which means some part but not all of the system was utilized in an operational
environment. This assessment allowed for the final testing and documentation to bring the
GMAT OpenFrames/OpenSceneGraph components to a TRL 9, which means the entire system
is proven through operations. This TRL 9 achievement resulted in the deprecation of GMAT’s
legacy 3D graphics (OrbitView) component by November 30, 2019. The graphics updates were
available to the public in the GMAT 2020a release in April 2020 [ref. 18].

Copernicus and GMAT are utilizing common graphics components based on OpenFrames
interface and the OpenSceneGraph library. Figure 10 depicts the shared graphics components
between Copernicus and GMAT. Even though 3D graphics components are shared between the
tools, each tool can utilize these components in different ways. Figure 11 shows Copernicus’ 3D
graphics implementation with OpenFrames, and Figure 12 shows GMAT’s 3D graphics
implementation with OpenFrames. Some examples of shared capabilities the two tools could
leverage are the hooks into the OpenFrames VR framework, lighting source features to showcase
day/night cycles of planets and eclipse shadowing, cross-platform compatibility, and multi-core
support.

Figure 10. GMAT <=> Copernicus Shared Graphics Components

NESC Document #: NESC-RP-18-01313 Page #: 23 of 38

Figure 11. Copernicus OpenFrames 3D Graphics Implementation

Figure 12. GMAT OpenFrames 3D Graphics Implementation

NESC Document #: NESC-RP-18-01313 Page #: 24 of 38

7.3 MONTE-Copernicus Interoperability
To achieve interoperability between MONTE and Copernicus, as presented in Figure 4, the
interfaces between the tools needed examination and expansion. Copernicus’ ability to display
spacecraft trajectories in 3D graphics was a strength and MONTE’s high-fidelity dynamics
modeling to obtain accurate solutions for complicated trajectories was a strength. During the
design phase of this MONTE-Copernicus effort, the functionality desired between the tools to
leverage their strength resulted in the following tasks:

 Interface development and documentation
 Tool updates for interface compliance
 Use cases leveraging interface
 Publication highlighting interface

Prior to this assessment, Copernicus versions before 4.5 used a Fortran GUI toolkit that was
highly coupled with the Fortran core code, but as the capabilities of Copernicus grew and a
desire to interface with more external applications arose a different paradigm was needed. The
paradigm shift changes that were relevant to tool interoperability in this assessment were:

 the separation of the Copernicus GUI from the core code into a shared library
 implementing a Python GUI for easier access and usability
 utilizing a Python scripting interface that leverages Fortran callbacks
 leveraging a Fortran to C++ interface that can use a shared 3D graphics capability

[refs. 8 and 19].
These changes are illustrated in Figure 13. Initially when the Copernicus Python interface was
created (CopPy) that interface could only alter existing items in the input deck (ideck) container
file Copernicus uses to store all the information for a particular mission run. CopPy could not be
used to alter missions (or individual trajectory segments) from scratch, or add new elements
(e.g., finite burns) that were not in the original file. Some workarounds existed for this interface
but to satisfy the interoperability goals of this assessment it was necessary to create RoboCopPy,
which is an object-oriented Python approach to the problem with a mapping of every option and
field available in each GUI. RoboCopPy allows construction of complete idecks by adding class
instances to various collections, allows modification of idecks, and satisfies the interoperability
goal of this assessment [ref. 19].

Figure 13. Copernicus Updates for Interoperability (Fortran, Python, and C++)

NESC Document #: NESC-RP-18-01313 Page #: 25 of 38

Once the Copernicus updates were made, the latest version of MONTE was ready to utilize the
features for the MONTE-Copernicus interoperability tasks mentioned earlier in this section. See
Figure 14 for a high-level comparison of the differences of the two tools. Some compelling
benefits of this interoperability between MONTE and Copernicus are as followed:

 MONTE’s mostly scripting tool to leverage the 3D graphics capabilities of Copernicus
 Copernicus to utilize higher-fidelity modeling

 MONTE Copernicus

Managing
Organization JPL JSC

Fidelity High Medium

Capabilities Mission Design + Navigation Mission Design

User Interface Scripting Graphical

Visualization Simple Extensive (GUI)

Optimizer COSMIC* Itself

Optimization
Structure

COSMIC timeline
(control/break points) Segments

Input/Output *.py, Boa ideck (*.py)
(*) Note, Computer Optimization System for Multiple Independent Courses (COSMIC) is a software module of MONTE.

Figure 14. MONTE-Copernicus Differences

An initial MONTE-Copernicus interoperability strategy was to establish a one-to-one mapping
of one tool’s settings to another so its generated trajectory could be transferred into the other
tool. Through initial prototyping and testing, this approach proved particularly challenging due to
the many ways each tool can be configured. Subtle differences could cause deviations (e.g., how
the tool’s codebase deals with lower-level mathematical functions, the way a GUI interprets
strings/numbers, the way a file is loaded). The permeations of differences for these scenarios
were endless so a different process was needed to transfer trajectory information between tools.

In early 2022, Trajectory Reverse Engineering was developed that allowed a user to share
trajectory information generated by one tool with another without being locked to any one tool.
Instead of focusing on the transferring of trajectory information between Copernicus and
MONTE through a meticulously detailed one-to-one mapping process this new process would
work with almost any flight mechanics’ tool. See Figure 15 for an illustration of the initial
strategy for sharing trajectory information between tools and the Trajectory Reverse Engineering
process.

NESC Document #: NESC-RP-18-01313 Page #: 26 of 38

a) using a standardized trajectory structure. b) specific tool-to-tool interphase design.

Figure 15. Tool Interoperability Illustration

7.3.1 Trajectory Reverse Engineering

The overall idea of Trajectory Reverse Engineering is to transfer the trajectory from one tool to
the next in the form of an SPK (Spacecraft and Planet Kernel) with a *.bsp extension from
SPICE, which was developed by the JPL Navigation and Ancillary Information Facility (NAIF).
NAIF has several different types of kernels on their website, but for simplicity the bsp kernel
will be referred to as an SPK. An SPK file is a container object that represents a trajectory as an
invariant structure in phase-space (6D) in the form of ephemerides, agnostic to gravitational
environments, fidelity models, or numerical representation of the system, and does not require
integration of the equations of motion. It can be thought of as a frozen image of the propagated
trajectory. From an SPK the states can be determined at predetermined time intervals or strategic
points along the trajectory (e.g., periapsis or apoapsis), maneuvers in the form of velocity
discontinuities, and natural central bodies (bodies at which the states are defined). The trajectory
can be propagated forward-in-time using the selected set of states. Due to the discrepancy
between tool models, small or large discontinuities might appear between the integrated legs,
which can be smoothed by the implementation of a multiple shooting algorithm. Some of the
existing flight mechanics tools can handle the multiple-shooting implementation automatically
(e.g. COSMIC, the trajectory design and optimization module, from MONTE), which makes the
script translation a more manageable task. For other tools (e.g., Copernicus) this implementation
requires manual attention. With the method outlined, a set of Python scripts were written to
automatically implement this process and recover the desired trajectory [ref. 20]. Utilizing the
trajectory reverse engineering process to transfer a trajectory from one tool to the next will not
result in exact matches down to the machine level (e.g., “lossless”) but the solutions are viable
based on the strategically targeted control points.

Once the SPK is generated by one tool, a careful scan over the SPK can occur to extract the
necessary information to reconstruct (reverse engineer) an orbital path by the receiving tool with
minimal or no prior knowledge of the original trajectory, hence, the reverse engineering process
name. The scanning process for this MONTE-Copernicus interoperability effort is part of a series
of Python scripts. During the scan, strategic locations for placing controls on the trajectory
(e.g., periapsis and apoapsis) with respect to a given central body can be identified. The natural
bodies to which specific trajectory segments were originally defined can be identified from the
SPK file and can be automatically included in the ephemerides model of the recovery trajectory.
During the scan process, impulse maneuvers are detected as velocity discontinuities. Additional

NESC Document #: NESC-RP-18-01313 Page #: 27 of 38

maneuvers can be added by the user to exert control over the recovery process, which is
implemented as an optimization procedure. An optional functionality added to the scanning of
the SPK was to utilize an input JavaScript Object Notation (JSON) configuration file, a human-
friendly file format, where a user can easily configure their specific problem by defining frames,
coordinate systems, parameter sets (e.g., classical orbital elements, hyperbolic, cartesian),
parameter constraints, and maneuver constraints. In this configuration file, a user can define
desired bodies to be included and dynamics and numerical models (e.g., forces, specific
optimizer, etc.). User-defined constraints are also possible, but its implementation would be tool-
dependent [ref. 20].

After the scanning process, a timeline for the trajectory to be recovered is created through a set
of control points along its path (and optionally impulsive maneuvers), where a multiple-shooting
technique is performed to combine discontinuities detected in the ephemerides. See Figure 16 for
an illustration of the multiple-shooting technique. This algorithm works by dividing the time
period over which the trajectory is to be optimized into a number of discrete intervals. These
intervals are defined by every two consecutive control points. For each interval, the algorithm
solves for the optimal control inputs that will steer the system from one end of the interval to the
other, subject to the constraints and objectives of an optimization problem [ref. 20]. Reference 20
goes into the specifics of the optimization problem used to remove the discontinuities.

Figure 16. Multiple-Shooting Forward-Backward Propagation Scheme

At this point, a tool-specific script is needed to make use of the data collected to generate a
file/input for the receiving tool to use to continue the trajectory reverse engineering process. For
this MONTE-Copernicus interoperability effort the following scenarios dealt with transferring
data from one tool to another and are expanded on in Sections 7.3.2 through 7.3.6:

1. Generic SPK to Copernicus visualization
2. Copernicus to MONTE trajectory transfer
3. MONTE to Copernicus trajectory transfer

Part of the strength of the trajectory reverse engineering process is in its applicability to any
flight mechanics’ tool. If that tool and supplemental software can do the following, then it can
utilize the trajectory reverse engineering process:

 Ingest a trajectory from an SPK
o Requires: Implementation of the SPICE toolkit

 Script to process the SPK contents and export into a format the receiving tool can ingest
 Export a trajectory to an SPK

o Requires: Implementation of the SPICE toolkit

NESC Document #: NESC-RP-18-01313 Page #: 28 of 38

o Requires: Ability to tag each trajectory in the SPK with a specific SPICE
Identification (ID)

o Optional: Adjust the step-size of the trajectory stored in the SPK to a sufficient
resolution to extract the time maneuvers occur, reduce discontinuities between
data points, capture desired perturbations, and other factors a user does not want
to lose to subsequent interpolation

During the 33rd American Astronautical Society/American Institute of Aeronautics and
Astronautics (AAS/AIAA) 2023 Conference in Austin, Texas the Trajectory Reverse
Engineering processes was presented [refs. 20 and 21]. Several inquiries were made during the
conference on how to obtain access to the scripts mentioned for the Trajectory Reverse
Engineering process, and the flight mechanics tools mentioned in this assessment. Mission and
navigation engineers from JPL expressed how this tool would eliminate their current SPK read-
in processes for support spacecraft operations and analysis. NASA’s software release process
was prohibitive when attempting a public release of the trajectory reverse engineering scripts.

For this assessment, the target machine setup for the MONTE-Copernicus interoperability work
was for a Windows machine to run Copernicus 5.2.0 and Docker to run MONTE version 149.
The custom Python scripts used for the Trajectory Reverse Engineering process are bundled
together with the delivery of this assessment final report. All of the use cases mentioned in
Sections 7.3.2 through 7.3.6 have supplemental input files that have been bundled with the
delivery of this assessment final report and mentioned in Section 10.0. In these supplemental
input files, there is a brief description of the use case, all input files needed, and the expected
results (see README.txt files). A MONTE-Copernicus interface document is also included to
assist users with machine setup to make use of the supplemental input files.

7.3.2 NRHO/Gateway Use Case

This use case represents the Copernicus to MONTE data transfer scenario of a Low Lunar Orbit
(LLO) to a NRHO trajectory (see Figure 17). The steps taken for this use case are to 1) ingest the
initial Copernicus solution, 2) identify all the relevant control points, events (e.g.,
apoapsis/periapsis), and identify maneuvers (impulsive burns), 3) Create a COSMIC timeline
and optimize (multiple-shooting) to produce a smooth continues optimized trajectory in
MONTE, and 4) Save new solution in different formats: *.bsp , *.py, *boa. The boa (Binary
Object Archive) file is the standard MONTE format to save a trajectory, and contains ephemeris,
trajectory path, dynamical models and partials, and is the final product for Navigation analysis.

NESC Document #: NESC-RP-18-01313 Page #: 29 of 38

Figure 17. LLO to NRHO Trajectory

7.3.3 Europa Clipper Moon Flybys Visualization Use Case

This use case represents the SPK to Copernicus data transfer scenario where trajectories
developed in MONTE or any other tool, are visualized in Copernicus. The Python script used to
generate trajectory visualizations in Copernicus from SPK kernels is called bsp2visualCop.py.
The script follows the trajectory recovery process outlined in Section 7.3.2. Here, the trajectory
contained in the SPK kernel is loaded into Copernicus as an ephemeris file and a segment
attached to it as a “static point trajectory” is used for visualization purposes (i.e., no optimization
is applied). The Python function requires as input the SPK kernel (.bsp) file. Optional argument
inputs (e.g., the spacecraft ID, the central body, the frame) to visualize the trajectory are
possible. For more complex trajectory visualizations, an optional JSON input file can be passed
to the function call to generate a tailored output (e.g., specific frames, central body, number of
segments, colors, etc). The steps taken for this use case are to 1) ingest the MONTE generated
SPK, 2) update the supplement JSON config to setup visualization (optional), 3) scan the file an
generate ideck, and 4) ingest the ideck file and visualize the trajectory as desired. Figure 18 a
shows a Europa Clipper trajectory, where the mission phases are color coded.

Figure 18. MONTE to Copernicus Europa Clipper Visualization

NESC Document #: NESC-RP-18-01313 Page #: 30 of 38

The steps highlighted in this use case should work with any application that can generate a SPK
file and is not limited to the Europa Clipper trajectory displayed in Figure 18.

7.3.4 Icy Moons Multiple Shooting Use Case

This use case represents the Copernicus to MONTE data transfer scenario of an Icy moons
Quasi-Periodic Orbits (QPO). In particular, a QPO around Enceladus is considered (See Figure
19). The QPOs often exist in low-fidelity CR3BP solutions created in Copernicus but breakdown
when transferred to high-fidelity dynamics modeling in MONTE. The script used to perform the
transcription is called bsp2cosmic.py. The steps taken for this use case are to 1) Design the QPO
in Copernicus and export the trajectory to SPK, 2) convert the trajectory into a COSMIC timeline
(MONTE trajectory), 3) discretize the ballistic trajectory into N number of segments, and
4) utilize MONTE to perform multiple-shooting method techniques, as seen in Figure 16, to
reconverge on a solution that is along the phase space of the original low-fidelity frozen
trajectory but implemented with the new dynamics.

Figure 19. Icy Moons QPO Visualization

7.3.5 Enceladus Orbiter Use Case

This use case represents the Copernicus to MONTE data transfer scenario of a trajectory with
complex mission phases (e.g., Moon tour, capture, mapping orbit) that tends to break down with
high-fidelity modeling. The steps taken for this use case are to 1) Design the initial solution with
low-fidelity modeling in Copernicus for a phase of the trajectory and export that trajectory to an
SPK, 2) identify all the relevant control points (e.g., maneuvers) and events (e.g., apoapsis/
periapsis), 3) convert the trajectory into a MONTE file, 4) utilize MONTE to perform multiple
shooting method techniques, as seen in Figure 16, to reconverge on a solution that is along the
phase space of the original low-fidelity trajectory, and 5) repeat the process to the desired final
solution for the entire trajectory. The final solution showcases a way of incorporating high-
fidelity dynamics early in the design process, coupled with Copernicus’ intuitive GUI, as
iterations between Copernicus and MONTE are performed. Figure 20 depicts a trajectory that is
dynamically sensitive to being transferred from low- to high-fidelity modeling.

NESC Document #: NESC-RP-18-01313 Page #: 31 of 38

Figure 20. Dynamical Sensitive Trajectory in Low-Fidelity to High-Fidelity Transfer

7.3.6 Flyby Use Case

This use case represents the MONTE to Copernicus data transfer scenario of a Europa Clipper
flyby trajectory design. Figure 21 depicts the Europa Clipper multiple-flyby architecture. The
script used is bsp2cop.py. The steps taken for this use case are to 1) Design the trajectory in
MONTE and export to an SPK, 2) identify all the relevant control points (e.g., maneuvers) and
events (e.g., apoapsis/periapsis), 3) convert the trajectory into a Copernicus file, and 4) utilize
Copernicus’ GUI to adjust the segments and/or constraints/functions. To generate an ideck from
an SPK kernel, a similar process to the one implemented for bsp2cosmic.py is performed, but the
multiple-shooting strategy is manually set up on the Python script by creating segments that are
propagated forward and backward in time while imposing continuity true state constraints.

NESC Document #: NESC-RP-18-01313 Page #: 32 of 38

a) Segment structure implemented in Copernicus. b) Converged trajectory.

Figure 21. Europa Clipper Multiple-Flyby Architecture

8.0 Findings, Observations, and NESC Recommendations
8.1 Findings
The following findings were identified:

F-1. The Copernicus, GMAT, and MONTE software release processes are different based on
the NASA center the development team is associated with and each flight mechanics tool
has its own restrictions on who can obtain the software and associated source code.
Source code for the Copernicus and MONTE core system could not be distributed to the
assessment team members that were not part of the tool’s development team.

F-2. GMAT 2022a’s generalized implementation of the external force model plug-in allowed
for more tools to make use of it but significant computational performance improvements
could be made for a specialized MONTE implementation where less files could be
exchanged per integration step (e.g., boa).

8.2 Observations
The following observations were identified:

O-1. Flight mechanics tools incorporating SPK functionality would enable tool interoperability
when paired with the Trajectory Reverse Engineering process.

O-2. The supplemental Python scripts to support the MONTE-Copernicus use cases are not
accessible to users outside of the NESC Board.

O-3. MONTE, GMAT, and Copernicus interoperability features mentioned in this assessment
require a functional interface with Python.

O-4. The following are specific versions of software that enabled the flight mechanic tools
interoperability functionality mentioned in this assessment:

NESC Document #: NESC-RP-18-01313 Page #: 33 of 38

 Starting with Copernicus 5.0 and the inclusion of the RoboCopPy Python interface,
Copernicus and MONTE were able to exchange needed data to support the identified
use cases.

 The GMAT 2022a public release contains the external force model plugin (i.e., alpha)
that enables the ability for GMAT to make use of MONTE dynamics.,

 The GMAT 2022a public release contains the GMAT API functionality to allow
external tools to make use of components in environments external to GMAT’s native
interfaces.

 Starting with the GMAT 2020a release, this tool uses the same 3D graphics
technology as Copernicus (i.e., OpenFrames/OpenSceneGraph) where both tools
benefit from updates and bug fixes.

 MONTE version 149 was utilized in the generation of data for the MONTE-
Copernicus use cases that make use of the Trajectory Reverse Engineering process.

 MONTE version 152 and a GMAT 2022a equivalent build was utilized in the Lucy
spacecraft EGA shadow operations MONTE-GMAT interoperability effort.

 Copernicus version 5.0.0 decoupling the GUI from the base Fortran code and
switching the GUI to be in Python allowed the GUI source code to be released
allowing the user community to independently modify or replace the GUI.

8.3 NESC Recommendations
The following NESC recommendations were identified and directed towards the Copernicus,
GMAT, and MONTE development teams to maintain interoperability between flight mechanics
tools:

R-1. Maintain the SPICE toolkit functionality to export trajectories to an SPK and apply
SPICE ID tags into flight mechanics tools for future Copernicus, GMAT, and MONTE
software releases. (O-1)

R-2. Maintain the Python interface functionality to pass data through to another flight
mechanics tool for future Copernicus, GMAT, and MONTE software releases. (O-3)

R-3. Distribute the interoperability functionality mentioned in this assessment as part of the
Copernicus, GMAT, and MONTE software releases. (O-1, O-2, O-3)

R-4. Provide institutional funding to Copernicus, GMAT, and MONTE development teams for
on-going maintenance of the interoperability functionality mentioned in this assessment.
(O-3)

The following NESC recommendations were identified and directed towards the Copernicus
users seeking to improve interoperability between flight mechanics tools:

R-5. Upgrade to Copernicus 5.0.0 or later version [ref. 23] to make use of the features
described in this assessment. (O-2, O-3)

The following NESC recommendations were identified and directed towards the GMAT users
seeking to improve interoperability between flight mechanics tools:

R-6. Upgrade to GMAT 2022a to make use of the features described in this assessment.
(O-1, O-3, O-4)

NESC Document #: NESC-RP-18-01313 Page #: 34 of 38

The following NESC recommendations were identified and directed towards the MONTE
development team seeking to improve interoperability between flight mechanics tools:

R-7. Bundle the trajectory reverse engineering python scripts and associated data in future
MONTE software releases and maintain the scripts with each subsequent release. (O-2)

The following NESC recommendations were identified and directed towards NASA STMD
which governs NPR 2210, to improve interoperability between flight mechanics tools:

R-8. Update NASA software release policies (e.g., SUAs, NPR 2210.1) to make the
distribution of flight mechanics software executables, source code, and supplemental
files/documentation between NASA centers easier and consistent to boost collaboration.
(F-1, O-2)

R-9. Release the source code of MONTE and Copernicus to the NASA community. (F-1)

9.0 Alternate Technical Opinion(s)
No alternate technical opinions were identified during the course of this assessment.

10.0 Other Deliverables
The following artifacts were included with this assessment upon delivery to the NESC Board in
addition to the deliverables listed in Table 1:

 GMAT API user needs survey feedback
 2020 Flight Mechanics TDT Face-to-Face presentation on GMAT R2020 API
 LUCY EGA Shadow Operations Presentation and scripts
 MONTE-Copernicus Trajectory Reverse Engineering Interface Document
 MONTE-Copernicus Trajectory Reverse Engineering scripts and use case examples
 Copernicus, GMAT, and MONTE user documentation

11.0 Lessons Learned
Under this task, the Copernicus, MONTE, and GMAT development teams collected, and
documented lessons learned on the efforts to utilize the software in an SoS environment.
Additionally, the teams documented policies and procedures that promoted increased software
sharing and collaboration between centers.

Sharing Interfaces
 Python served as a medium to transfer data and component information between flight

mechanics tools. This common bridge between the different tools greatly enabled the
work presented in this report.

 Updates made to Copernicus in 2018 to 2019 via the OpenFrames interface were
mutually beneficial to GMAT in the following ways: support for advanced user interfaces
embedded in the 3D scene, realistic lighting on celestial bodies and spacecraft, hyper-
realistic celestial body models that increase resolution as the viewer approaches the
surface, sensor visualization, and viewing a scene in consumer-grade VR hardware
(e.g., Oculus Rift or HTC1 Vive).

NESC Document #: NESC-RP-18-01313 Page #: 35 of 38

Flight Mechanics Tool 1-to-1 Mission Sequence Matching
 In theory, the concept of aligning all settings between two flight mechanics tools for a

spacecraft mission sequence of events to produce the same results seems viable but in
practice there are numerous areas that cause slight differences or require different
implementations to ensure the output matches. It is not so much that the two tools could
not be tweaked here and there to better match one another, but rather the number of
resources needed to do this synchronization would be non-trivial and not easily
generalized especially as the mission sequence increases in complexity.

GMAT API Development
 The initial API design provided lessons about how to proceed with a publicly available

API for the GMAT code base. Users of the SWIG interfaces as they existed in the initial
implementation found that the component settings and interdependencies for objects in
the GMAT code are not always obvious, and that there is a fair amount of detailed
configuration needed in order to access GMAT features. Once the user survey was
distributed, the API development team collected the lessons learned from the initial
implementation and added more functionality to increase accessibility to GMAT features.

GMAT External-Force Model Plugin
 Lucy Ops Staff: Several of the function and parameter names were confusing or unclear

when using the external force model plugin. Two alternatives were suggested, which both
sides agreed would improve readability and ease of use. These changes are:

o Change ExcludeOtherForces to ExcludeGmatForces
o Change GetForces to GetAcceleration

 Lucy Ops Staff: Include more input options.
o At each integration step MONTE must pass in a boa. Loading this is a slow

process and is understood to be one of the main factors hindering the performance
for the MONTE-GMAT integration. The Lucy team asked to be able to pass the
boa in once and have GMAT store the information to save computation time. This
specific request to include capabilities in GMAT to specifically ingest boa files is
unlikely to be met, since GMAT source code is release open source, while
MONTE is under ITAR.

 Dev Team: Support other derivative types beyond cartesian state.
o The plugin currently only supports derivatives of the cartesian state. This covers

the majority of use cases and was the only type needed by the Lucy team, so it
was the first to be implemented. Orbit matrix and orbit state transitions matrix are
both supported by GMAT but still need to be implemented for the external force
model.

 Dev Team: Implement support for Torque modeling.
o GMAT force models use a function called GetTorquesForSpacecraft() to calculate

the torques generated by the model on the object. Torques were not required for
the Lucy demonstration, so it is not currently supported by the external force
model. Adding this capability is necessary for the forces in the plugin to have the
same capabilities as the GMAT internal force models and bring the feature out of
alpha.

 Dev Team: Replace custom array math code with a Python package (e.g., NumPy).

NESC Document #: NESC-RP-18-01313 Page #: 36 of 38

o Initial attempts were made to utilize some Python packages (e.g., NumPy) for
array math and other common math functions but there were issues with the
package import. In the interest of time, custom scripting was utilized for some
math functions. The custom code should be replaced by well vetted Python
packages that can perform array math calculations. Importation of packages and
libraries is a core part of Python, which users expect to have fully functional.
Elevating the external force model plug-in out of alpha involves the inclusion of
the fully functional capability to import packages.

 Dev Team: Create ability to set location of the force models Python script.
o Currently the Python script must be in the “gmat/userfunctions/python” folder.

This should be changed to bring the feature more in line with other GMAT
capabilities which are location agnostic.

 Dev Team: Clean-up warning messages.
o When running the plugin, GMAT records two warning messages to the log and

message window. These messages do not contain relevant information and should
be resolved/removed to not confuse the user.

12.0 Recommendations for NASA Standards and Specifications
No recommendations for NASA standards and/or specifications were identified as a result of this

assessment.

13.0 Definition of Terms
Finding A relevant factual conclusion and/or issue that is within the assessment

scope and that the team has rigorously based on data from their
independent analyses, tests, inspections, and/or reviews of technical
documentation.

Lessons Learned Knowledge, understanding, or conclusive insight gained by experience that
may benefit other current or future NASA programs and projects. The
experience may be positive, as in a successful test or mission, or negative,
as in a mishap or failure.

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the
assessment scope, but could generate a separate issue or concern if not
addressed. Alternatively, an observation can be a positive
acknowledgement of a Center/Program/Project/Organization’s operational
structure, tools, and/or support provided.

Recommendation A proposed measurable stakeholder action directly supported by specific
Finding(s) and/or Observation(s) that will correct or mitigate an identified
issue or risk.

14.0 Acronyms and Nomenclature
2D Two-dimensional
3D Three-dimensional
6D Six-dimensional
AAS American Astronautical Society

NESC Document #: NESC-RP-18-01313 Page #: 37 of 38

AIAA American Institute of Aeronautics and Astronautics
API Application Programming Interface
boa Binary Object Archive
Copy Copernicus Python
COSMIC Computer Optimization System for Multiple Independent Courses
CR3BP Circular Restricted Three Body Problem
DDOR Delta-Differential One-Way Ranging
DSG Deep Space Gateway
DPTRAJ/ODP Double Precision Trajectory and Orbit Determination Program
DRO Distant Retrograde Orbit
DSM Deep Space Maneuver
DSN Deep Space Network
EGA Earth Gravity Assist
EM-1 Exploration Mission 1
EMTG Evolutionary Mission Trajectory Generator
FDF Flight Dynamics Facility
GMAT General Mission Analysis Tool
GSFC Goddard Space Flight Center
GUI Graphical User Interface
hi-fi High Fidelity
ID Identification
ideck Input Deck
JPL Jet Propulsion Laboratory
JSC Johnson Space Center
JSON JavaScript Object Notation
LaRC Langley Research Center
LEO Low Earth Orbit
LLO Low Lunar Orbit
MGSS/AMMOS Multi-mission Ground System and Services/ Advanced Multi-Mission

Operations System
MIRAGE Multiple Interferometric Ranging Analysis using GPS Ensemble
MONTE Mission-Analysis Operations Navigation Toolkit Environment
NAIF Navigation and Ancillary Information Facility
NESC NASA Engineering and Safety Center
NRB NESC Review Board
NRHO Near Rectilinear Halo Orbit
OD Orbit Determination
ODTBX Orbit Determination Toolbox
QPO Quasi-Periodic Orbits
SBIR Small Business Innovation Research
SEP Solar Electric Propulsion
SoS System of Systems
SPICE Spacecraft Planet Instrument “C-matrix” Events
SPK Spacecraft and Planetary Kernel
SRA Software Release Authority
SSMO Space Science Missions Operations

NESC Document #: NESC-RP-18-01313 Page #: 38 of 38

SUA Software Usage Agreement
SWIG Simplified Wrapper and Interface Generator
TDT Technical Discipline Team
TM Technical Memorandum
TRL Technology Readiness Level
VR Virtual Reality

15.0 References
1. MONTE: the next generation of mission design and navigation software

https://trs.jpl.nasa.gov/handle/2014/46063
2. MONTE python for deep space navigation https://trs.jpl.nasa.gov/handle/2014/46155
3. MONTE distribution overview document
4. MONTE brochure https://montepy.jpl.nasa.gov/static/document/brochure.pdf
5. GMAT overview https://gmat.atlassian.net/wiki/spaces/GW/overview
6. GMAT User’s Guide https://gmat.sourceforge.net/docs/R2022a/html/index.html
7. Copernicus Overview https://www.nasa.gov/centers/johnson/copernicus/index.html
8. Copernicus Spacecraft Trajectory Design and Optimization Program, FortranCon 2020

https://ntrs.nasa.gov/citations/20205003826
9. Copernicus Software Request https://software.nasa.gov/software/MSC-26673-1
10. GMAT API Users Guide https://sourceforge.net/p/gmat/git/ci/GMAT-

R2022a/tree/application/docs/GMAT_API_UsersGuide.pdf
11. GMAT Download https://sourceforge.net/projects/gmat/files/GMAT/\
12. What is SWIG? https://www.swig.org/exec.html
13. GMAT Release Notes

https://gmat.sourceforge.net/docs/R2022a/help.html#ReleaseNotesR2022a
14. LUCY Shadow Maneuver Planning and Navigation Operations presentation on October 25,

2022
15. OpenFrames API repository https://github.com/ravidavi/OpenFrames
16. OpenSceneGraph Website http://www.openscenegraph.com/
17. OpenFramesInterface Wiki

https://gitlab.com/EmergentSpaceTechnologies/OpenFramesInterface/-/wikis/home
18. GMAT API Presentation to the April 2020 Flight Mechanics TDT Face-to-Face
19. NESC-RP-15-01097 “Improvements to the Copernicus Trajectory Design and

Optimization System for Complex Space Trajectories” November 15, 2018, Daniel G.
Murri, et. Al

20. AAS 23-312 “Trajectory Reverse Engineering: A General Strategy for Transferring
Trajectories Between Flight Mechanics Tools” January 2023 Ricardo L. Restrepo

21. 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, Texas, January 15-19, 2023,
https://www.space-flight.org/docs/2023_winter/2023_winter.html

22. AAS 20-580 “Using the GMAT Application Programmer’s Interface” August 2020 Darrel
J. Conway, John McGreevy

23. Copernicus 5.0.0 Release Notes

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

04/27/2023 Technical Memorandum

Flight Mechanics Analysis Tools Interoperability and Component Sharing

Koehler, Heather; Dove, Edwin

NASA Langley Research Center
Hampton, VA 23681-2199 NESC-RP-18-01313

National Aeronautics and Space Administration
Washington, DC 20546-0001

869021.01.23.01.01

NASA

NASA/TM-20230006507

Unclassified - Unlimited
Subject Category Space Transportation and Safety
Availability: NASA STI Program (757) 864-9658

Several NASA centers have developed independent flight mechanics tools to meet the science needs of missions. This
NASA Engineering and Safety Center (NESC) assessment sought to explore the ways to increase the interoperability of
three specific tools: Copernicus from Johnson Space Center (JSC), the General Mission Analysis Tool (GMAT) from
Goddard Spaceflight Flight Center (GSFC), and the Mission-Analysis Operations Navigation Toolkit Environment (MONTE)
from the Jet Propulsion Laboratory (JPL). Before this assessment, these tools were not integrated and could not easily
share data, models, or components. This report contains the outcome of the NESC assessment.

General Mission Analysis Tool; NASA Engineering and Safety Center; Mission-Analysis Operations Navigation Toolkit
Environment; Copernicus; Flight Mechanics Analysis Tools

U U U UU 43

STI Help Desk (email: help@sti.nasa.gov)

(443) 757-5802

