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1. Abstract  
Heightened occurrence of severe wildfires in the Western United States is increasing the need to better 
understand regions of high potential wildfire severity and develop methodologies for identifying the best 
locations for fuels reduction and active wildfire suppression, especially in populated regions such as Marin 
County, California. Marin County, located in the San Francisco Bay Area, has had significant development in 
the wildland-urban interface and periods of highly wildfire-prone conditions. The NASA DEVELOP team 
collaborated with Fire Foundry (a Marin-based fire service workforce development program) and the Marin 
County Fire Department to develop models to assist with fire management. Using data from Sentinel-2A, 
PlanetScope, ECOSTRESS, a county-wide LiDAR mapping effort, Landsat 7 Enhanced Thematic Mapper 
(ETM+), and Landsat 8 Operational Land Imager (OLI), our team developed a number of input data layers 
for three different models to evaluate wildfire severity. One model performed a suitability analysis with 
weights based on scientific literature; another model utilized a U-Net Convolutional Neural Network trained 
on previous fires in Marin and neighboring Sonoma County to predict the difference normalized burn 
severity; and the third inputted data layers into the FlamMap tool that outputs risk categories. We compared 
model outputs and performed a weighted overlay analysis to identify specific locations where a fireline could 
be constructed to interrupt the progress of an active fire. These tools will assist partners in preparing for and 
managing active wildfire situations.  

Key Terms 
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2. Introduction 
2.1 Background Information 
California has experienced a sharp increase in large-scale, destructive wildfire in recent years due to a variety 
of factors. Historic exclusion of fire from fire-adapted ecosystems, encroachment of human development 
into the wildland-urban interface (WUI), and climactic changes have led to longer, hotter, and drier autumns 
that coincide with strong offshore winds to create high wildfire risk conditions (Gross et al., 2020). Situated 
between the Pacific Ocean and the San Francisco Bay, Marin County has a typically moist climate that leads 
to rapid growth of vegetation in many forested regions (Figure 1). This effect is concentrated on the 
windward side of Mount Tamalpais, while the leeward side experiences the long summer dry season more 
acutely. Fire has been historically excluded for upward of one hundred years in these forests and it faces many 
of these same wildfire risks (G. Groneman, personal communication, January 31, 2023). While the moisture 
results in relatively few days of high fire risk, extreme heat and wind increasingly coincide across the area and 
create the potential for an explosive wildfire with substantial intermixed development at risk. The main 
vegetation, or fire fuels, in the study area comprises grasses and forested areas (Table 1). Fires in Marin 
County occur from the months of May to October. A higher quantity of fires occurs in mid-summer (the 
months of July and August), but the area burned is greatest in late summer and early fall (CalFire FRAP GIS 
Data, 2023). This trend is in alignment with other areas of California, where fuel-driven fires are more 
common and wind-driven fires are fewer but burn more area (Jin et al., 2015). Marin County has Foehn Wind 
events in the early fall that can propagate these large fires (Forrestel et al., 2011). 
 
Researchers across the American West and other fire-prone regions around the world have increasingly 
turned to remote sensing to evaluate wildfire risk and address wildfires when they do ignite. Topography is 
key as it affects the climactic factors that drive vegetation growth and fuel wildfire, with slope in particular 
contributing to the rate of spread as fire moves quickly uphill (Maniatis et al., 2022). Satellites can also provide 
information across large areas about wildfire fuel loads such as the landcover type, vegetation density, and 
water availability, all of which determine how quickly and severely a fire may spread through an area 
(Mitsopoulos et al., 2017; Maniatis et al., 2022). Wildfires also require an ignition source and research shows 
that wildfire in developed parts of California will be overwhelmingly sparked by human ignition (Chen & Jun, 
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2022). Proximity to infrastructure, also provided by remote sensing, is another key component in determining 
wildfire risk at a given location. 
 
Table 1 
Land cover percentages for Marin County 

Land Cover Land Cover (km2) Percent of Land (excluding water) 

Forest 651 48.6% 

Grassland 574  42.8% 

Built Up 59  4.4% 

Barren/Sparse Veg 25  1.9% 

Cropland 14  1% 

Herbaceous Wetland 11 0.8% 

Shrubland 5  0.4% 

Source: 2020 Sentinel-2 derived landcover map. 
 
Fires require heat, fuel, and oxygen to burn and propagate. Wildland firefighters typically attempt to remove 
fuel (e.g., downed branches, shrubbery, and trees) to extinguish fires, as cooling or snuffing an active fire is 
difficult. Fire suppression techniques in Marin County primarily include hand-cut firelines, bulldozer lines, 
and prescribed burns. These activities are implemented based on factors such as fuel moisture, topography, 
and weather patterns, with consideration of historic suppression activities to inform the most ideal locations 
for active fire management. Remote sensing technology that is developed into a robust model could improve 
Marin County’s effectiveness in battling wildfires. This model would attribute fire risk to various areas based 
on the different fuel, vegetation, and topography parameters and identify ideal areas for fire suppression 
intervention. As fire regimes in the region are shifting due to climate change and other factors, historic data 
may not reflect contemporary fuel and fire dynamics. As such, a study period looking at 2013 to 2022 will 
allow for fire risk and suppression models to focus on the most up-to-date data and incorporate newer 
remote sensing products with superior spatial and spectral resolutions that may be relevant to understanding 
fuel conditions.  
 

  
Figure 1. 3-meter ground sample resolution Marin County study area map derived from PlanetScope data 
(2023). Includes copyrighted material of Planet Labs PBC. All rights reserved. 
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2.2 Project Partners & Objectives 
We partnered with FIRE Foundry, a workforce development program based in Marin County that aims to 
bolster the next generation of individuals in the fire service through training and certifications. The program 
is a consortium of many organizations including the Marin County Fire Department (MCFD) and the 
University of California, Berkeley’s Disaster Lab. The MCFD is a local government agency that is interested 
in using Earth observations (EO) to aid their understanding of risk and future suppression sites in Marin 
County. Currently, the MCFD utilizes both hands-on and remotely sensed data observations to aid in fire 
management and suppression activities. While the MCDF is able to locate and stop ongoing fires, they 
currently lack a robust system for locating the best regions for suppression tactics that incorporate historical 
data on dozer lines and fire breaks, as well as vegetation and climate indices. With the use of NASA EO, in 
conjunction with other types of satellite data products, the county can be better equipped in monitoring and 
controlling high severity fires that may transpire in the summer season.  
 
The MCFD has been using hand-drawn maps, in conjunction with Avenza and InciWeb, to mark dozer lines, 
fire breaks, and locate areas for targeted fire suppression activity during active fires. For future fire modeling, 
however, they are seeking a real-time model that is optimized with soil, land, and vegetation parameters in 
addition to historical information on fire suppression indents. We wanted to make a final product that was 
easy to use with little technical experience. Using Google Earth Engine (GEE), the final product classified 
fire risk and severity, overlayed with suggestions on where to focus fire suppression efforts. Data fusion and 
resizing was necessary because the data inputs for this model have unique temporal and spatial resolutions, 
and separate processing methods. 
 
This project created a coding tutorial and presentation on remote sensing applications in wildfire management 
to support FIRE Foundry’s goal to equip early-career fire service individuals with knowledge of the latest 
technology in fire management.  
 

3. Methodology 
3.1 Data Acquisition  
3.1.1 Vegetation and Fuels  
Our team acquired 10-meter Sentinel-2A imagery from the GEE satellite repository for Normalized 
Difference Vegetation Index (NDVI) calculations and land cover classifications. For one of our models, the 
U-NET, we used 30-meter Landsat 7 EMT+ and Landsat 8 OLI imagery. We also acquired Dynamic World 
V1 (DW) data from GEE to help establish land cover classes (Brown et al, 2022). DW is a land use land 
cover (LULC) probability dataset that utilizes Sentinel-2 imagery for its nine-class LULC predictions. 
  
Figure A-1 illustrates key fuel parameters for predicting wildfire severity. Our team acquired products for 
Canopy Height, Canopy Cover, Canopy Bulk Density, and Canopy Base Height from the LANDFIRE 
program (LANDFIRE, 2022). All LANDFIRE data products are derived from a combination of 30-meter 
Landsat 7 Enhanced Thematic Mapper (ETM+) and Landsat 8 Operational Land Imager (OLI) imagery, 
LiDAR data, and field datapoints. The LANDFIRE base map is based on 2016 data and fuels which were 
updated to expected 2022 levels based on disturbances from 2016-2020. While other products may be more 
recent or of a finer scale, LANDFIRE is widely used and has the most established commitment to regularly 
updating their data product (Ryan & Opperman, 2013).  
 
Marin County Parks, in association with several other local, state, and national organizations, conducted a 
LiDAR mapping effort between December 2018 and March 2019 and generated a data product of ladder fuel 
density that we acquired from their dedicated online portal (Table 2). The product expresses the density of 
ladder fuels as the number of returns, between 1 and 4 meters, over the number of returns below 1 meter in 
each region (Marin County, 2019). The ladder fuel spatial resolution is ~19.5 meters, or 64 feet. 
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Fuel loads do not change significantly on an annual basis outside of a meaningful disturbance, but a large fire 
would greatly alter fuel conditions. Only one major fire, the Woodward Fire, burned in our study area since 
the oldest data product, the 2018-2019 LiDAR-derived ladder fuels. To update this layer, we acquired a 30-
meter raster of the fire parameter and severity from Monitoring Trends in Burn Severity (MTBS, 2022). 
 
3.1.2 Moisture 
To analyze the stress level of vegetation in Marin County, as well as determine the drought-susceptibility of 
the region, our team downloaded ECOSTRESS data using NASA’s Application for Extracting and Exploring 
Analysis Ready Samples (AppEEARS) (Table 2). ECOSTRESS, launched in June 2018, is a thermal 
instrument on the International Space Station that measures plant temperature in order to analyze plant stress 
and has a resolution of 70 meters. Our team downloaded Level-4 Water Use Efficiency (WUE) and Level-4 
Evaporative Stress Index (ESI_PT-JPL) products as they can be helpful drought indicators alongside Level-2 
Cloud Masks to remove clouds from the imagery. We collected all usable images for the fire season, from 
May to October, for every year starting in 2018.  
 
3.1.3 Ancillary Datasets 
To incorporate topography data, our team downloaded countywide digital elevation model (DEM) tiles, in 
raster format, from the County of Marin’s GIS website. The data was based off a 2019 LiDAR dataset. To 
determine the location of areas with low vegetation, such as roads and hiking trails, our team used a 
combination of vector and raster data from Planet. High ground sample resolution (3-meter) PlanetScope 
imagery was acquired for September 2022 (recent fire season) and January 2022 (green season). Our team 
downloaded hiking trail data from the National Park Service and the California State Parks (Table 2). Lastly, 
we downloaded road, bikeway, and waterbody locations from Marin County’s geospatial portal. 
 
Table 2 

List of data products used in the project 

Data Product Derived Source Years Acquisition Source Original Spatial 
Resolution (m) 

WUE ECOSTRESS 2018-2022 AppEEARS 70 

ESI ECOSTRESS 2018-2022 AppEEARS 70 

Dynamic World Land 
Cover 

Sentinel-2 2018-2022 GEE 10 

Sentinel –2 Level 2A 
Surface Reflectance 

Sentinel-2 2018-2022 GEE 10, 20 

Elevation LiDAR 2019 Marin County 
Landscape Database 

0.5 

Aspect LiDAR 2019 Marin County 
Landscape Database 

0.5 

Slope LiDAR 2019 Marin County 
Landscape Database 

0.5 

Ladder Fuels LiDAR 2019 Marin County 
Landscape Database 

~19.5 

Canopy Bulk Density Landsat 7 ETM + 
and Landsat 8 OLI 

2020 LANDFIRE 30 

Canopy Cover Landsat 7 ETM + 
and Landsat 8 OLI 

2020 LANDFIRE 30 

Canopy Height Landsat 7 ETM + 
and Landsat 8 OLI 

2020 LANDFIRE 30 

Canopy Base Height Landsat 7 ETM + 
and Landsat 8 OLI 

2020 LANDFIRE 30 
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Planet Daily Scenes PlanetScope 2022 Planet Labs 3 

Roads N/A 2019 Marin County 
Landscape Database 

Vector Data 

Trails N/A 2018 California State Parks Vector Data 

Marin County 
Boundary Shapefile 

N/A 2022 U.S. Census Bureau 
TIGERLINE 

Vector Data 

 
3.2 Data Processing      
3.2.1 Fuels  
Some of our fuel data products that were sourced from satellites required additional processing. To start, we 
created an annual composite of the Dynamic World land cover data for each year of the study period with the 
“Introduction to Dynamic World” tutorial from GEE which provides steps to visualize DW land cover 
(Gandhi, 2022). Next, we generated NDVI products in GEE using Sentinel-2A imagery (Equation 1; 
Mitsopoulos et al., 2017). We incorporated a simple cloud mask using the Sentinel-2 QA band, and computed 
NDVI values for each pixel of each masked image. We generated median NDVI values for each dry season 
(May 16 - November 15) and wet season (November 16 - May 15) in our study period. To calculate the 
NDVI differential, we subtracted the dry season NDVI values from the preceding wet season. This NDVI 
differential values provided an estimate of where dense winter/spring herbaceous vegetation dried out and 
then converted to highly combustible fuels (Li et al., 2020). The formula for the NDVI calculation is below, 
where NIR is the near-infrared band and red is the red band.  
 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
  (Eq. 1) 

 
To update ladder fuels from earlier dates in our study period to current conditions, we resized and snapped a 
raster image of wildfire severity from the Woodward Fire in 2020 to the ladder fuel data. Using the raster 
calculator in ArcGIS Pro 2.4.2, we updated ladder fuel values to 0 in areas with high severity burns, to one 
third of original values in areas with medium severity burns, and to two-thirds of original values in areas with 
light severity burns. We determined these values by comparing pre and post fire raster images from 
LANDFIRE of the burned area and from literature regarding the effects of wildfire on surface and ladder 
fuels (Warner et al., 2020; Vaillant et al., 2009). Although other fuel layers dated from 2020 did not need post-
fire updating, we developed similar formulas in order to reduce various canopy fuel values following 
disturbance in the future.  
 
3.2.2 Moisture & Topography 
Our team processed WUE and ESI data with a script in Python Version 3.9.12 that masked out “no data” 
values and applied a cloud mask. We then computed composites of each input for the summer fire season. 
Our team ensured final processed images retained only values consistent with each input range and removed 
negative values and cloud covered pixels. For visualizations, we applied a consistent color ramp and 
standardized the coordinate system.  
 
We mosaicked DEM raster images in ArcGIS Pro with the “Mosaic to New Raster” tool. We resampled the 
elevation mosaic from 1.5 ft to 10 m to match the resolution of the other inputs of our team’s fire model. To 
derive slope and aspect from the DEM, we used the “Slope” and “Aspect” tools in ArcGIS Pro. 
 
3.2.3 Additional data  
Our team downloaded PlanetScope data in separate tiles within our study area for the data collected from 
January and September 2022. To make the data a single image, we used the “Mosaic to New Raster” tool in 
ArcGIS Pro, creating daily mosaics to reduce bidirectional reflectance issues. We clipped the imagery to the 
Marin County Boundary shapefile that was downloaded from the US Census Bureau to fit our study area. 
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Lastly, we input each fire severity factor dataset into ArcGIS ModelBuilder, which reprojected the raster, 
resampled it to a 10- meter resolution, and clipped the output to the Marin County boundary. 
 
3.3 Data Analysis 
We chose to create three models: the FlamMap based severity model to represent current mapping practices, 
a Suitability model as an easy way for fire managers to manipulate the model that is also transparent, and a 
machine learning model, which was supposed to be the most accurate model. A fireline suitability model was 
made from these fire severity outputs.  
  
3.3.1 FlamMap Analysis for Fire Severity 
The FlamMap based analysis for fire severity uses the topography, canopy, and landcover inputs depicted in 
Figure B-3. The inputs were inserted to the FlamMap 6.2 software package. The outputs include flame length, 
rate of spread, heat per unit area, and fireline intensity metrics (Figure B-1). Due to the relationship between 
flame length, fireline intensity, heat per unit area, and rate of spread, we broke flame length into four severity 
classes (Andrews and Rothermel, 1982). The classes are "one” for fires 0-4 ft, “two” for fires 4-8 ft, “three” 
for fires 8-11 ft, and “four” for fire lengths above 11 feet. Fires in class one can be reduced using hand tools, 
while fires in class two can be mitigated with dozers. Fires in class three are extremely hard to mitigate, and 
fires in class four are near impossible to stop. The workflow can be found in Figure B-3. 
 
3.3.2 Suitability Analysis Fire Severity Model 
Our team’s suitability analysis fire severity model uses the topography, canopy, and fuel inputs shown in 
Figure B-2. We derived each of the inputs from the most recent data sources and reclassified them with 
ArcGIS Pro’s “Reclassify” tool from a scale of 1 to 5 (lowest impact value to greatest impact value). We 
determined reclassification values for these inputs based on literature and distribution of values (Table B-1). 
After each input was reclassified to the same scale, we used ArcGIS Pro’s “Weighted Sum” tool to assign a 
percent decimal weight to each input based on its influence and contribution to fire severity, resulting in a 
range of values between 1 and 5 (Table B-2). Finally, we reclassified these values into 5 distinct fire severity 
bins based on Jenks natural breaks. 
 
3.3.3 U-Net Convolutional Neural Network Fire Severity Model 
A U-Net Convolutional Neural Network (CNN) that utilizes semantic segmentation, or pixel-based 
classification, was the machine learning model used to predict fire severity. U-Net was first developed for 
biomedical image segmentation and contains a symmetric “U” shaped architecture consisting of a contracting 
path, or the encoder, and expansive path, the decoder. As it performs classification on each pixel, it can 
localize and distinguish borders with inputs and outputs of the same size. The U-Net model used topography, 
moisture, 7-band Landsat imagery, and fires in Marin County and Sonoma County from 2013 to 2022 as 
inputs. The inputs were first reprojected and rescaled uniformly to 30-meter resolution. To boost efficiency 
of the training process, the images were split into 600 by 500 sections, calculated from their original size of 
4247 by 6515 pixels. A cloud mask was applied using the QA_PIXEL band in the Landsat imagery to extract 
good quality pixel data. The input layers were then normalized using the standard deviation and mean, 
calculated per band and input data set.  
 
As a metric of fire severity, the difference normalized burn ratio (dNBR) was calculated by generating the 
normalized burn ratio of pre-fire and post-fire dates (Equation 4; Park & Office, 2008). The formula takes the 
difference of the near-infrared and shortwave-infrared bands divided by their sum (Equation 3; Landsat 
Missions, n.d. ). A custom PyTorch DataLoader was scripted with functions written to normalize images and 
remove any nan values, calculate dNBR, and appropriately sample the images based on slices for more 
efficient training. A batch size of four was chosen, which specifies how many groups the samples were 
partitioned into. Loss functions measure a dataset’s performance on a model and the batch loss is tracked 
during the training process. The goal of the learning process during training is to reduce errors computed by 
the loss function after each iteration. In this model, the Smooth L1 Loss function from PyTorch was used 
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which is most effective for features with a large range of values and to prevent exploding gradients that can 
be typical of solely mean square error loss functions.  
 

NBR=
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅2)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅2)
   (Eq. 3) 

 
dNBR = (PreFire NBR) − (PostFire NBR)   (Eq. 4) 

 
 
 
3.3.4 Model Comparison 
The FlamMap, machine learning, and suitability models each used a collection of related inputs for their 
respective processing and methodologies for the output fire severity tiff. Our team compared outputs for 
each pixel from the FlamMap and suitability models against each other using the Raster Calculator tool in 
ArcGIS Pro to discern how the models varied in their evaluation of fire severity in the county, as well as 
performing a visual comparison of these outputs to various inputs to discern how different inputs 
contributed to the variations in output. 
 
3.3.5 Fireline Location Model 
To better provide Marin County with actionable data to inform fire suppression efforts, our team 
incorporated the fire severity outputs into an additional model to generate potential fireline locations. Based 
on information from the County regarding how steep of a slope they can build a fireline into, we reclassified 
the slope raster into “flat” (0-30 degrees), mild (30-60 degrees), and severe (60-90 degrees). The model uses 
raster calculator to multiply slope values by fire severity model values to generate a new raster highlighting 
flatter and less severe burn areas as potential fireline locations, with anything on a slope steeper than 60 
degrees or occurring in severe fire locations as infeasible for a fireline. Table B-3 lists out how final fireline 
model values were generated based on initial slope and fire severity values.  
 

4. Results & Discussion 
4.1 Analysis of Results    
4.1.1 FlamMap Model  
The FlamMap model is a representation of what traditional fire modelers use to assess fire severity. The 
output consists of 4 classes based on what tools are needed to control a fire: hand lines, dozer lines, near 
impossible to control, and impossible to control (Figure 2). Class 3, which represents fires that are 
controllable by dozers, covered 48% of the area, which is the biggest class. Almost a quarter of the area is 
uncontrollable by fire crews. The uncontrollable areas are in small patches along ridgelines.  
 
This is a traditional method to map burned areas that fire agencies have used in the past. The benefit of this 
model is that it outputs helpful metrics, such as flame length. Flame lengths of a certain height correspond to 
what methods can be used to create firelines, which is helpful information for firefighters.  
 
Despite its potential usefulness, there are clear limitations to this model as well. The underlying model for the 
FlamMap software is the Rothermel fire spread equation which works well for small fires but does not scale 
well to real life high severity fire events. Further, the FlamMap model runs on a per pixel bases, which means 
it does not take into effect objects and their spatial relation to one another. The model also has a consistent 
fuel moisture for all the different classes without relation to spatial effects, where Marin County has vastly 
different fuel moistures given specific microclimates. Along with the fuel moisture, the wind speed is also set 
to a constant 15 mph in the onshore direction. Finally, the fuel model is generalized and assumes that urban 
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areas cannot burn, but the county contains numerous urban structures in the wildland-urban interface (WUI) 
that could burn if a fire passes through the area.  
 

 
Figure 2: Fire severity for the FlamMap based model. The values range from 0 ft to over 11 ft in flame length.  
 
4.1.2 Suitability Model 
We examined the output suitability raster which contained information of the fire severity levels across Marin 
County. Table 3 shows the percentage of the study area of each fire severity level. Class 4, which represents 
high fire severity, was the most dominant class, covering 30% of the study area, followed by Class 5, which 
represents extreme fire severity, covering 27% of Marin County. Low and moderate fire severity areas make 
up 6% and 12% of the county, respectively. Figure 3 displays the distribution of fire severity classes. Class 4 
and 5 have a large coverage in more mountainous regions which are areas of greater elevation and slope. The 
most potentially fire-severe areas as classified as a “5” which means that it would be extremely difficult, if not 
impossible, to prevent or control a fire according to the suitability model (Table-B1).  
 
Table 3.  
Area for each class of the FlamMap Severity model.  

Class Meaning Area (Km2) Percent of Area 

1 Not Burnable 200  15% 

2 Controllable with Hand Lines 195  14% 

3 Controllable with Dozers and Air Drops 648  48% 

4 Incredibly Hard to Control 181  14% 

5 Impossible to Control 124  9% 

 
The suitability model offers probable insight into the impact of these inputs in relation to fire severity. The 
basis of our inputs and assigned percent weights in the weighted sum was predicated on a different literature, 
which varies from each publication in terms of the types of categories of inputs and weighting for each input. 
In addition, the inputs for the suitability model were sourced from different datasets from different years- 
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some of which contained missing data in the study area. In comparison to the FlamMap model, the final 
classes of the suitability model output do not reflect practical differences in fire severity, but rather were 
separated out solely based on the distribution of the data, which tended to clump towards median values after 
initial processing (Table-B2). There is a general left-skew distribution of the suitability model in comparison 
to the FlamMap model output which has a more normal standard distribution of the fire severity classes 
(Table 4). The definition of what the suitability model classifies as a “3” may differ from what other models 
classify as a 3 and additionally simplifies what reflects higher severity fire than 2 and lower than 4. Subsequent 
natural breaks classification helps identify where inherent groupings exist in the data and how fire severity 
varies across the landscape. Inland Marin County showed the suitability fireline map as more severe whereas 
the FlamMap fireline map showed the coasts as more severe. 
 

 
Figure 3: Fire severity for the Suitability based model. 5 is high fire severity and 1 is low fire severity.  
 
Table 4. 
Area for each class of the Suitability Severity model.  

Class Meaning Area (in Km2) Percent of Area 

1 Low Severity Fire 74  6% 

2 Moderate Severity Fire 166 12% 

3 Medium Severity Fire 337 25% 

4 High Severity Fire 410 30% 

5 Extreme Severity Fire 361 27% 

 
4.1.3 U-Net Convolutional Neural Network  
The U-Net CNN outputted a tiff of dNBR for a selected date based on fire training data in Marin County 
and Sonoma County from 2013 to 2022. During the model training process, however, the loss function 
consistently produced a range of spikes in the loss which is not typical of the shape of this loss function or 
indicative that the learning process was improving in each iteration. An issue with the raw data inputs may 
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have caused this error with the machine learning model, though it is still unclear why the loss function 
exhibited multiple spikes. The workflow can be found in Appendix Figure B-4.  
 
The machine learning model has inherent limitations as typical CNNs input hundreds or thousands of images 
for the training dataset. With a limited number of fires to train on, the model had less than 22 date ranges to 
observe. Additionally, the extension to Sonoma County for data imposed natural limitations with the accuracy 
of the fire model as the environment may have some differences to Marin County.  
 
4.1.4 Model Comparisons 
Figure 4 shows values of comparison between the outputs of the FlamMap and suitability models, where 
increasingly negative values show pixels where the suitability model predicts increasingly severe fire compared 
to FlamMap, and increasingly positive values show higher severity predictions by FlamMap. Pixel values of 0 
show areas where the two models agree. The suitability model predicts higher fire severity for 56% of the 
county compared to the FlamMap model, the models agree on fire severity for 27% of the county, and the 
FlamMap model predicts higher fire severity for only 16% of land. Based on visual comparisons of the model 
output comparison and various input layers, many of the pixels of increased fire severity in the suitability 
model occur in forested areas where the various canopy fuel metrics likely contributed to increased model 
outputs. While additional validation is required to determine which model’s handling of forests better reflects 
real-world fire severity, increased severity rankings in dense forest will subsequently deprioritize these areas in 
the fireline model compared to shrubland and grass. Shrub and grass are indeed easier to build firelines 
through, suggesting the suitability model may better suit the county’s ultimate purpose. The regions where the 
suitability model underpredicted fire severity compared to FlamMap occur primarily along moister coastal 
regions where moisture inputs, particularly WUE, may have lowered the score. The County also sought to 
better incorporate local differences in climate and moisture to fire predictions and the suitability model seems 
to accomplish this end to some extent as well.  
 

 
Figure 4: Model comparison generated by subtracting suitability model values from FlamMap model values. 
The negative values show where the Suitability severity model depicts more severe fire, and the positive 
values show where the FlamMap severity model depicts more severe fire.  
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4.1.5 Fireline Location Model 
With a maximum feasible fireline slope of 60 degrees, the fireline model using the FlamMap input predicts 
that firelines can easily be cut on 27% of land and are feasible but more difficult on another 49% of land. The 
fireline model using the suitability input ranks 17% of land in the easiest fireline class and 46% of land as 
feasible for firelines. Both models show less feasible firelines in mountainous regions of the county, with 
ridges highlighted as possible fireline locations. A single pixel, with a resolution of 10 meters, is large enough 
to contain a fireline. By zooming into an area of the county threatened by a wildfire, firefighters can identify 
corridors that can accommodate a fireline and connect to other unburnable features to stop the spread of 
wildfire. 
 

  
Figure 5: Fireline model outputs with fire severity input from the FlamMap model (top) and suitability model 
(bottom). Easy, medium, and hard refer to where it is easy to create a fireline that will be successful during an 
active fire situation.  
 
4.2 Future Work 
Future work ould expand this past Marin County to the surrounding counties with similar ecosystems, namely 
Sonoma and Napa Counties. Further, the suitability and machine learning models could be improved. The 
suitability model could be further refined with field validation where the Marin County Fire Department goes 
out and states whether they agree with the assessment or not. Plus, their practical knowledge could be used to 
refine the weights further. The machine learning model could benefit from further training and testing in 
order to achieve a more meaningful result. Lastly, input parameters are scaled temporally to the fire season, 
but further refinement, especially of fuels and fuel moisture would greatly improve the model. The MCFD 
would like to see an hourly fuel moisture and wind update that can automatically create an updated map for 
firelines. This would greatly improve the precision of the final model. Further mapping of unburnable areas 
for the fireline model, such as rock outcrops and hiking trails should also be pursued.  
 

5. Conclusions 
This feasibility project utilized multiple Earth observations and ancillary datasets to examine current fuel 
loads in Marin County to assess the best places to create a fireline in support of Marin County’s fire 
suppression efforts. Our team created three different fire severity models: the FlamMap-based model to 
represent current practices for mapping fire severity, a suitability model to allow firefighters to easily change 
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values in the field and to have transparency in the model, and a U-Net CNN to achieve the most accurate 
results.  
 
The suitability model output reveals that most of the county is susceptible to a moderate to high fire severity 
burn. The largest class is high fire severity at 30%, which can be due to the high weight placed on the fuels 
and canopy metrics. The fire weather inputs that were run on the FlamMap based model were based on the 
peak fire season, which is a red flag day during fire season. The FlamMap based fire severity model 
determined that a large percentage of the area of Marin County (48%) could be controlled by equipment such 
as dozers and aircraft retardant drops. 15% of the area is considered unburnable, 14% of the area can be 
controlled with hand tools, and an additional 14% can be incredibly difficult to contain due to the probability 
of crowning and spotting. The smallest percentage of the area, 9%, is impossible to control. Lastly, the ML 
model created outputs that were very different from the other two models. Unfortunately, due to issues in the 
loss function of the training process and time to create and troubleshoot the model, we determined the 
output for the machine learning model to not be sufficient to continue with analysis. More time and data are 
needed to create a more robust model.  
 
The FlamMap based and suitability-based fire severity models both showed a difference in the fire severity for 
the different fuel types. The suitability model predicts higher fire severity in many of the forested areas but 
predicts lower fire severity in some moist coastal regions compared to the FlamMap based severity model. 
The Suitability fire severity model depicts more areas as high severity than the FlamMap based model.  
 
The fireline maps from Figure 5 can be useful to show where a fireline should be placed during an active 
wildfire. The FlamMap based map showed more locations to place firelines than the suitability based firelines 
map did. This is due to the FlamMap fire severity map having lower severities than the suitability map did. 
Both models need field validation to be completed to assess the usefulness of the maps, but they could be 
useful in providing a visual source to general areas in the county where fire suppression efforts can be made.  
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7. Glossary 
Avenza – Mapping software used in the field by fire fighters to mark location of various fire suppression 
interventions during an active fire 
Bulldozer line – A Fire break cut by a bulldozer. It is also referred to as a ‘dozer line 
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Canopy Base Height (CBH) – The distance between the bottom of the canopy and the forest floor. If base 
height is smaller, a fire is more likely to spread into the canopy where it will do maximum damage while a 
large base height suggests a crown fire is less likely. 
Canopy Bulk Density (CBD) – A measure of the weight of the canopy per unit of ground, which tracks 
how much fine fuel would likely burn in a canopy fire. 
Canopy Cover (CC) – The percent of horizontal land covered by tree canopy. Complete canopy could lead 
to more rapid spread of a damaging tree crown fire.  
Canopy Height (CH) – The distance from the forest floor to the top of the canopy. Used to understand the 
total aboveground biomass that may be converted into wildfire fuel.  
Difference Normalized Burn Severity (dNBR) – The difference between pre-fire and post-fire burn 
severity that indicated high damage areas by fires. The normalized burn ratio is calculated with the near-
infrared and shortwave-infrared bands.  
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
Fire break – A gap in vegetation that impedes the spread of wildfire 
Foehn wind – Dry, warm winds moving downslope on the leeward side of a mountain range. 
Hand-cut fireline – Fire break cut by fire fighters using hand tools 
InciWeb – An incident information management system used by various agencies across different levels of 
government to track information related to wildfires and subsequent response and suppression activity 
Ladder fuels – Ladder fuels provide a connection for fire to travel from a mild surface fire into the tree 
canopy, creating a much more severe and uncontrollable fire. Ladder fuel density measures how much of this 
dangerous fuel is present per unit of ground. Satellite products alone cannot measure ladder fuel as it is 
typically obscured by the tree canopy, but LiDAR can measure these fuels. 
LiDAR – Short for Light Detection and Ranging, LiDAR is an active remote sensing technique that uses a 
pulsed laser to measure the distance to the Earth and other objects on its surface.  
Monitoring Trends in Burn Severity (MTBS) – An interagency program of the US Department of 
Agriculture, the US Forest Service, the Department of the Interior, and the US Geological Survey. MTBS 
uses Landsat scenes pre and post fires sized at 1000 acres or larger to generate data including a normalized 
burn ratio (NBR) and other related calculations from the reflectance imagery. MTBS analysts use these 
indices to delineate the fire ratio and to differentiate between areas of various burn severities within the 
overall fire perimeter, creating a data product that includes not only the overall fire perimeter but a raster that 
shows the burn severity for each pixel within the perimeter (MTBS, 2022).  
Prescribed burn – A fire set under specific circumstances in order to accomplish a specific task in a 
controlled region, typically reduction of fuels in order to reduce the potential intensity or spread of future 
fires. The fire prescription refers to the specific desired fire characteristics and the conditions required to 
achieve them, such as a low intensity fire over several acres to burn off dry grasses that is set on a cool, humid 
day with a gentle wind in the desired direction 
WUI – Wildland Urban Interface, a term for urban and residential development that extends into natural 
areas, putting the infrastructure at fire risk and complicating efforts to fight fire that otherwise could burn 
naturally without threatening human life or property.  
U-Net – A convolutional neural network for pixel-by-pixel image segmentation that utilizes a series of 
convolutions, pooling operations, and upsampling and downsampling. 
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9. Appendices 
Appendix A – Inputs 

 

 
Figure A-1. Descriptions of the characteristics of Canopy. Moving clockwise from top left: Canopy bulk 

density is the amount of biomass in the canopy of the tree; canopy cover is the width of the canopy; canopy 
base height is the height of the canopy from the ground; canopy height is the height of the tallest part of the 

canopy from the ground; ladder fuel density is the density of the fuels below the canopy.  
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Appendix B – Models 
 

Table B-1 
Model layer reclassification details (Bin 1 is lowest fire severity, Bin 5 is highest) 

Layer Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Ladder Fuel 
Density 1 

0-3% 3-8% 8-13% 13-20% 20-100% 

Canopy Base 
Height 2 

Unforested (0) 70+ meters 50-69 meters 1-29 meters 30-49 meters 

Canopy Bulk 
Density 3 

Unforested (0) 0.01-0.05 
kg/m3 

0.06-0.1 
kg/m3 

0.11-0.21 kg/m3 0.22-0.34 kg/m3 

Canopy Cover Unforested (0) 15-25% 35-45% 55-65% 75-85% 

Landcover Water, snow, ice Flooded 
vegetation, 
bare, built, 
crops 

Grass Trees Shrub and scrub 

WUE4 0-0.2 0.2-0.5 0.5-1 1-2 2-6.6 

ESI 4 0.7-1 0.5-0.7 0.3-0.5 0.2-0.3 0-0.2 

NDVI 
Differential 

-1-0 0-.1 .1-.2 .2-.3 .3+ 

Slope 0-13 13-28 28-43 43-56 56-84 

Aspect N/Flat NE E W/SE S/SW 

Elevation 2000+ 1500-2000 1000-15000 500-1000 <500 
1 Majority of land is unforested with less than 3% ladder fuels; binning taken from literature that suggests effective fuel 
treatment in Mediterranean forests reduces ladder fuels to 8% or less (Kramer et al., 2014).  

2 CBH does not relate linearly to fire risk – very low CBH signifies there is little canopy to catch fire while very tall 
crowns are also unlikely to catch (Fernández-Alonso et al., 2013). Values of 0 are non-forested while values of 10 include 
canopies 10+ meters.  

3 Values of 0 are non-forested; binned according to natural breaks.  

4 WUE and ESI are correlated. A higher WUE would result in a lower ESI, and an ESI closer to 1 would represent low 

activity of plant transpiration and indicates a lack of water (Pascolini-Campbell et al., 2022).  

Table B-2 
Suitability model weights 

Data Input Category Percent Weight 

Aspect Topography 7% 

Elevation Topography 6% 

Slope Topography 7% 

WUE Moisture 15% 

ESI Moisture 15% 

NDVI Differential  Fuels 10% 

Canopy Bulk Density Fuels 6% 

Ladder Fuel Density Fuels 8% 

Canopy Base Height Fuels 4% 

Canopy Cover Fuels 2% 
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Landcover Fuels 20% 

Table B-3 
Fireline model process showing results of raster calculator and subsequent reclassification.  

Slope Value Fire Severity Value Raster Calculator Output Final Fireline Value 

1 (flat) 1 1 1 (Easy) 

1 (flat) 2 2 1 (Easy) 

2 (mild) 1 2 1 (Easy) 

1 (flat) 3 3 2 (Medium) 

1 (flat) 4 4 2 (Medium) 

2 (mild) 2 4 2 (Medium) 

1 (flat) 5 5 3 (Difficult/Infeasible) 

2 (mild) 3 6 3 (Difficult/Infeasible) 

2 (mild) 4 8 4 (Difficult/Infeasible) 

2 (mild) 5 10 4 (Difficult/Infeasible) 

0 (steep) 1 0 5 (Difficult/Infeasible) 

0 (steep) 2 0 5 (Difficult/Infeasible) 

0 (steep) 3 0 5 (Difficult/Infeasible) 

0 (steep) 4 0 5 (Difficult/Infeasible) 

0 (steep) 5 0 5 (Difficult/Infeasible) 

 

 

 
 

Figure B-1. Fuel categories used for the models. Acronyms used: CBD = canopy bulk density, NDVI = 
normalized difference vegetation index, WUE = water use efficiency, ESI = evaporative stress index 
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Figure B-2. Suitability analysis workflow.  

 
 

  
Figure B-3. FlamMap model workflow.  

 
 

 
Figure B-4. Machine learning model workflow.  

 
 


