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Nuclear Thermal Propulsion (NTP) enables a 
host of missions beyond achieving the first 

crewed mission to Mars in 2039
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Expanded cis-lunar 
mobility

Sustained human 
Mars presence Deep space 

exploration



NTP reactors must operate at very high 
temperatures to meet propulsion performance goals 

= a materials problem!
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> 900 
days

< 600 
days

Round trip mission duration:Destination: Mars

NTP spacecraft are high thrust, high specific 
impulse (Isp) systems

• Thrust directly related to thermal power of 
reactor 

• 100,000 N ≈ 450 MWth at 900 sec Isp

• Isp directly related to exhaust temperature:

• Goal: 900 sec Isp → ~𝟐𝟗𝟎𝟎 𝐊 (𝟐𝟔𝟐𝟕℃)

Chemical propulsion Nuclear thermal propulsion
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Limited material options in 2900 K 
temperature range

Refractory Metals
• Historically used in 

nuclear 
applications

• High-temperature 
capable

• Manufacturability 
issues

• H2 embrittlement 
issues
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For NTP specific applications, we also must consider:
• Neutron absorption cross-section (desire low)
• Hydrogen reactivity (desire low) 
• Manufacturing complex geometry (small diameter tube)

C/C

• Typically used in 
hypersonics

• High-temperature 
capable

• Low coefficient of 
thermal expansion 
(CTE)

• H2 corrosion without 
protective coating
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Fahrenholtz - UHTC

Carbides provide another option for lining flow 
channels in NTP fuel element

Brittleness of carbides on 
their own may influence 
performance as a flow 
channel liner on their 
own due to damage 

caused by temperature 
cycling and high 

pressures   

Carbide coated 
C/C heat 

exchange tube



C/C heat exchange tubes must meet 
specific requirements to be successful

Coating
Tube

H2 flow

Nuclear fuel
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L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm



2900 K of flowing H2

C/C heat exchange tubes must meet 
specific requirements to be successful

Coating
Tube

H2 flow

Nuclear fuel
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L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm



2900 K of flowing H2

6.9 MPa working pressure

C/C heat exchange tubes must meet 
specific requirements to be successful

Coating
Tube

H2 flow

Nuclear fuel
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L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm



Coating
Tube

H2 flow

Nuclear fuel

2900 K of flowing H2

6.9 MPa working pressureHermetic surface 

coating to protect 

the C/C from hot 

hydrogen

C/C heat exchange tubes must meet 
specific requirements to be successful
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L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm



2900 K of flowing H2

100 K/sec thermal cycling 

loading to 2900 K for 10 cycles

Hermetic surface 

coating to protect 

the C/C from hot 

hydrogen

C/C heat exchange tubes must meet 
specific requirements to be successful

Coating
Tube

H2 flow

Nuclear fuel
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6.9 MPa working pressure

L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm



2900 K of flowing H2

100 K/sec thermal cycling 

loading to 2900 K for 10 cycles

Design life of 5 hours with 

multiple start/stop capability

Hermetic surface 

coating to protect 

the C/C from hot 

hydrogen

C/C heat exchange tubes must meet 
specific requirements to be successful

Coating
Tube

H2 flow

Nuclear fuel
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6.9 MPa working pressure

L = 1.016 m

d = 3.175 mm

t = 0.254 mm to 0.381 mm
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Challenge: Develop a hermetic C/C tube with 
sufficient high-temperature strength and 

structural integrity for the NTP fuel element

Manufacturing C/C 
heat exchange 

tubes

Hermetic coating on 
the tube interior 

surface to prevent 
H2 corrosion

Experimental 
testing to  

understand 
structural behavior

Computational 
modeling of  
thermal and 

structural behavior
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Iterative “build-test-repeat” tube 
development cycle

1.016-m heat exchange tubes manufactured

19
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Established a method to characterize tube 
permeability and axial tension

20

Design Test fixture

Permeability Test Fixture

Tube specimen Support 
plug

Pull rod

Axial Tension Test Fixture
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Identified carbides as the candidate 
coating materials

• Carbides selected as best candidate materials

• Demonstrated preferential carbon volatilization in carbides

Stable 
interface

Metal-rich (M-rich); Carbon-rich (C-rich)
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For more information, attend the lightning talk by William “BJ” Tucker on “Refractory Carbides for Hydrogen Erosion 
Resistance in Carbon Tubes for Nuclear Thermal Propulsion” on Tuesday May 9, 2023 @ 4:05 pm MDT
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Using hot hydrogen testing to understand 
carbide behavior in relevant environment

Current 
in coil

Induced 
current in 
workpiece

Magnetic
field

Tungsten 

susceptor

Compact Fuel Environment 
Element Test (CFEET)

Top-down 

view

Side view
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Designed an improved sample holder for CFEET 
tests to achieve boundary layer on sample

Issues with previous setup
Symmetry for 
heating

H2

Parallel to 
flow

Well developed
boundary layer 
on sample

Tungsten 
susceptor

Previous CFEET test setup

Hydrogen 
Flow

Pedestal 

Specimen

59.2 mm Hydrogen 
Flow

New setup

April 2023 CFEET test of 

TaC using new fixture
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Using thermomechanical modeling of tube to 
elucidate challenges with tube-fuel integration

• Finite element modeling (FEM) used for 
preliminary understanding of stress states 

• Stresses due to coefficient of thermal expansion 
(CTE) mismatch are very large
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One cycle

Challenge: Can we overcome CTE mismatch 
with a different design configuration?  

Problem greatly reduced if CerCer and coating 
are pseudo-ductile

~0.025 mm 
gap

Mud crack

Crack

CerCer

C/C tube

Coating
Tube-fuel 
interface

40
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27
23
20
16
13
10
6
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0

Applied temperature distributions

ZrC CerCer: 2900 K

C/C tube : 200 K linear gradient

ZrC coating: 67 K gradient

Normalized 
through-
thickness 

stress (MPa)
Fuel is ceramic-ceramic (CerCer)

For more information, please attend “The Challenges 
with Material Interfaces in a Nuclear Thermal Propulsion 
Engine Heat Exchanger” by Sarah Langston at 10:30 am 
MDT on May 8, 2023
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Future work

• Chemical vapor deposition to coat inner diameter of C/C

• Coated C/C samples for CFEET testing to characterize behavior

• Manufacture mixed carbide samples for CFEET testing

• Continued experimental characterization of the coated C/C tubes at Kratos SRE

In the next year, coated C/C tubes will be 
manufactured and tested in relevant conditions
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Concluding remarks

• Desired geometry is achievable using C/C

• Coating C/C remains a tall pole

• Developed an experimental assessment method for C/C tubes

• FEM used to investigate tube integration with CerCer to form fuel assembly



Questions? 
Julia Cline | julia.e.cline@nasa.gov
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