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New fuel development activities are ongoing in advanced
terrestrial reactor development programs

There has been significant government investment in
advanced reactor development

» Department of Defense: Project Pele, mobile reactor
development, DARPA DRACO

» Department of Energy: Advanced Reactor Demonstration
Program, Advanced Gas Reactor Qualification Program

High Assay Low Enriched Uranium (HALEU) is being
investigated as a pathway toward enabling new test reactor
facilities and advanced reactor concepts ~ __—
+ New reactors are proposed to operate under more demanding Twoitecades of DOE investiment lays tie foundation for
. . . . TRISO-fueled reactors
operating conditions (higher temperatures, higher burnup,

different neutron spectrums, novel working fluids) than our
current LWR fleet and benefit from increased enrichment.

Coated patrticle fuel production capabilities are being heavily
invested in by DoD, DoE, and NASA

therefore

The most comm jem TRISO particles are uranium dioxide (UO,) and a mixture of uranium

on kemel types utilized in mod
https://lwww.ans.org/
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https://www.energy.gov/ne/advanced-reactor-demonstration-program

There are a variety of different fuel types under development which
exhibit synergies with the required attributes for space reactors

Comparison of Fuel Types Currently Under Development in the United States
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Qualification testing for AGR has been completed after
23 years and $367M total investment

« The advanced gas reactor (AGR) program has been the
primary fuel qualification program for modern U.S.
TRISO fuels.

- AGR: Qualification of a specific TRISO Fuel Particle
Architecture for specific applications (temperature: 1250
°C, burnup: 20% FIMA).

- Post irradiation examination of AGR-5/6/7 is ongoing
(projected to end FY23).

Fuel Kernel
200um

« Demonstrating desired reliability (measured by
fission product release fraction) is a key goal for
the development of this fuel form in order to
demonstrate that the fuel design serves as a
fission product containment mechanism.

art.inl.gov

 Fuel qualification is anticipated to be a major
element of the space reactor development program

Typical AGR TRISO Fuel Particle

“Technical Program Plan for INL Advanced Reactor Technologies Advanced Gas Reactor Fuel Development and Qualification Program” (INL/MIS-10-20662)
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https://www.osti.gov/biblio/1828385-technical-program-plan-inl-advanced-reactor-technologies-advanced-gas-reactor-fuel-development-qualification-program

Guiding Considerations for Fuel Qualification Needs
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Objectives of Fuel Qualification (NUREG-2246):

1. Demonstrate process to reliably fabricate a fuel product in accordance with a specification

2. Demonstrate fuel performance and ability to meet reliability needs or licensing safety-

requirements through analysis and testing
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https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr2246/index.html

Motivation

For NASA applications, it is desirable for fuel technologies to be sufficiently mature with an established fabrication
infrastructure to reduce cost and schedule for fuel development

 Fuel qualification is expected to be a major element of each space reactor
development program, which encompasses all fuel fabrication, testing, and
analysis activities to mature a space reactor fuel form capable of meeting
performance and mission requirements.

* There is no existing qualified fuel form for any of the space reactors currently of
Interest to NASA and existing infrastructure dedicated to space reactor fuel
development is limited.

« Purpose of this study was to assess the readiness of terrestrial nuclear fuels for
space applications, including identification of key technology development
needs and related risk (technical, cost, schedule).
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Assessment Process and Results
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Assessment Scope and Process

Representative fuel forms based upon industry coated particle fuel technologies were assessed

e Assessment CategOrieS: Application Reactor Rg:;:t" Reactor .. . =~ Mass/
- Performance: projected operating range Power | 1o mperature | ©0°/ant Volume
and existing database FSp 50 KW o0k NaHeat o o
- Technical Risk: technology development Pipes yrs - minimize
gaps Li or o
: NEP 10 MWt 1200 K D yrs minimize
- Programmatic: cost and schedule HeXe Y
] NTP 200 MWt 2700 K LH2 10 hrs  minimize
« Comparative Assessment:
Historic fuel forms were com pared Application H'St°r(';e'::gn22”)"at"'e Coated Particle Fuel Derivative
to industry coated particle fuels csp UO, Pelle AGR TRISO in Graphite
(2010 FSP Project) UCO kernel with PyC-SiC coatings
+ Systems Evaluated: onpete odhed sl crpite

- Fission Surface Power (FSP)
- Nuclear Electric Propulsion (NEP) UC,-Graphite Matrix Cercer with Modified Coated Particle

) NTP ZrC or C matrix with dispersed UN
- Nuclear Thermal Propulsion (NTP) (NERVA7Rover) kemels with PyC-ZrC coatings
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Fuel Performance Parameter Matrix

Comparing fuel performance parameter goals for reference missions to pre-existing databases exposes knowledge gaps
that will require further development

Peak Fuel Lifetime

Application Power Density Operating Heat Transfer Fluence
Temperature G )

FSP >100 W/CI’T]3 1400+ K Na Heat 10 yrs
(~0.1 MWI/L) Pipes (Mo) (56x10”n/m)

3

NEP >100 Wicm 1400+ K LiorHexe _°YIS
(~0.12 MWIL) (2.5 x10"°n/m")

NTP >5.000 chm3 2850+ K L Ho2 10 hrs
(5 MWIL) (3.6 x10°°n/m°)
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Fission Surface Power Assessment - Overview

 FSP systems require a kilowatt class, low mass reactor
(including shield) capable of operation up to 10 years

Reactor

Application Reactor Outlet Reactor Lifetime B
Power Coolant Volume
Temperature
Na Heat L
FSP 50 kWt 1200 K Pipes 10 yrs minimize

« Desirable fuel attributes
- High readiness
- High uranium density
- High operating temperature capability
- Irradiation tolerance (low fission gas release and swelling)

Y

https://www.ans.org/news/article-439/

https://world-nuclear-news.org/Articles/TVEL-
to-supply-fuel-pellets-for-Tarapur

UO, Pellet AGR TRISO
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Fission Surface Power Fuel Assessment

Existing

Database

Technology
Gap
Assessment

Cost

https://wvew.an&'org/news/articIe—439/

AGR TRISO

AN

Schedule

Assessment of Coated Particle Fuels for Space
Nuclear Power and Propulsion Systems

Fast and thermal reactors possible with HALEU.
Moderated-UO, reactors would yield the lowest
mass.

Performance

Performance

AGR TRISO in Graphite

UO, Pellet ) : :
2 UCO kernel with PyC-SiC coatings
Epithermal and thermal reactors possible with
HALEU. Moderated TRISO reactors would yield
the lowest mass.

AGR irradiation database exists for relevant
temperature range and burnups (gaps exist for
representative power densities), combined
effects and reactor demonstration testing
needed.

6 Technology Gaps Identified

Low Low
Limited investment may be needed for facilities Limited investment may be needed for facilities
modification on the order of $25M or less throughout the = modification on the order of $25M or less throughout the
length of the program. length of the program.

Moderate
There is moderate confidence that the proposed
Low technology is capable of being matured to enable a NASA

There is high confidence that the proposed technology is integrated system demonstration of the proposed

capable of being matured to enable a NASA integrated reference system parameters by 2029. There is high
system demonstration of the proposed reference system confidence that the proposed technology is capable of

parameters by 2029. being matured to enable a NASA integrated system

demonstration of the proposed reference system

parameters by 2035.

®
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Fission Surface Power Assessment - Key Findings
and Takeaways

* Due to higher uranium loadings, reactors will be smaller (lower volume and mass) with UO,
or UN pellet fuels compared to TRISO fueled reactors.
- Shielding (volume and mass) will scale proportionally with reactor volume

- Technology development would be focused on cladding, moderator, and heat pipe development to meet reference system
parameters

- If peak operating temperature requirement is reduced (< 900 K): UO, cores could be developed faster (infrastructure,
performance database, and fabrication methods exist).

- If the temperature cannot be reduced, the TRISO reactor design may be a better option

 Key Reactor Technology Development Challenge: Moderator

- Moderator dimensional and compositional instability negatively impacts reactivity worth, power profile, and structural integrity of
the core

- High temperature moderators will require technology development to establish net shape fabrication processes or extend the
existing performance database

« Ten-year lifetime requires a combined system ground test to obtain a complete performance
database.

- For demonstration missions: demonstrate integrated fuel, moderator, heat pipe integrity under reactor operations
- For qualification: reliability, instrumentation, system interfaces need to be demonstrated

®
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Nuclear Electric Propulsion Assessment - Overview

 NEP systems require a megawatt class, low mass
reactor capable of operation up to 5 years

Reactor
.. React React ip a- M
Application eactor Outlet eactor Lifetime ass)/
Power Coolant Volume
Temperature

NEP 10 MW1t 1200 K Lior HeXe S yrs minimize

https://nasa.gov/

« Desirable fuel attributes
- High uranium density
- High thermal conductivity
- High operating temperature capability
- Irradiation tolerance (low fission gas release and Ll ——
Prosentation to the National ACademy o

. s e =
SWG' | | ng) Science Engineering and Medicine, 2020. https://doi.org/10.1016/j.jnucmat.2020.152034

- Chemical compatibility with cladding and working fluid UN Pellet modified TRISO
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Nuclear

UN Pellet
Performance
Existing
P
L. Mason “Nuclear Electric Propulsion” PeI’fO rmance
Presentation to the National Academy of
Science Engineering and Medicine, 2020. Datab ase
UN Pe”et Technology
T Gap 7 Technology Gaps Identified
j Assessment
Moderate
Cost Some new facility infrastructure investment may be
needed but is not anticipated to exceed $100M
throughout the length of the program.
Moderate
There is moderate confidence that the proposed
https://usnc.com/ technology is capable of being matured to enable a
R " — NASA integrated system demonstration of the

modified
TRISO

There is high confidence that the proposed
technology is capable of being matured to enable a
NASA integrated system demonstration of the
proposed reference system parameters by 2035.

Assessment of Coated Particle Fuels for Space
Nuclear Power and Propulsion Systems

Electric Propulsion Fuel Assessment

Modified TRISO in Graphite
UN kernel with PyC-SiC coatings

Epithermal and thermal reactors possible
with HALEU. Moderated TRISO reactors
would yield the lowest mass.

Limited test data exists (particle irradiation
experiments), combined effects and reactor
demonstration testing needed.

8 Technology Gaps ldentified

Moderate
Some new facility infrastructure investment may be
needed but is not anticipated to exceed $100M
throughout the length of the program.

Moderate
There is moderate confidence that the proposed
technology is capable of being matured to enable a
NASA integrated system demonstration of the
proposed reference system parameters by 2029.
There is high confidence that the proposed
technology is capable of being matured to enable a
NASA integrated system demonstration of the
proposed reference system parameters by 2035.

®
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Nuclear Electric Propulsion Assessment - Key
Findings and Takeaways

« For NEP systems, we believe alpha to be the primary driver and thus minimizing reactor mass / volume is
of high interest.
- UN pellets best fuels candidate to meet this need. Development of refractory cladding would be required
- Moderator development (high temperature) will likely drive schedule

- Modified TRISO fuels offer good high temperature, high burnup characteristics. However, there no heritage from historic fuel
form development and has a limited terrestrial fuel performance database (not qualified under AGR)

« Technology development would be required to establish fuel fabrication processes and performance database

« Key reactor technology development challenges
- Moderator
- Structural Materials (cladding)
- System Ground Test

« Extensibility: UN is more extensible than both UO, and TRISO fuel forms assessed for FSP.
- UN was assessed to allow for the most compact reactor design and is capable of high operating temperatures.
- Acommon fuel form between FSP and NEP would enable a common fuel production line to be leveraged for both applications.

- Acommon fuel form would reduce the design and testing needed to mature and qualify flight hardware which could reduce
overall cost and schedule for the development of both systems.
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Nuclear Thermal Propulsion Assessment - Overview

 NTP systems require a very high temperature,

hydrogen compatible reactor capable of operation for
multiple short burns

Reactor
rplfeen e Outlet WD e | EEDY
Power Coolant Volume
Temperature
NTP 500 MWt 2700 K LH2 10 hrs minimize

Courtesy of NASA

« Desirable fuel attributes
- High melting temperature / high temperature stability
- Hydrogen compatibility
- High uranium density

https://doi.org/10.2172/4154952

. . . https://orcid.org/0000-0001-7017-2666
- Thermal shock / cycling resistance NER[\)/Qi(V(;Ft?Vpehlte) Cercer (ZrC) with
- Slow degradation mechanisms modified TRISO

(UC, BISO) ;
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https://doi.org/10.2172/4154952

NERVA (UC,)
Derivative

https://orcid.org/0000-0001-7017-2666

Cercer (ZrC)
with modified
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TRISO

Rover / NERVA Cercer with Modified Coated
Graphite Matrix Particle
(Graphite matrix with dispersed UC, kernels (ZrC matrix with dispersed UN kernels
with PyC-coating) with PyC-ZrC coating)

Operation above 2700 K requires molten Operating temperatures up to 3100 K proposed
kernel operation, lifetime extension to 10 hours  (theoretical melting point of UN). Unknown

Performance possible with protective channel coating failure modes, lifetime limiting phenomena not
technology development. known.
isti Fully established separate effects testing data _— .
Existi ng y  separ . 9 Limited test data exists (some fuel and
Performance up to 2500 K (irradiation, high temperature surrogate testing), combined effects and
studies), high temperature combined effects reactor demonst;ation testing needed
Database and reactor demonstration testing needed. g i
Technology
Gap 9 Technology Gaps Identified 11 Technology Gaps Identified
Assessment
High High
Cost Significant investment in facility infrastructure Significant investment in facility infrastructure investment
investment may be needed and is likely to exceed may be needed and is likely to exceed $100M throughout
$100M throughout the length of the program. the length of the program.
Moderate Moderate
There is moderate confidence that the proposed There is moderate confidence that the proposed
technology is capable of being matured to enable a technology is capable of being matured to enable a
NASA integrated system demonstration of the proposed = NASA integrated system demonstration of the proposed
Sc h Ed u |e reference system parameters by 2029. There is high reference system parameters by 2029. There is high
confidence that the proposed technology is capable of confidence that the proposed technology is capable of
being matured to enable a NASA integrated system being matured to enable a NASA integrated system
demonstration of the proposed reference system demonstration of the proposed reference system
parameters by 2035. parameters by 2035.

®
Nuclear and Emerging Technologies for Space (NETS) Conference 2023 19 @ANS



Nuclear Thermal Propulsion Assessment - Key
Findings and Takeaways

* g, Is the primary KPP driving the need for technology development. Modern NTP programs

will require higher performance fuels than historic programs.

- Current desired performance parameters (2700 K exit temperature, 10 hour lifetime, 5+ MW/L power density) will require fuel
forms to exceed historic operating conditions

- Longer lifetime, higher temperature fuel performance is needed. A significant development effort is still necessary regardless of
fuel form selection

« UC, Derivative Fuels
- Advantage: ability to leverage historic design and performance databases
- Disadvantage: fuel melting point must be exceeded to meet KPPs (beyond demonstrated failure limits)
- Technology development is required for this fuel form to demonstrate performance capability

« Cercer (ZrC matrix) with Modified Coated Particle Fuels

- Advantage: fuel form design leverages high melting temperature and hydrogen compatible materials to provide a path to higher
temperatures and longer lifetimes
- Disadvantage: no historic comparison or direct commercial development analog, fuel failure modes are unknown

- Technology development is required for this fuel form to demonstrate performance capability
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Summary and Conclusions
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Summary

FSP

UO, Pellet

AGR TRISO in
Graphite

Performance

Existing
Performance
Database

Technology Gap

Assessment

Cost

Schedule

Fast and thermal
reactors possible
with HALEU

Low

Low

Moderated TRISO
reactors may yield
competitive mass

AGR irradiation
database exists for

relevant temperature
range and burnups

Low

Moderate

NEP

Modified TRISO in
Graphite

UN Pellet

NTP

Rover / NERVA
Graphite Matrix

Cercer with Modified
Coated Particle

Epithermal and
thermal reactors
possible with HALEU

Limited test data
exists (particle
irradiation
experiments)

7 8
Moderate Moderate
Moderate Moderate

Operation above
2700 K requires
molten kernel
operation

Fully established
separate effects
testing data up to
2500 K

High

Moderate

Operating
temperatures up to
3100 K proposed
(UN theoretical T,,)

Limited test data
exists (some fuel and
surrogate testing)

11

High

Moderate
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Conclusions

« Space reactors can leverage terrestrial fuel technologies. Ongoing advanced
reactor development activities are maturing fuel forms capable of higher
operating temperatures and burnups in the range desired for space reactor
applications.

« Meeting high performance KPPs will require deviation from established fuel
types which will introduce new technical risks and require technology
development.

* New testing infrastructure is needed to prove out reactor operations / reliability
- Reliability requirements will drive overall testing program
- Power reactors require facilities dedicated for long lifetime testing

- NTP reactors require unique facilities capable of handling the H, propellant and unique
reactor (engine) operations
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Figure Citations

* Project Pele and Advanced Reactor Demonstration Program
- https://www.gao.gov/products/gao-20-380sp
- https://www.cto.mil/pele_eis/
- https://lwww.energy.gov/ne/advanced-reactor-demonstration-program

« TRISO
- https://www.ans.org/news/article-439/two-decades-of-doe-investment-lays-the-foundation-for-trisofueled-reactors/
- P. A. Demkowicz, "TRISO Fuel Part I. Background, Fabrication, and Irradiation Performance," Idaho National Laboratory, Idaho

Falls, ID, 2021. DOE/ID-Number (inl.gov)
- Modified TRISO: Terrani, K. A., Jolly, B. C., & Harp, J. M. (2020). Uranium nitride tristructural-isotropic fuel particle. Journal of Nuclear Materials, 531, 152034.

- Modified TRISO: https://www.usnc.com/fuel/ (accessed March 2022)
- Cercer BISO: Gaffin, Neal D., "Fabrication, Thermophysical, and Mechanical Properties of Cermet and Cercer Fuel Composites for Nuclear Thermal Propulsion. " PhD

diss., University of Tennessee, 2022. https://trace.tennessee.edu/utk graddiss/7744

« Uranium Dioxide, Uranium Nitride, and Rover NERVA Fuel Forms
- Uranium dioxide: https://world-nuclear-news.org/Articles/TVEL-to-supply-fuel-pellets-for-Tarapur
- Uranium nitride: L. Mason “Nuclear Electric Propulsion” Presentation to the National Academy of Science Engineering and Medicine, Online. 2020 Space

Nuclear Propulsion Technologies Meeting 2 NASA Perspectives on NEP NTP | National Academies
NERVA / Rover Fuel Forms: “Pewee-2 high expansion matrix development program. Final report”. WANL-TME-19831969. d0i:10.2172/4154952.

 NTP, NEP, and FSP Representative Images
- https://www.nasa.gov/mission pages/tdm/fission-surface-power/index.html
- https://www.nasa.qov/feature/glenn/2020/the-propulsion-we-re-supplying-it-s-electrifying

- D. Burns, D. Ise, K. Mceniry "Space Nuclear Propulsion,” Space and Missile Defense Symposium, Huntsville, AL, 2021. Space Nuclear
Propulsion - NASA Technical Reports Server (NTRS)
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https://www.gao.gov/products/gao-20-380sp
https://www.energy.gov/ne/advanced-reactor-demonstration-program
https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_38598.pdf
https://www.usnc.com/fuel/
https://trace.tennessee.edu/utk_graddiss/7744
https://www.nationalacademies.org/event/06-08-2020/space-nuclear-propulsion-technologies-meeting-2-nasa-perspectives-on-nep-ntp
https://www.nasa.gov/mission_pages/tdm/fission-surface-power/index.html
https://www.nasa.gov/feature/glenn/2020/the-propulsion-we-re-supplying-it-s-electrifying
https://ntrs.nasa.gov/citations/20210019045
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High Temperature and Irradiation Considerations for Space Reactors

In-reactor materials for space reactors can fail through a variety of mechanisms which are time and temperature dependent

Adapted from: Bhattacharyya “An Assessment of Fuels for Nuclear Thermal Propulsion” 2001 (ANL/TD/TM01-22).
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High Temperature and Irradiation Considerations for Space Reactors

In-reactor materials for space reactors can fail through a variety of mechanisms which are time and temperature dependent

Adapted from: Bhattacharyya “An Assessment of Fuels for Nuclear Thermal Propulsion” 2001 (ANL/TD/TM01-22).
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Power Reactor Material Operating Breakpoints and Lifetime Considerations

Creep rupture and corrosion resistance controls maximum structural material* operating temperature, low temperature

use of components must be limited to above the irradiation embrittlement regime
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*fuel materials / elements are limited by allowable fuel swelling, fission gas release, and chemical / thermal interactions with surrounding structural materials
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NTP Material Operating Breakpoints and Lifetime Considerations

Melting point limits maximum NTP fuel operating temperature (solid core NTP), high temperature stability / hot hydrogen
corrosion resistance impacts fuel lifetime at temperature (fuel endurance)

Melting temperature of Predicted endurance of NTP fuels based
NTP fuel material candidates on historical test data
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