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4.0 Executive Summary 
Several NASA centers have developed independent flight mechanics tools to meet the science 
needs of missions. This assessment sought to explore the ways to increase the interoperability of 
three specific tools: Copernicus from Johnson Space Center (JSC), the General Mission Analysis 
Tool (GMAT) from Goddard Spaceflight Flight Center (GSFC), and the Mission-Analysis 
Operations Navigation Toolkit Environment (MONTE) from the Jet Propulsion Laboratory 
(JPL). All of these tools are utilized in various spaceflight regimes and mission lifecycles  
(e.g., design, analysis, operations) to generate a variety of products (e.g., maneuver planning, 
orbit determination, error analysis, trade study, flight products). Each tool was built over the 
years with specific goals unique to each center, which were based on the science missions they 
supported, and naturally lead to variations in their capabilities. Before this assessment, these 
tools were not integrated and could not easily share data, models, or components. The goal of the 
assessment was to improve interoperability and component sharing of these flight mechanic tools 
to increase Agency efficiency and reduce cost. 

To achieve the goal of the assessment it was important to analyze a framework that could 
establish a connection between the tools and allow users to leverage the strengths of each tool 
based on their needs. The underlying concept that arose was one of incorporating the tools into 
an enterprise System of Systems (SoS) that exposes components/functionality via interfaces like 
Application Programming Interfaces (APIs) and plugins. The common technology selected to 
enable the integration of data and components was the Python programming language. Efforts 
associated with this assessment integrated work to leverage Python in the flight mechanics tools 
as well as strengthen pre-existing development and expand it beyond its original scope. 

The assessment was divided into three main high-level task development areas: 1) GMAT-
MONTE interoperability, 2) GMAT-Copernicus interoperability, and 3) MONTE-Copernicus 
interoperability. Each of these tasks resulted in an improvement in the ability to 
interface/integrate with additional tools (e.g., Jupyter notebooks, Orbit Determination Toolbox 
(ODTBX), virtual reality (VR) headsets). These three tasks had different milestones that were 
adjusted because of the COVID-19 pandemic.  

This assessment achieved its goal of improving interoperability between legacy flight mechanics 
tools at different NASA centers and helped pave a path forward for increased Agency-wide 
collaboration. The Copernicus three-dimensional (3D) graphics technology was successfully 
integrated into GMAT with advancements in that technology shared between the tools. It is 
recommended that the Python interfaces that the tools used to integrate data and components 
should be maintained, as well as the capability for the tools to leverage the Spacecraft Planet 
Instrument “C-matrix” Events (SPICE) toolkit to ingest and export trajectories. In addition, 
Copernicus, GMAT, and MONTE users should upgrade to the latest tool version to take 
advantage of the features that enabled the interoperability between the tools. Lastly, changes to 
the NASA software release process are recommended to enable broader distribution of source 
code and these tools which will enable wider use of the new features described in this report. 
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5.0 Assessment Plan 
The first objective of this assessment was to develop an enterprise SoS that exposes, via APIs, 
unique capabilities available in GMAT, Copernicus, and MONTE for reuse among those tools 
and for use in other tools/systems/environments. The second objective was to complete the 
integration of the OpenFrames 3D graphics component, developed for Copernicus, into GMAT 
and deprecate GMAT’s legacy 3D graphics component thereby eliminating some component 
duplication. The third objective was for the core flight mechanic tool development teams to 
document lessons learned for using NASA’s flight dynamics systems in an SoS environment, 
and document policies and procedures to promote increased sharing and collaboration between 
centers. 

The beneficial outcome of this effort to the Agency was to reduce duplication of effort via 
component reuse and sharing among NASA’s enterprise tools, reduce cost, reduce risks, increase 
inter-center collaboration, and increase Agency technical capability. 

Based on the objectives, the assessment work was divided into four technical tasks: 
1. GMAT-MONTE interoperability development
2. GMAT-Copernicus interoperability development
3. MONTE-Copernicus interoperability development
4. Flight mechanic tool implementation lessons learned

Each task is described individually in later sections where a task overview and a summary of the 
activities performed are provided. The key deliverables are presented in Table 1 for all tasks and 
the SoS integration is visually represented in Figure 4 and supplemental deliverables are listed in 
Section 10. Software Usage Agreements (SUA) were in place at the onset of this assessment that 
allowed sharing of MONTE, GMAT, and Copernicus between the software development teams 
and tool users. Additionally, no special requirements were needed for facilities or tools to 
perform the work in this assessment. 

The initial assessment plan was approved by the NASA Engineering and Safety Center (NESC) 
Review Board (NRB) on May 17, 2018, and consisted of a detailed schedule mapping out the 
work items necessary to produce the deliverables in Table 1 that are aligned with the 
aforementioned technical tasks. The original period of performance for the assessment plan was 
from the NRB approval date to the end of the third quarter of 2020, but due to the COVID-19 
pandemic and assessment team staffing turnover the final assessment completion date was 
delayed until the end of the first quarter of 2023. 

6.0 Problem Description and Background 
6.1 Introduction 
NASA centers utilize a variety of flight mechanics tools to support projects and analysis efforts 
that often are isolated to their own tool ecosystems. Despite the flight mechanics tool ecosystems 
being developed independently, there are many areas where unique attributes can be leveraged to 
allow for interoperability and component sharing between tools. This assessment explored the 
interoperability of NASA flight mechanics tools, including Copernicus, GMAT, and MONTE. 
At the onset of this assessment none of the tools were integrated or shared data, models, or 
components. This assessment involved the design, implementation, testing, and deployment of 
interfaces to support the interoperability of the NASA institutional flight mechanics tools and the 
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potential for interoperability beyond those tools. Copernicus, GMAT, and MONTE tools are a 
subset of NASA’s enterprise systems for navigation and mission design and support more than 
30 projects for design, analysis, and operations. These systems support capabilities spanning the 
disciplines of orbit determination, trajectory optimization, error analysis, and operational flight 
product generation. Improving the interoperability and component sharing of these tools can lead 
to increased efficiency and reduce the cost of flight mechanics analyses Agencywide. 

6.2 Background 
6.2.1 MONTE 

MONTE is a Python-based set of modules for trajectory design, navigation, and control that is 
suitable for all phases of non-atmospheric spaceflight [ref. 1]. MONTE is nominally designed for 
JPL’s interplanetary missions but is suitable for most Earth-orbiting and lunar missions and is 
being used by other NASA centers. See Figure 1 for an example of a MONTE performance 
result. MONTE is delivered in two versions: the Project Edition and the Design Edition. The 
Project Edition is the full-featured version of MONTE utilized by JPL to perform trajectory 
design, orbit determination, and flight-path control for deep-space missions [ref. 1]. The Design 
Edition cannot perform statistical orbit determination. It can perform covariance analysis and 
trajectory design required for mission studies, but the processing of measurements required for 
orbit determination has been disabled [ref. 3]. The variation in the MONTE edition a user is 
allowed to obtain is due to export control restrictions.   

Figure 1. MONTE: Landing Site Statistical Hazard Avoidance 

MONTE’s design began in 1998 as a successor to JPL’s Double Precision Trajectory and Orbit 
Determination Program (DPTRAJ/ODP) navigation tool that dated to the 1960s. In 2007, 
MONTE was utilized in its first operational mission and by 2012 powers all JPL navigation 
services [ref. 4]. MONTE is a primarily Python-based application that runs on Linux with its 
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core code components utilizing C++. The source code for the C++ layer MONTE is not 
distributed [ref. 3]. MONTE is in active development and integrates new functionality based on 
stakeholder inputs.

6.1.1.1 Software Owner 

MONTE is a product of the JPL Mission Design and Navigation Section with sponsorship from 
NASA’s Multi-mission Ground System and Services/ Advanced Multi-Mission Operations 
System (MGSS/AMMOS) Program Office. MONTE is property of the California Institute of 
Technology [ref. 4]. 

6.1.1.2 Software Acquisition Process 

MONTE can be licensed from JPL for government, academic, and commercial use. Users 
interested in obtaining the MONTE tool can formally request the software via JPL’s Software 
Release website (https://download.jpl.nasa.gov/ops/request/request_introduction.cfm) [ref. 3].  

6.2.2 GMAT  

GMAT is designed to model, optimize, and estimate spacecraft trajectories in flight regimes 
ranging from low Earth orbit (LEO) to lunar applications, interplanetary trajectories, and other 
deep space missions [ref. 5]. GMAT is a feature-rich system containing high-fidelity space 
system models, optimization and targeting, built-in scripting and programming infrastructure, 
and customizable plots, reports and data products to enable flexible analysis and solutions for 
custom and unique applications. GMAT can be driven from a fully featured, interactive 
Graphical User Interface (GUI), from a custom script language, or via API [ref. 6]. See Figure 2 
for an example of the GMAT tool.  

 
Figure 2. GMAT: Launch, through Lunar Flyby,  

to Lunar Capture using Solar Electric Propulsion (SEP) 
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Resources can be configured to meet the needs of specific applications and missions. GMAT 
contains an extensive set of available resources that can be separated into physical model 
resources and analysis model resources. Physical resources include spacecraft, thruster, tank, 
ground station, formation, impulsive burn, finite burn, planet, comet, asteroid, moon, barycenter, 
and libration point. Analysis model resources include differential corrector, propagator, 
optimizer, estimator, 3D graphics, x-y plot, report file, ephemeris file, user-defined variable, 
array, and string, coordinate system, custom subroutine, MATLAB function, and data [ref. 5].  

GMAT design began in 2002 with the first public production release in 2013. GMAT’s core 
codebase is written in C++ and is capable of interfacing with MATLAB, Python, and Java. 
GMAT is in active development and integrates new functionality based on stakeholder inputs. 

6.2.2.1 Software Owner 

The GSFC Navigation and Mission Design Branch and Ground Software Systems Branch work 
jointly to perform project management, design, implementation, and integration testing activities. 
External stakeholders contribute to design, implementation, testing, and documentation. The 
GMAT team uses a collaborative development model that enables innovation and actively 
involves the public and private sectors stakeholders. 

6.2.2.2 Software Acquisition Process 

GMAT is an open-source tool that is licensed under Apache License 2.0 and is publicly available 
from https://sourceforge.net/projects/gmat/files/GMAT/.  

6.2.3 Copernicus 

Copernicus is a generalized spacecraft trajectory design and optimization system capable of 
solving a wide range of trajectory problems (e.g. planet or moon centered trajectories, libration 
point trajectories, planet-moon transfers and tours, and all types of interplanetary and 
asteroid/comet missions) [ref. 7]. Copernicus is capable of using multiple spacecraft and 
propulsion systems, utilizes integrated GUI and 3D graphics, includes flexible segment and 
plugin architecture, and allows for selectable mission fidelity from simple to complex. It is 
capable of supporting an extensive range of missions: impulsive/low high thrust, multi body, 
planet centered/inter planetary, and multi body transfers/trajectories [ref. 8]. See Figure 3 for an 
example of a Copernicus tool. 

Copernicus started in 2001 as a Windows-only Fortran 77/90 and Compaq Visual Fortran 
application. Eventually it transitioned to being cross platform and is currently utilizing Intel 
Fortran 2019 and Python 3.8. Copernicus is in active development and continuously adding 
improvements and modernization. New features get added to the Fortran and Python components 
based on stakeholder feedback [ref. 8].  
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Figure 3. Copernicus: Near Rectilinear Halo Orbit (NRHO) to Distant Retrograde Orbit (DRO) 

Transfer in the Earth Moon System 

6.2.3.1 Software Owner 

Copernicus started at the University of Texas at Austin in August 2001. In June 2002, a grant 
from the Johnson Space Center (JSC) was used to develop the first prototype which was 
completed in August 2004. In the interim, support was also received from NASA's In Space 
Propulsion Program and from the GSFC Flight Dynamics Vehicle Branch. The first operational 
version (v1.0) was completed in March 2006. The initial development team consisted of  
Dr. Cesar Ocampo and graduate students at the University of Texas at Austin Department of 
Aerospace Engineering and Engineering Mechanics. Since March 2007, primary development of 
Copernicus has been at the JSC Flight Mechanics and Trajectory Design Branch [ref. 7].  

6.2.3.2 Software Acquisition Process 

In accordance with NASA's obligations under mandating legislation, JSC makes Copernicus 
available free of charge to other NASA centers, government contractors, and universities, under 
the terms of a US government purpose license [ref. 7]. Individuals eligible can download the 
software from https://software.nasa.gov/software/MSC-26673-1 [ref. 9].  

6.3 Proposed Solutions and Deliverables 
Through the work of this assessment the MONTE, GMAT and Copernicus flight mechanics tools 
from the various NASA centers were enhanced to improve tool interoperability. Over the 
development history of each flight mechanics tool the science mission needs resulted in unique 
features being prominent. Copernicus’ 3D graphics capabilities, MONTE’s high fidelity 
dynamics modeling, and GMAT’s detailed scripting environment tied to a GUI are a sliver of the 
strengths of each tool. This assessment sought to increase interoperability between the tools to 
allow the NASA community to better leverage the tool that meets their needs.  
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The deliverables associated with this assessment primarily come in the form of released software 
and are documented in Table 1. Each tool uses an existing SUA provided by the controlling 
center’s Software Release Authority (SRA). Note that the core tools are routinely released under 
existing SUAs. and each team is experienced with managing releases of their system in 
alignment with NASA software release requirements. The SoS integration is visually represented 
in Figure 4. 

Table 1. Assessment Deliverables 
Deliverable Deliverable Content Recipient/Availability 
MONTE Plugin Software 

Application/Executable, 
Documentation, Supplemental 
Scripts 

Government/Contractors, 
Commercial Use, Academia 

Copernicus Software 
Application/Executable, 
Documentation 

Government/Contractors, 
Academia 

GMAT API and plugin Software 
Application/Executable, 
Documentation, Source Code, 
Supplemental Scripts 

Open Source  
(Apache 2.0 License) 

OpenFrames Shared Library Software 
Application/Executable, 
Documentation, Source Code 

Open Source 
(Apache 2.0 License) 

NESC Assessment Report 
(NASA Technical 
Memorandum (TM)) 

Final Report/Lessons Learned NASA projects 

 
Figure 4. SoS Integration 
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7.0 Assessment Summary 
7.1 GMAT-MONTE Interoperability 
To achieve interoperability between GMAT and MONTE, as presented in Figure 4, the 
interfaces between the tools needed to be examined and expanded upon, when necessary. 
MONTE’s dynamics modeling capabilities was known to be a strength and GMAT’s scripting 
interface paired with its GUI was a strength. While GMAT could also do high-fidelity dynamics 
modeling for several orbit regimes and use cases there were some aspects where MONTE had 
more capabilities (e.g., more complicated structural modeling). Based on these strengths, the 
functionality desired between the tools resulted in the following tasks: 

 Data integration – sharing key data between systems (e.g., ephemerides, covariance, 
maneuvers) 

 Component integration – integrating core components (e.g., dynamics, propagation) 
between tools 

 Shadow operations – showcasing the tools can work together with mission data 

GMAT was originally designed to utilize a script-based method to capture inputs or a GUI that 
translates user inputs into a script. This method alone hinders external applications from fully 
interacting with the tool. External applications could alter script contents prior to runtime but 
could not interact during runtime with the exception of exporting output to a file. As GMAT’s 
development progressed, additional interfaces were included that allowed function calls to 
MATLAB and Python during execution. The additional interface for function calls to robust 
programming languages were a good start but this was limited to GMAT mostly fulfilling the 
role of a driving application where a limited number of its activities were available to external 
applications during runtime. An API was required to realize the full potential of an external 
application being able to drive the various GMAT capabilities and supplement additional 
features from that external application. MONTE’s interface since inception was utilizing a 
Python interface and was well suited to pass information GMAT needed to support the 
interoperability efforts of this assessment. 

The shadow operations task would involve GMAT utilizing MONTE’s dynamics modeling that 
provided increased customization of dynamics models, versus GMAT’s dynamics modeling and 
performing shadow maneuvers for an in-operation mission. During the shadow operations, users 
would observe how the GMAT-MONTE results compared with the primary flight mechanics’ 
operations tool.  

7.1.1 Data & Component Integration 

The GMAT API design focused on users being able to access GMAT components in a user-
friendly manner from external applications [refs. 10 and 11]. This was achieved by utilizing the 
Simplified Wrapper and Interface Generator (SWIG). SWIG is an interface compiler that 
connects programs written in C and C++ with scripting languages (e.g., Perl, Python, Ruby, and 
Tcl). It works by taking the declarations found in C/C++ header files and using them to generate 
the wrapper code that scripting languages need to access the underlying C/C++ code [ref. 12].  

The initial GMAT API development utilized the following milestones:  
1. User-needs survey: Identify API components that are broadly applicable to users, while 

selecting two key components for exposure and use case development that demonstrate 
the interface functionality. 
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2. Initial API design and core code updates: Design API interfaces, helper functions, and 
style guide. Update the key GMAT architectural code interfaces to adhere to design and 
style. 

3. API test system development: Build test system structures and components based on the 
existing GMAT test system that exercise the features exposed to users through the API.  

4. Component exposure 1: Expose first set of key component(s) identified in the user-needs 
survey. 

5. Component exposure 2: Expose second set of key component(s) identified in the user-
needs survey. 

6. Demonstration and documentation: Provide a demonstration of the ready to use API 
showcasing the added functionality, supporting documentation, and stakeholder 
recommendations for future updates. 

Preliminary prototyping by the GMAT team used the SWIG library to expose core GMAT 
functionality to Python and Java, and through those interfaces MATLAB could also be used 
from/by GMAT. Feedback from users and stakeholders for these interfaces, along with the 
SWIG prototyping, led to the GMAT API component stack seen in Figure 5. GMAT’s code base 
classes are exposed through this interface using language-specific wrappers that allow users to 
interact with the GMAT classes.  

 
Figure 5. GMAT API Stack 

Producing an API system comparable in quality to the other GMAT production-ready systems 
required a rigorous set of system tests to exercise the system features. Developers leveraged the 
preexistent MATLAB-based GMAT test system that runs nightly and performs thousands of 
tests for the application. Test system structures and components based on the core GMAT test 
system were built by the API development team to exercise the features exposed to users through 
the API. This required expanding the test system to incorporate MATLAB-Python and 
MATLAB-Java interfaces. Utilizing this approach of reusing pre-existing test architecture 
avoided the costly expense of developing separate test harnesses for the three target languages 
(i.e., MATLAB, Java, and Python). During the course of the assessment, and as additional 
functionality was added to the GMAT API, new tests were added, and regression testing was 
performed in the nightly builds with the other GMAT functionality. 
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The initial GMAT API development allow users to perform the following GMAT actions: 
 Component access: state conversions, dynamics models, propagation, and measurement 

modeling 
 Scripting controls: load scripts, change settings and values, and run scripts 

Some examples of GMAT API’s potential over the standard scripting functionality are:  
 External application providing real-time tracking data to provide the user with real-time 

GMAT-generated measurement model output to display on a user-generated website that 
allow for advanced capabilities like real-time maneuver evaluation and tracking data 
anomaly detection. 

 External application driver providing a variety of flight mechanic tool capabilities to a 
user in a larger system where GMAT is one of the many flight mechanic tools used. 

 Performing a coverage analysis tool trade study by evaluating over 100 configurations. 
 Performing an upper stage launch vehicle dispersions trade study utilizing a flexible 

assortment of hardware configurations. 
 Jupyter notebook executing a GMAT script and displaying results live to the output. 

A set of helper functions were woven into the design of the GMAT API to alleviate the need of a 
user to understand details of GMAT class structure implementation by encapsulating backend 
calls in a simplified manner. Most users prefer a less detailed level than a class by class or object 
by object interaction. The design of these helper functions came to fruition by the developers 
identifying two groups of users of the GMAT API:  

1. Those familiar with GMAT and want to use the API to run GMAT scripts, making API 
calls to adapt their scripts along the way 

2. Those that want to use capabilities provided by GMAT inside of models that they are 
running in a tool like MATLAB or Python, or in a compiled application written in a 
language like Java.  

These API helpers are exposed through the SWIG interface layer for use by API users. The 
incorporation of class and object-level helper functions for classes that are identified as “API 
ready” help to address inconsistencies of user expected naming conventions to how the GMAT 
base systems are labeled. A beta version of the GMAT API was included in the GMAT 2020a 
public release. Feedback from this release of the GMAT API prompted additional helper 
functions.  

The GMAT 2020a release contained the GMAT API functionality associated with data sharing 
with external applications including ephemerides, covariance, and maneuvers. In March 2022, 
design work to allow GMAT to have the ability to ingest dynamics modeling to support the 
shadowing effort began. The GMAT 2022a release contained additional enhancements to the 
GMAT API and an external force model plugin to expose components that would enable the 
ingestion of external dynamics modeling during propagation [ref. 13]. The production version of 
the GMAT API without the beta designation was included in the GMAT 2022a public release.  

To fulfill the task associated with integrating MONTE dynamics into GMAT for the shadow 
operations, an external-force model plugin was needed. The integration of MONTE dynamics 
into GMAT could not be accomplished through the API and would have required making 
changes to GMAT. Instead of making an interface for this specific to GMAT-MONTE, the more 
general approach of calling any force model in Python was used. The plugin route enabling 
dynamics sharing between MONTE and GMAT is built on a more general-purpose 
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implementation, allowing propagation of any Python-based dynamics model in GMAT. MONTE 
dynamics sharing is a specific case of a general capability, implemented in GMAT, of dynamics 
sharing. MONTE’s dynamics are exposed in Python, so they can be used via this generic 
channel. The GMAT 2022a release contains an alpha version of the GMAT external force model 
plugin that added the necessary hooks to fulfill the SoS integration, seen in Figure 4, to share key 
data and components between tools. 

7.1.2 Mission Shadow Operations 

The original in-operation shadowing effort to exercise the interoperability between GMAT and 
MONTE was planned for 2020, but the COVID-19 pandemic hampered development schedules 
and alternative plans were made. Part of the pivot made by the development teams was to switch 
the mission of the in-operation shadowing to the Lucy spacecraft that launched in October 2021 
[ref. 14]. The agreement for the shadowing effort was that it would be a “do no harm” activity 
where none of the actions/outcomes would impact nominal spacecraft operations. The FDF 
analysts, Lucy operations staff, MONTE developers, and GMAT developers worked closely for 
this shadowing effort. The Deep Space Maneuvers (DSM) that target an Earth Gravity Assist 
(EGA) event was selected for the shadow operations. A GMAT 2022a equivalent build was used 
for the shadowing effort and MONTE version 152. 

The Lucy team’s primary means of producing a spacecraft burn plan utilizes Orbit Determination 
(OD) products generated from the Multiple Interferometric Ranging Analysis using GPS 
Ensemble (MIRAGE) navigation tool in combination with the Evolutionary Mission Trajectory 
Generator (EMTG) tool. Deep Space Network (DSN) tracking data gets fed into EMTG to 
generate an initial medium-fidelity burn plan then that plan is fed back into MIRAGE to generate 
the final high-fidelity burn plan that is used to perform maneuvers. The GMAT-MONTE 
shadowing effort was designed to utilize the same DSN tracking data fed through MIRAGE to 
generate OD products. The DSN tracking data used for primary operations is fed into MONTE 
then coupled with a reference trajectory ephemeris from the primary operations medium-fidelity 
EMTG solution to feed into GMAT maneuver scripts. These GMAT scripts utilize the tracking 
data to establish where the spacecraft is and reference trajectory to target the maneuver along 
with MONTE dynamics modeling through propagations to generate a high-fidelity burn plan. 
The Lucy primary burn plan approach with the GMAT-MONTE shadowing effort is illustrated 
in Figure 6. 
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Figure 6. Lucy GMAT-MONTE Shadow Operations Plan 

For the shadowing effort to work, the following activities needed to be complete:  
1. Set up MONTE navigation 
2. Integrate GMAT with MONTE 
3. Generate scripting to retarget the maneuvers 
4. Utilize operations data to perform shadow operations 

The FDF analysts created custom scripting on their systems to be able to process the Lucy Delta-
Differential One-Way Ranging (DDOR) data coming from DSN and transform it into a  
TRK-2-34 format that can be ingested by several navigation tools. The OD configuration for 
MONTE was set to be comparable with the fidelity of Lucy’s primary navigation tool.  

Pre-release builds of GMAT were utilized as necessary to test the capabilities of its external 
force model plugin dynamics model sharing with MONTE since the GMAT public release with 
the desired features would not happen until after the Lucy maneuver that targets the first EGA. 
The custom Lucy GMAT script points to a MONTE Python script to use high-fidelity modeling 
of Lucy dynamics, tuned to replicate the forces imparted on the spacecraft similar to the 
operations OD tool, at each propagation step. When the GMAT external-force model plugin was 
using MONTE’s dynamics models, GMAT’s internal dynamics models were disabled. This 
meant that GMAT scripting and visualizations were used while being taking advantage of 
MONTE’s dynamics modeling strengths. 

Three different Lucy EGA burn plan results were compared for this assessment:  
1. Primary MIRAGE configuration utilizing six-plate spacecraft structural model  
2. GMAT-MONTE configuration utilizing six-plate spacecraft structural model  
3. GMAT configuration using a cannonball structural model of the spacecraft 

The results of these configurations are summarized in Figure 7. DSM1 occurred on June 7, 2022, 
and targeted EGA1 took place on October 16, 2022. The scripts for both tools performed 
targeting for EGA1 and EGA2, which is scheduled to occur in December 2024. Figure 8 shows a 
position comparison of the trajectory, in radial, in-track, cross-track, and range representations, 
generated by the GMAT-MONTE shadow solution to the primary MIRAGE solution. Since the 
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targeting sequence focused on a target of the EGA events, it was noticed both solutions were 
near zero difference at those points. All other times the dynamics were slightly different for each 
tool. This was unavoidable due to there being slight differences in the tools no matter how 
closely it was attempted to synchronize the settings between the tools. Utilizing a simplified 
spacecraft cannonball model can produce close enough solutions when high accuracy is not 
needed but for a highly sensitive problem more complicated structural models are needed. The 
dynamics modeling needed for the DSMs are sensitive enough to necessitate the higher fidelity 
structural modeling for consistent results. For the first DSM, the GMAT cannonball 
configuration diverged from the MIRAGE solution, but the GMAT-MONTE configuration was 
within about a 1% difference of the MIRAGE solution. These GMAT-MONTE results 
successfully showcased interoperability between the tools during shadow operations is possible. 
During the shadowing efforts there were several lessons learned that are presented in Section 11. 

 
Figure 7. Lucy GMAT-MONTE EGA Shadowing Results 

 
Figure 8. Lucy GMAT-MONTE EGA Trajectory Compared to Reference MIRAGE Trajectory 

7.2 GMAT-Copernicus Interoperability 
To achieve interoperability between GMAT and Copernicus, as presented in Figure 4, the 
interfaces between the tools required examination and expansion, when necessary. Copernicus’ 
3D graphics capabilities were mature and a strength and GMAT’s scripting paired with its GUI 
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and high-fidelity modeling were a strength. Based on these strengths, the functionality desired 
between the tools resulted in the task to utilize a common 3D graphics engine. 

Prior to this assessment, GMAT and Copernicus used independent 3D graphics interfaces for 
their respective tool’s code base. GMAT’s original 3D graphics interface (OrbitView) was not 
optimized to function in tandem with the high-fidelity dynamics calculations it was performing 
and any attempts to upgrade using the existent codebase would have been a prohibitive effort. 
Figure 9 shows the original OrbitView 3D graphics interface. Copernicus’ 3D graphic interface 
utilized OpenFrames and OpenSceneGraph for over a decade. OpenFrames is an API that 
provides the ability to add interactive 3D graphics to any application and OpenSceneGraph is a 
toolkit that provides cross-platform scene graph management, which is a concept that groups 
objects with similar characteristics together. OpenSceneGraph is used by application developers 
in fields (e.g., as visual simulation, games, VR, scientific visualization, and modelling). These 
graphics components greatly reduce the burden on the developers to be as familiar with the 
intricacies of writing complex 3D graphics code. OpenFrames and OpenSceneGraph were 
developed over several Small Business Innovation Research (SBIR) initiatives and released to 
the public under the Apache 2.0 Open Source License [refs. 15, 16, 17]. OpenFrames and 
OpenSceneGraph being open source lent themselves to be great candidates to replace GMAT’s 
OrbitView.  

 
Figure 9. Previous GMAT 3D Graphics Interface (OrbitView) 

GMAT being able to leverage the same 3D graphics engine as Copernicus would allow GMAT 
to utilize existing robust graphics capabilities and extend the OpenFrames flight mechanics 
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graphics API for trajectory visualization. Copernicus would benefit from improvements invested 
in the common graphics components by receiving the same updates that provide new 
functionality. Bug fixes made to the common 3D graphics interface would benefit both tools. 

Prior to this assessment, integration of the GMAT specific OpenFrames/OpenSceneGraph 
graphics components was started under a SBIR effort and rated at a Technology Readiness Level 
(TRL) of 6, which means some part but not all of the system was utilized in an operational 
environment. This assessment allowed for the final testing and documentation to bring the 
GMAT OpenFrames/OpenSceneGraph components to a TRL 9, which means the entire system 
is proven through operations. This TRL 9 achievement resulted in the deprecation of GMAT’s 
legacy 3D graphics (OrbitView) component by November 30, 2019. The graphics updates were 
available to the public in the GMAT 2020a release in April 2020 [ref. 18].  

Copernicus and GMAT are utilizing common graphics components based on OpenFrames 
interface and the OpenSceneGraph library. Figure 10 depicts the shared graphics components 
between Copernicus and GMAT. Even though 3D graphics components are shared between the 
tools, each tool can utilize these components in different ways. Figure 11 shows Copernicus’ 3D 
graphics implementation with OpenFrames, and Figure 12 shows GMAT’s 3D graphics 
implementation with OpenFrames. Some examples of shared capabilities the two tools could 
leverage are the hooks into the OpenFrames VR framework, lighting source features to showcase 
day/night cycles of planets and eclipse shadowing, cross-platform compatibility, and multi-core 
support. 

 
Figure 10. GMAT <=> Copernicus Shared Graphics Components 
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Figure 11. Copernicus OpenFrames 3D Graphics Implementation 

 
Figure 12. GMAT OpenFrames 3D Graphics Implementation 
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7.3 MONTE-Copernicus Interoperability 
To achieve interoperability between MONTE and Copernicus, as presented in Figure 4, the 
interfaces between the tools needed examination and expansion. Copernicus’ ability to display 
spacecraft trajectories in 3D graphics was a strength and MONTE’s high-fidelity dynamics 
modeling to obtain accurate solutions for complicated trajectories was a strength. During the 
design phase of this MONTE-Copernicus effort, the functionality desired between the tools to 
leverage their strength resulted in the following tasks: 

 Interface development and documentation 
 Tool updates for interface compliance 
 Use cases leveraging interface 
 Publication highlighting interface 

Prior to this assessment, Copernicus versions before 4.5 used a Fortran GUI toolkit that was 
highly coupled with the Fortran core code, but as the capabilities of Copernicus grew and a 
desire to interface with more external applications arose a different paradigm was needed. The 
paradigm shift changes that were relevant to tool interoperability in this assessment were:  

 the separation of the Copernicus GUI from the core code into a shared library 
 implementing a Python GUI for easier access and usability 
 utilizing a Python scripting interface that leverages Fortran callbacks 
 leveraging a Fortran to C++ interface that can use a shared 3D graphics capability  

[refs. 8 and 19].  
These changes are illustrated in Figure 13. Initially when the Copernicus Python interface was 
created (CopPy) that interface could only alter existing items in the input deck (ideck) container 
file Copernicus uses to store all the information for a particular mission run. CopPy could not be 
used to alter missions (or individual trajectory segments) from scratch, or add new elements 
(e.g., finite burns) that were not in the original file. Some workarounds existed for this interface 
but to satisfy the interoperability goals of this assessment it was necessary to create RoboCopPy, 
which is an object-oriented Python approach to the problem with a mapping of every option and 
field available in each GUI. RoboCopPy allows construction of complete idecks by adding class 
instances to various collections, allows modification of idecks, and satisfies the interoperability 
goal of this assessment [ref. 19].  

 
Figure 13. Copernicus Updates for Interoperability (Fortran, Python, and C++) 
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Once the Copernicus updates were made, the latest version of MONTE was ready to utilize the 
features for the MONTE-Copernicus interoperability tasks mentioned earlier in this section. See 
Figure 14 for a high-level comparison of the differences of the two tools. Some compelling 
benefits of this interoperability between MONTE and Copernicus are as followed: 

 MONTE’s mostly scripting tool to leverage the 3D graphics capabilities of Copernicus  
 Copernicus to utilize higher-fidelity modeling  

 MONTE Copernicus 

Managing 
Organization JPL JSC 

Fidelity High Medium 

Capabilities Mission Design + Navigation Mission Design 

User Interface Scripting Graphical 

Visualization Simple Extensive (GUI) 

Optimizer COSMIC* Itself 

Optimization 
Structure 

COSMIC timeline 
(control/break points) Segments 

Input/Output *.py, Boa ideck (*.py) 
(*) Note, Computer Optimization System for Multiple Independent Courses (COSMIC) is a software module of MONTE. 

Figure 14. MONTE-Copernicus Differences 

An initial MONTE-Copernicus interoperability strategy was to establish a one-to-one mapping 
of one tool’s settings to another so its generated trajectory could be transferred into the other 
tool. Through initial prototyping and testing, this approach proved particularly challenging due to 
the many ways each tool can be configured. Subtle differences could cause deviations (e.g., how 
the tool’s codebase deals with lower-level mathematical functions, the way a GUI interprets 
strings/numbers, the way a file is loaded). The permeations of differences for these scenarios 
were endless so a different process was needed to transfer trajectory information between tools.  

In early 2022, Trajectory Reverse Engineering was developed that allowed a user to share 
trajectory information generated by one tool with another without being locked to any one tool. 
Instead of focusing on the transferring of trajectory information between Copernicus and 
MONTE through a meticulously detailed one-to-one mapping process this new process would 
work with almost any flight mechanics’ tool. See Figure 15 for an illustration of the initial 
strategy for sharing trajectory information between tools and the Trajectory Reverse Engineering 
process. 
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a) using a standardized trajectory structure. b) specific tool-to-tool interphase design. 

Figure 15. Tool Interoperability Illustration 

7.3.1 Trajectory Reverse Engineering 

The overall idea of Trajectory Reverse Engineering is to transfer the trajectory from one tool to 
the next in the form of an SPK (Spacecraft and Planet Kernel) with a *.bsp extension from 
SPICE, which was developed by the JPL Navigation and Ancillary Information Facility (NAIF). 
NAIF has several different types of kernels on their website, but for simplicity the bsp kernel 
will be referred to as an SPK. An SPK file is a container object that represents a trajectory as an 
invariant structure in phase-space (6D) in the form of ephemerides, agnostic to gravitational 
environments, fidelity models, or numerical representation of the system, and does not require 
integration of the equations of motion. It can be thought of as a frozen image of the propagated 
trajectory. From an SPK the states can be determined at predetermined time intervals or strategic 
points along the trajectory (e.g., periapsis or apoapsis), maneuvers in the form of velocity 
discontinuities, and natural central bodies (bodies at which the states are defined). The trajectory 
can be propagated forward-in-time using the selected set of states. Due to the discrepancy 
between tool models, small or large discontinuities might appear between the integrated legs, 
which can be smoothed by the implementation of a multiple shooting algorithm. Some of the 
existing flight mechanics tools can handle the multiple-shooting implementation automatically 
(e.g. COSMIC, the trajectory design and optimization module, from MONTE), which makes the 
script translation a more manageable task. For other tools (e.g., Copernicus) this implementation 
requires manual attention. With the method outlined, a set of Python scripts were written to 
automatically implement this process and recover the desired trajectory [ref. 20]. Utilizing the 
trajectory reverse engineering process to transfer a trajectory from one tool to the next will not 
result in exact matches down to the machine level (e.g., “lossless”) but the solutions are viable 
based on the strategically targeted control points. 

Once the SPK is generated by one tool, a careful scan over the SPK can occur to extract the 
necessary information to reconstruct (reverse engineer) an orbital path by the receiving tool with 
minimal or no prior knowledge of the original trajectory, hence, the reverse engineering process 
name. The scanning process for this MONTE-Copernicus interoperability effort is part of a series 
of Python scripts. During the scan, strategic locations for placing controls on the trajectory  
(e.g., periapsis and apoapsis) with respect to a given central body can be identified. The natural 
bodies to which specific trajectory segments were originally defined can be identified from the 
SPK file and can be automatically included in the ephemerides model of the recovery trajectory. 
During the scan process, impulse maneuvers are detected as velocity discontinuities. Additional 
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maneuvers can be added by the user to exert control over the recovery process, which is 
implemented as an optimization procedure. An optional functionality added to the scanning of 
the SPK was to utilize an input JavaScript Object Notation (JSON) configuration file, a human-
friendly file format, where a user can easily configure their specific problem by defining frames, 
coordinate systems, parameter sets (e.g., classical orbital elements, hyperbolic, cartesian), 
parameter constraints, and maneuver constraints. In this configuration file, a user can define 
desired bodies to be included and dynamics and numerical models (e.g., forces, specific 
optimizer, etc.). User-defined constraints are also possible, but its implementation would be tool-
dependent [ref. 20].  

After the scanning process, a timeline for the trajectory to be recovered is created through a set 
of control points along its path (and optionally impulsive maneuvers), where a multiple-shooting 
technique is performed to combine discontinuities detected in the ephemerides. See Figure 16 for 
an illustration of the multiple-shooting technique. This algorithm works by dividing the time 
period over which the trajectory is to be optimized into a number of discrete intervals. These 
intervals are defined by every two consecutive control points. For each interval, the algorithm 
solves for the optimal control inputs that will steer the system from one end of the interval to the 
other, subject to the constraints and objectives of an optimization problem [ref. 20]. Reference 20 
goes into the specifics of the optimization problem used to remove the discontinuities.  

 
Figure 16. Multiple-Shooting Forward-Backward Propagation Scheme 

At this point, a tool-specific script is needed to make use of the data collected to generate a 
file/input for the receiving tool to use to continue the trajectory reverse engineering process. For 
this MONTE-Copernicus interoperability effort the following scenarios dealt with transferring 
data from one tool to another and are expanded on in Sections 7.3.2 through 7.3.6:  

1. Generic SPK to Copernicus visualization 
2. Copernicus to MONTE trajectory transfer 
3. MONTE to Copernicus trajectory transfer 

Part of the strength of the trajectory reverse engineering process is in its applicability to any 
flight mechanics’ tool. If that tool and supplemental software can do the following, then it can 
utilize the trajectory reverse engineering process: 

 Ingest a trajectory from an SPK 
o Requires: Implementation of the SPICE toolkit  

 Script to process the SPK contents and export into a format the receiving tool can ingest 
 Export a trajectory to an SPK 

o Requires: Implementation of the SPICE toolkit 
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o Requires: Ability to tag each trajectory in the SPK with a specific SPICE 
Identification (ID) 

o Optional: Adjust the step-size of the trajectory stored in the SPK to a sufficient 
resolution to extract the time maneuvers occur, reduce discontinuities between 
data points, capture desired perturbations, and other factors a user does not want 
to lose to subsequent interpolation 

During the 33rd American Astronautical Society/American Institute of Aeronautics and 
Astronautics (AAS/AIAA) 2023 Conference in Austin, Texas the Trajectory Reverse 
Engineering processes was presented [refs. 20 and 21]. Several inquiries were made during the 
conference on how to obtain access to the scripts mentioned for the Trajectory Reverse 
Engineering process, and the flight mechanics tools mentioned in this assessment. Mission and 
navigation engineers from JPL expressed how this tool would eliminate their current SPK read-
in processes for support spacecraft operations and analysis. NASA’s software release process 
was prohibitive when attempting a public release of the trajectory reverse engineering scripts. 

For this assessment, the target machine setup for the MONTE-Copernicus interoperability work 
was for a Windows machine to run Copernicus 5.2.0 and Docker to run MONTE version 149. 
The custom Python scripts used for the Trajectory Reverse Engineering process are bundled 
together with the delivery of this assessment final report. All of the use cases mentioned in 
Sections 7.3.2 through 7.3.6 have supplemental input files that have been bundled with the 
delivery of this assessment final report and mentioned in Section 10.0. In these supplemental 
input files, there is a brief description of the use case, all input files needed, and the expected 
results (see README.txt files). A MONTE-Copernicus interface document is also included to 
assist users with machine setup to make use of the supplemental input files. 

7.3.2 NRHO/Gateway Use Case 

This use case represents the Copernicus to MONTE data transfer scenario of a Low Lunar Orbit 
(LLO) to a NRHO trajectory (see Figure 17). The steps taken for this use case are to 1) ingest the 
initial Copernicus solution, 2) identify all the relevant control points, events (e.g., 
apoapsis/periapsis), and identify maneuvers (impulsive burns), 3) Create a COSMIC timeline 
and optimize (multiple-shooting) to produce a smooth continues optimized trajectory in 
MONTE, and 4) Save new solution in different formats: *.bsp , *.py, *boa. The boa (Binary 
Object Archive) file is the standard MONTE format to save a trajectory, and contains ephemeris, 
trajectory path, dynamical models and partials, and is the final product for Navigation analysis. 
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Figure 17. LLO to NRHO Trajectory 

7.3.3 Europa Clipper Moon Flybys Visualization Use Case 

This use case represents the SPK to Copernicus data transfer scenario where trajectories 
developed in MONTE or any other tool, are visualized in Copernicus. The Python script used to 
generate trajectory visualizations in Copernicus from SPK kernels is called bsp2visualCop.py. 
The script follows the trajectory recovery process outlined in Section 7.3.2. Here, the trajectory 
contained in the SPK kernel is loaded into Copernicus as an ephemeris file and a segment 
attached to it as a “static point trajectory” is used for visualization purposes (i.e., no optimization 
is applied). The Python function requires as input the SPK kernel (.bsp) file. Optional argument 
inputs (e.g., the spacecraft ID, the central body, the frame) to visualize the trajectory are 
possible. For more complex trajectory visualizations, an optional JSON input file can be passed 
to the function call to generate a tailored output (e.g., specific frames, central body, number of 
segments, colors, etc). The steps taken for this use case are to 1) ingest the MONTE generated 
SPK, 2) update the supplement JSON config to setup visualization (optional), 3) scan the file an 
generate ideck, and 4) ingest the ideck file and visualize the trajectory as desired. Figure 18 a 
shows a Europa Clipper trajectory, where the mission phases are color coded. 

 
Figure 18. MONTE to Copernicus Europa Clipper Visualization 
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The steps highlighted in this use case should work with any application that can generate a SPK 
file and is not limited to the Europa Clipper trajectory displayed in Figure 18. 

7.3.4 Icy Moons Multiple Shooting Use Case 

This use case represents the Copernicus to MONTE data transfer scenario of an Icy moons 
Quasi-Periodic Orbits (QPO). In particular, a QPO around Enceladus is considered (See Figure 
19). The QPOs often exist in low-fidelity CR3BP solutions created in Copernicus but breakdown 
when transferred to high-fidelity dynamics modeling in MONTE. The script used to perform the 
transcription is called bsp2cosmic.py. The steps taken for this use case are to 1) Design the QPO 
in Copernicus and export the trajectory to SPK, 2) convert the trajectory into a COSMIC timeline 
(MONTE trajectory), 3) discretize the ballistic trajectory into N number of segments, and  
4) utilize MONTE to perform multiple-shooting method techniques, as seen in Figure 16, to 
reconverge on a solution that is along the phase space of the original low-fidelity frozen 
trajectory but implemented with the new dynamics. 

 
Figure 19. Icy Moons QPO Visualization 

7.3.5 Enceladus Orbiter Use Case 

This use case represents the Copernicus to MONTE data transfer scenario of a trajectory with 
complex mission phases (e.g., Moon tour, capture, mapping orbit) that tends to break down with 
high-fidelity modeling. The steps taken for this use case are to 1) Design the initial solution with 
low-fidelity modeling in Copernicus for a phase of the trajectory and export that trajectory to an 
SPK, 2) identify all the relevant control points (e.g., maneuvers) and events (e.g., apoapsis/ 
periapsis), 3) convert the trajectory into a MONTE file, 4) utilize MONTE to perform multiple 
shooting method techniques, as seen in Figure 16, to reconverge on a solution that is along the 
phase space of the original low-fidelity trajectory, and 5) repeat the process to the desired final 
solution for the entire trajectory. The final solution showcases a way of incorporating high-
fidelity dynamics early in the design process, coupled with Copernicus’ intuitive GUI, as 
iterations between Copernicus and MONTE are performed. Figure 20 depicts a trajectory that is 
dynamically sensitive to being transferred from low- to high-fidelity modeling. 
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Figure 20. Dynamical Sensitive Trajectory in Low-Fidelity to High-Fidelity Transfer 

7.3.6 Flyby Use Case 

This use case represents the MONTE to Copernicus data transfer scenario of a Europa Clipper 
flyby trajectory design. Figure 21 depicts the Europa Clipper multiple-flyby architecture. The 
script used is bsp2cop.py. The steps taken for this use case are to 1) Design the trajectory in 
MONTE and export to an SPK, 2) identify all the relevant control points (e.g., maneuvers) and 
events (e.g., apoapsis/periapsis), 3) convert the trajectory into a Copernicus file, and 4) utilize 
Copernicus’ GUI to adjust the segments and/or constraints/functions. To generate an ideck from 
an SPK kernel, a similar process to the one implemented for bsp2cosmic.py is performed, but the 
multiple-shooting strategy is manually set up on the Python script by creating segments that are 
propagated forward and backward in time while imposing continuity true state constraints. 
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a) Segment structure implemented in Copernicus. b) Converged trajectory. 

Figure 21. Europa Clipper Multiple-Flyby Architecture 

8.0 Findings, Observations, and NESC Recommendations 
8.1 Findings 
The following findings were identified: 

F-1. The Copernicus, GMAT, and MONTE software release processes are different based on 
the NASA center the development team is associated with and each flight mechanics tool 
has its own restrictions on who can obtain the software and associated source code. 
Source code for the Copernicus and MONTE core system could not be distributed to the 
assessment team members that were not part of the tool’s development team. 

F-2. GMAT 2022a’s generalized implementation of the external force model plug-in allowed 
for more tools to make use of it but significant computational performance improvements 
could be made for a specialized MONTE implementation where less files could be 
exchanged per integration step (e.g., boa). 

8.2 Observations 
The following observations were identified: 

O-1. Flight mechanics tools incorporating SPK functionality would enable tool interoperability 
when paired with the Trajectory Reverse Engineering process. 

O-2. The supplemental Python scripts to support the MONTE-Copernicus use cases are not 
accessible to users outside of the NESC Board. 

O-3. MONTE, GMAT, and Copernicus interoperability features mentioned in this assessment 
require a functional interface with Python. 

O-4. The following are specific versions of software that enabled the flight mechanic tools 
interoperability functionality mentioned in this assessment: 
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 Starting with Copernicus 5.0 and the inclusion of the RoboCopPy Python interface, 
Copernicus and MONTE were able to exchange needed data to support the identified 
use cases.  

 The GMAT 2022a public release contains the external force model plugin (i.e., alpha) 
that enables the ability for GMAT to make use of MONTE dynamics., 

 The GMAT 2022a public release contains the GMAT API functionality to allow 
external tools to make use of components in environments external to GMAT’s native 
interfaces. 

 Starting with the GMAT 2020a release, this tool uses the same 3D graphics 
technology as Copernicus (i.e., OpenFrames/OpenSceneGraph) where both tools 
benefit from updates and bug fixes. 

 MONTE version 149 was utilized in the generation of data for the MONTE-
Copernicus use cases that make use of the Trajectory Reverse Engineering process. 

 MONTE version 152 and a GMAT 2022a equivalent build was utilized in the Lucy 
spacecraft EGA shadow operations MONTE-GMAT interoperability effort. 

 Copernicus version 5.0.0 decoupling the GUI from the base Fortran code and 
switching the GUI to be in Python allowed the GUI source code to be released 
allowing the user community to independently modify or replace the GUI. 

8.3 NESC Recommendations 
The following NESC recommendations were identified and directed towards the Copernicus, 
GMAT, and MONTE development teams to maintain interoperability between flight mechanics 
tools: 

R-1. Maintain the SPICE toolkit functionality to export trajectories to an SPK and apply 
SPICE ID tags into flight mechanics tools for future Copernicus, GMAT, and MONTE 
software releases. (O-1) 

R-2. Maintain the Python interface functionality to pass data through to another flight 
mechanics tool for future Copernicus, GMAT, and MONTE software releases. (O-3) 

R-3. Distribute the interoperability functionality mentioned in this assessment as part of the 
Copernicus, GMAT, and MONTE software releases. (O-1, O-2, O-3) 

R-4. Provide institutional funding to Copernicus, GMAT, and MONTE development teams for 
on-going maintenance of the interoperability functionality mentioned in this assessment. 
(O-3) 

The following NESC recommendations were identified and directed towards the Copernicus 
users seeking to improve interoperability between flight mechanics tools: 

R-5. Upgrade to Copernicus 5.0.0 or later version [ref. 23] to make use of the features 
described in this assessment. (O-2, O-3) 

The following NESC recommendations were identified and directed towards the GMAT users 
seeking to improve interoperability between flight mechanics tools: 

R-6. Upgrade to GMAT 2022a to make use of the features described in this assessment.  
(O-1, O-3, O-4) 
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The following NESC recommendations were identified and directed towards the MONTE 
development team seeking to improve interoperability between flight mechanics tools: 

R-7. Bundle the trajectory reverse engineering python scripts and associated data in future 
MONTE software releases and maintain the scripts with each subsequent release. (O-2) 

The following NESC recommendations were identified and directed towards NASA STMD 
which governs NPR 2210, to improve interoperability between flight mechanics tools: 

R-8. Update NASA software release policies (e.g., SUAs, NPR 2210.1) to make the 
distribution of flight mechanics software executables, source code, and supplemental 
files/documentation between NASA centers easier and consistent to boost collaboration. 
(F-1, O-2) 

R-9. Release the source code of MONTE and Copernicus to the NASA community. (F-1) 

9.0 Alternate Technical Opinion(s) 
No alternate technical opinions were identified during the course of this assessment. 

10.0 Other Deliverables 
The following artifacts were included with this assessment upon delivery to the NESC Board in 
addition to the deliverables listed in Table 1: 

 GMAT API user needs survey feedback 
 2020 Flight Mechanics TDT Face-to-Face presentation on GMAT R2020 API 
 LUCY EGA Shadow Operations Presentation and scripts 
 MONTE-Copernicus Trajectory Reverse Engineering Interface Document 
 MONTE-Copernicus Trajectory Reverse Engineering scripts and use case examples 
 Copernicus, GMAT, and MONTE user documentation 

11.0 Lessons Learned 
Under this task, the Copernicus, MONTE, and GMAT development teams collected, and 
documented lessons learned on the efforts to utilize the software in an SoS environment. 
Additionally, the teams documented policies and procedures that promoted increased software 
sharing and collaboration between centers.  

Sharing Interfaces 
 Python served as a medium to transfer data and component information between flight 

mechanics tools. This common bridge between the different tools greatly enabled the 
work presented in this report. 

 Updates made to Copernicus in 2018 to 2019 via the OpenFrames interface were 
mutually beneficial to GMAT in the following ways: support for advanced user interfaces 
embedded in the 3D scene, realistic lighting on celestial bodies and spacecraft, hyper-
realistic celestial body models that increase resolution as the viewer approaches the 
surface, sensor visualization, and viewing a scene in consumer-grade VR hardware  
(e.g., Oculus Rift or HTC1 Vive). 
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Flight Mechanics Tool 1-to-1 Mission Sequence Matching 
 In theory, the concept of aligning all settings between two flight mechanics tools for a 

spacecraft mission sequence of events to produce the same results seems viable but in 
practice there are numerous areas that cause slight differences or require different 
implementations to ensure the output matches. It is not so much that the two tools could 
not be tweaked here and there to better match one another, but rather the number of 
resources needed to do this synchronization would be non-trivial and not easily 
generalized especially as the mission sequence increases in complexity. 

GMAT API Development 
 The initial API design provided lessons about how to proceed with a publicly available 

API for the GMAT code base. Users of the SWIG interfaces as they existed in the initial 
implementation found that the component settings and interdependencies for objects in 
the GMAT code are not always obvious, and that there is a fair amount of detailed 
configuration needed in order to access GMAT features. Once the user survey was 
distributed, the API development team collected the lessons learned from the initial 
implementation and added more functionality to increase accessibility to GMAT features. 

GMAT External-Force Model Plugin 
 Lucy Ops Staff: Several of the function and parameter names were confusing or unclear 

when using the external force model plugin. Two alternatives were suggested, which both 
sides agreed would improve readability and ease of use. These changes are: 

o Change ExcludeOtherForces to ExcludeGmatForces  
o Change GetForces to GetAcceleration 

 Lucy Ops Staff: Include more input options.  
o At each integration step MONTE must pass in a boa. Loading this is a slow 

process and is understood to be one of the main factors hindering the performance 
for the MONTE-GMAT integration. The Lucy team asked to be able to pass the 
boa in once and have GMAT store the information to save computation time. This 
specific request to include capabilities in GMAT to specifically ingest boa files is 
unlikely to be met, since GMAT source code is release open source, while 
MONTE is under ITAR. 

 Dev Team: Support other derivative types beyond cartesian state.  
o The plugin currently only supports derivatives of the cartesian state. This covers 

the majority of use cases and was the only type needed by the Lucy team, so it 
was the first to be implemented. Orbit matrix and orbit state transitions matrix are 
both supported by GMAT but still need to be implemented for the external force 
model.  

 Dev Team: Implement support for Torque modeling.  
o GMAT force models use a function called GetTorquesForSpacecraft() to calculate 

the torques generated by the model on the object. Torques were not required for 
the Lucy demonstration, so it is not currently supported by the external force 
model. Adding this capability is necessary for the forces in the plugin to have the 
same capabilities as the GMAT internal force models and bring the feature out of 
alpha.  

 Dev Team: Replace custom array math code with a Python package (e.g., NumPy).  
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o Initial attempts were made to utilize some Python packages (e.g., NumPy) for 
array math and other common math functions but there were issues with the 
package import. In the interest of time, custom scripting was utilized for some 
math functions. The custom code should be replaced by well vetted Python 
packages that can perform array math calculations. Importation of packages and 
libraries is a core part of Python, which users expect to have fully functional. 
Elevating the external force model plug-in out of alpha involves the inclusion of 
the fully functional capability to import packages. 

 Dev Team: Create ability to set location of the force models Python script.  
o Currently the Python script must be in the “gmat/userfunctions/python” folder. 

This should be changed to bring the feature more in line with other GMAT 
capabilities which are location agnostic.  

 Dev Team: Clean-up warning messages.  
o When running the plugin, GMAT records two warning messages to the log and 

message window. These messages do not contain relevant information and should 
be resolved/removed to not confuse the user. 

12.0 Recommendations for NASA Standards and Specifications 
No recommendations for NASA standards and/or specifications were identified as a result of this 

assessment. 

13.0 Definition of Terms 
Finding A relevant factual conclusion and/or issue that is within the assessment 

scope and that the team has rigorously based on data from their 
independent analyses, tests, inspections, and/or reviews of technical 
documentation. 

Lessons Learned  Knowledge, understanding, or conclusive insight gained by experience that 
may benefit other current or future NASA programs and projects. The 
experience may be positive, as in a successful test or mission, or negative, 
as in a mishap or failure. 

Observation A noteworthy fact, issue, and/or risk, which may not be directly within the 
assessment scope, but could generate a separate issue or concern if not 
addressed. Alternatively, an observation can be a positive 
acknowledgement of a Center/Program/Project/Organization’s operational 
structure, tools, and/or support provided. 

Recommendation A proposed measurable stakeholder action directly supported by specific 
Finding(s) and/or Observation(s) that will correct or mitigate an identified 
issue or risk. 

14.0 Acronyms and Nomenclature 
2D Two-dimensional 
3D Three-dimensional 
6D Six-dimensional  
AAS American Astronautical Society 
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AIAA American Institute of Aeronautics and Astronautics  
API Application Programming Interface 
boa Binary Object Archive 
Copy Copernicus Python 
COSMIC Computer Optimization System for Multiple Independent Courses 
CR3BP Circular Restricted Three Body Problem 
DDOR Delta-Differential One-Way Ranging 
DSG Deep Space Gateway 
DPTRAJ/ODP Double Precision Trajectory and Orbit Determination Program 
DRO Distant Retrograde Orbit 
DSM Deep Space Maneuver 
DSN Deep Space Network 
EGA Earth Gravity Assist 
EM-1 Exploration Mission 1 
EMTG Evolutionary Mission Trajectory Generator 
FDF Flight Dynamics Facility 
GMAT General Mission Analysis Tool 
GSFC Goddard Space Flight Center 
GUI Graphical User Interface 
hi-fi High Fidelity 
ID Identification 
ideck Input Deck 
JPL Jet Propulsion Laboratory 
JSC Johnson Space Center 
JSON JavaScript Object Notation 
LaRC Langley Research Center 
LEO Low Earth Orbit 
LLO Low Lunar Orbit 
MGSS/AMMOS Multi-mission Ground System and Services/ Advanced Multi-Mission 

Operations System 
MIRAGE Multiple Interferometric Ranging Analysis using GPS Ensemble 
MONTE Mission-Analysis Operations Navigation Toolkit Environment 
NAIF Navigation and Ancillary Information Facility 
NESC NASA Engineering and Safety Center 
NRB NESC Review Board 
NRHO Near Rectilinear Halo Orbit 
OD Orbit Determination 
ODTBX Orbit Determination Toolbox 
QPO Quasi-Periodic Orbits 
SBIR Small Business Innovation Research 
SEP Solar Electric Propulsion 
SoS System of Systems 
SPICE Spacecraft Planet Instrument “C-matrix” Events 
SPK Spacecraft and Planetary Kernel 
SRA Software Release Authority 
SSMO Space Science Missions Operations 
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SUA Software Usage Agreement 
SWIG Simplified Wrapper and Interface Generator 
TDT Technical Discipline Team 
TM Technical Memorandum 
TRL Technology Readiness Level 
VR Virtual Reality 
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