Carbide Coated Carbon-Carbon Heat Exchange Tube for Nuclear Thermal Propulsion Fuel Assembly

Julia Cline¹, Carl Poteet¹, Benjamin Kowalski², Nathan Jacobson², Rafael Gonzalez³

¹Structural Mechanics and Concepts, NASA Langley Research Center ²Environmental Effects and Coatings, NASA Glenn Research Center ³Kratos Southern Research Engineering (KSRE)

Nuclear Emerging Technologies for Space Conference Idaho Falls, ID | 8-11 May 2023

Carbon-carbon tube development team

Langley Research Center

Julia Cline Carl Poteet Sarah Langston Elora Kurz Felicia Webster

Ames Research Center

Justin Haskins Charles Bauschlicher BJ Tucker Jaehyun Cho

Glenn Research Center

Benjamin Kowalski Nathan Jacobson Pete Bonacuse Maria Kuczmarski Chris Johnston

NASA Headquarters

Anthony Calomino Ken Aschenbrenner CvdTek Chris Hill

Kratos SRE

Rafael Gonzalez James Hawbaker Bhavesh Patel Mark Patterson Mark Opeka

This work is supported by the NASA Space Technology Mission Directorate through the Space Nuclear Propulsion (SNP) project

Presentation Agenda

Motivation and Specific Challenge

Questions/Discussion

Nuclear Thermal Propulsion (NTP) enables a host of missions beyond achieving the first crewed mission to Mars in 2039

Expanded cis-lunar mobility Sustained human Mars presence

Deep space exploration

NTP reactors must operate at very high temperatures to meet propulsion performance goals

NTP spacecraft are high thrust, high specific impulse (Isp) systems

- Thrust directly related to thermal power of reactor
 - 100,000 N ≈ 450 MW_{th} at 900 sec lsp
- Isp directly related to exhaust temperature:
 - Goal: 900 sec Isp \rightarrow ~2900 K (2627°C)

Round trip mission duration:

> 900 < 600 days days Chemical propulsion Nuclear thermal propulsion

= a materials problem!

Limited material options in 2900 K temperature range

without

Refractory Metals

- Historically used in nuclear applications
- High-temperature capable
- Manufacturability issues
- H₂ embrittlement issues

For NTP	specific	applications	, we also	must	consider:
			-		

- Neutron absorption cross-section (desire low) •
- Hydrogen reactivity (desire low) •
- Manufacturing complex geometry (small diameter tube) •

58

57

60

59

61

62

63

64

65

66

Dv

Cf

Но

99 Es 71

103

Lu

Lr

70

102

No

Yb

69

101

Fm Md

Tm

Er

100

¹ H		_															² He	
3 Li 11	4 Be	4 Be 12										5 B 13	6 <u>4300 к</u> 14	N 15	8 O 16	9 F 17	10 Ne	C/CTypically used in
Na	Mg											AI	Si	Р	S	CI	Ar	hypersonics
¹⁹ K	Ca	Sc	Ti	23 V	²⁴ Cr	²⁵ Mn	Fe	Co	²⁸ Ni	Cu	Zn	Ga	Ge	As	Se	Br	³⁶ Kr	High-temperature capable
³⁷ Rb	38 Sr	³⁹ Y	⁴⁰ Zr	41 Nb 2740 K	42 Mo 2890 K	43 Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe	Low coefficient of
55 Cs	⁵⁶ Ba		72 Hf	⁷³ Та 3290 к	74 W 3695 K	75 Re 3438	76 OS 3310 K	77 r 2720 K	78 Pt	⁷⁹ Au	80 Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	85 At	⁸⁶ Rn	thermal expansion (CTE)
87 Fr	⁸⁸ Ra		¹⁰⁴ Rf	Db	Sg	Bh	Hs	Mt	¹¹⁰ Ds	¹¹¹ Rg	¹¹² Cn	¹¹³ Nh	114 Fl	¹¹⁵ Mc	116 Lv	¹¹⁷ Ts	¹¹⁸ Og	 H₂ corrosion witho protective coating

Carbides provide another option for lining flow channels in NTP fuel element

Carbide coated C/C heat exchange tube

Manufacturing C/C heat exchange tubes Hermetic coating on the tube interior surface to prevent H₂ corrosion

Glenn Research Center

Ames Research Center

Experimental testing to understand structural behavior

Computational modeling of thermal and structural behavior

Iterative "build-test-repeat" tube development cycle

1.016-m heat exchange tubes manufactured

Established a method to characterize tube permeability and axial tension

Identified carbides as the candidate coating materials

- Carbides selected as best candidate materials
- Demonstrated preferential carbon volatilization in carbides

Metal-rich (M-rich); Carbon-rich (C-rich)

For more information, attend the lightning talk by William "BJ" Tucker on "Refractory Carbides for Hydrogen Erosion Resistance in Carbon Tubes for Nuclear Thermal Propulsion" on Tuesday May 9, 2023 @ 4:05 pm MDT

Using hot hydrogen testing to understand carbide behavior in relevant environment

Designed an improved sample holder for CFEET tests to achieve boundary layer on sample

Issues with previous setup

Symmetry for heating

Parallel to flow

to

Well developed boundary layer on sample

Tungsten

susceptor

Η,

April 2023 CFEET test of TaC using new fixture

Using thermomechanical modeling of tube to elucidate challenges with tube-fuel integration

• Finite element modeling (FEM) used for preliminary understanding of stress states

 Stresses due to coefficient of thermal expansion (CTE) mismatch are very large

Challenge: Can we overcome CTE mismatch with a different design configuration?

Problem greatly reduced if CerCer and coating are pseudo-ductile

For more information, please attend "The Challenges with Material Interfaces in a Nuclear Thermal Propulsion Engine Heat Exchanger" by Sarah Langston at 10:30 am MDT on May 8, 2023

In the next year, coated C/C tubes will be manufactured and tested in relevant conditions

Concluding remarks

- Desired geometry is achievable using C/C
- Coating C/C remains a tall pole
- Developed an experimental assessment method for C/C tubes
- FEM used to investigate tube integration with CerCer to form fuel assembly

Future work

- Chemical vapor deposition to coat inner diameter of C/C
- Coated C/C samples for CFEET testing to characterize behavior
- Manufacture mixed carbide samples for CFEET testing
- Continued experimental characterization of the coated C/C tubes at Kratos SRE

Questions?

Julia Cline | julia.e.cline@nasa.gov NASA Langley Research Center

> This work is supported by the NASA Space Technology Mission Directorate through the Space Nuclear Propulsion project