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Abstract – This paper presents a smart-machine-based decision-support framework that facilitates 

contextualization of individual decisions in multi-agent operations in shared airspace usage. In specific, the 

presented research aims to enhance the strategic decision-making from the different smart vehicles and 

operators looking to use shared resources in the federated airspace management architecture. Typical 

challenges addressed by the presented work are the high demand for decisions in a distributed and data-centric 

operational environment, and the information sparsity therein due to the lack of data and intent sharing among 

the competitive business operators. The presented research utilizes artificial intelligence and machine learning 

based reverse parametrization of the decision-making factors, and, thereby, offering a viable pathway towards 

holistic contextualization of operational intents and conflict resolution through inter-vehicle or inter-operator 

negotiation for resource sharing. This paper discusses the feasibility study and the utilization of this reverse 

parametrization approach through a cargo delivery scenario with multiple service providers and different 

cargo priorities. The preliminary results presented in the paper demonstrate the comparison of different 

machine learning models in predicting the undisclosed parameters and their parametric weights, both for cases 

with and without correlations between the disclosed and undisclosed parameters. The initial findings are 

encouraging as they show very good conformity between the predicted and actual parameters and preferences. 

I. Introduction 

In the Concept of Operations version 2.0 for Unmanned Aircraft Systems (UAS) Traffic Management (UTM) 

released in August 2022 [1], the Federal Aviation Administration (FAA) discusses a federated airspace management 

structure for UASs in the future, supporting the smart vehicles and their operators to conduct multifarious business 

operations, such as passenger transportation, cargo delivery, emergency response, etc., autonomously while sharing 

the airspace with other users. Many of these operations are on-demand, short-range/duration, and commercially 

competitive in nature with multiple business operators. The rapidly changing state of the airspace due to such 

unscheduled operations and the uncertainties around operational intents can lead to frequent conflicts in accessing 

shared resources such as airspace corridors, delivery zones, landing sites, electric charging points, etc. Resolving such 

conflicts in a decentralized manner remains suboptimal in the absence of information about decision-making 

parameters for all concerning vehicles and operators, values, and preferences, for many of such parameters are not 

shared openly by these entities. 

Nevertheless, distributed decision-making in autonomous multi-agent systems is critical for enabling scalable 

operations, whereby each vehicle and/or vehicle operator coordinates with other vehicles and/or vehicle operators for 

its independent decision-making rather than depending on centralized coordination services for the usages of shared 

resources. The success of this self-operation and collaborative resolution of common operational conflicts in multi-

agent systems relies on the completeness and timely availability of the information about each agent’s situational 

awareness, operational intent, and business constraints. In real-world implementations, however, such holistic access 

to information is hindered by barriers such as limited communication bandwidth and non-cooperative behavior due to 
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lack of equipage or privacy concerns, respectively. To mitigate such barriers, each autonomous agent may augment 

its sensing and perception with learning and predicting the behavior of other agents through precedence and preference 

modeling. Such learning can enable anticipation of the intent of other agents, which helps effective negotiation and 

coordination for resource sharing. Each agent’s decision-making model, driven by its business preferences, can consist 

of various parameters and corresponding parametric weights. Artificial intelligence and machine learning (AIML) 

methods can be utilized to build generalizable models of the other agents’ decision-making that is based on their 

underlying business objectives and utility functions. Such a method is envisioned to achieve rapid convergence in 

multi-agent negotiation – a use case discussed in this paper in the context of a cargo delivery scenario.  

This paper reports the findings from our ongoing research on a functional reverse parametrization approach that 

utilizes machine learning techniques to deliver rapid estimation of a specific agent’s preferences with respect to a set 

of common aviation parameters. The individual preferences, or the parametric weights, towards the final decision are 

assumed to be not known, because these are decided based on how the business chooses to run its operations, and 

thus, can vary from business to business. Values for a subset of the parameter set are known, as the vehicle and/or 

vehicle operator is required to provide this information as per regulatory requirements. For example: current position, 

heading, fuel status, payload type, etc. are considered as “Public” parameters, values for which are shared by the 

vehicle and/or vehicle operator. On the other hand, values for the remainder of the parameter set are unknown and 

thus considered as “Private” parameters. For example: information on price paid for fuel, preference for on-time 

arrival, preference for passenger comfort, etc. are not shared in a public domain. Regardless, both public and private 

parameters contribute to the final decision, and, therefore, it is imperative to gather understanding of the driving 

functions to interpret the context for the decision. 

This paper is organized as follows: section II discusses the background including our past work in the presented 

research area. Section III describes the cargo delivery use case. Section IV presents the reverse parametrization 

approach, followed by experimental findings summarized in section V. Finally, section VI concludes the paper with 

information on future directions. 

II. Background 

 Decentralized decision-making is the process where the decision-making authority is distributed among individual 

entities in a group. Numerous studies have been conducted to implement the decentralized decision-making in multiple 

contexts including cooperative robots and sensors [2], auction-based task allocation [3], negotiation platform for multi-

agent task allocation [4], swarm intelligence for multi unmanned aerial vehicles (UAVs) [5], surveillance and 

monitoring applications [6] and many more [7]. Multi-agent systems suffer from computational complexity, partial 

observability, and reliance on incentivization for task completion. As discussed in [8], opponent modeling and inter-

agent communication are some of the most common multi-agent challenges. Contemporary approaches do not take 

into consideration the opponent’s level of intelligence and/or assume access to the opponent’s parameters, which is 

unlikely in real-world business settings. While the opponent modeling and communication can reduce the non-

stationary behavior and improve the observability, real-world scenarios rarely benefit from these due to reluctance to 

share information. Several research studies in this direction can be found in literature that present spatial action 

mapping [9] and spatial intent mapping [10] [11]. 

In the previous reporting [12] of our research, we introduced the general governing dynamics of the distributed 

decision-making, in the context of machine-to-machine negotiation in shared airspace, as shown in the Eq. (1).  
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Where: 

U1 to l: Strategy utilization cost corresponding to the decision taken by a smart (autonomous) agent 

P1 to m: Public parameter values that contribute to the decision-making 

Q1 to n: Private parameter values that contribute to the decision-making 

Wki: Preference (or parametric weights) towards the public parameter Pi for strategy or decision Sj  

Wkj: Preference (or parametric weights) towards the private parameter Qj for strategy or decision Sj  

r: Smart agent identifier (1 to N) 

The expression inside the first square bracket on the right-hand side of Eq. (1) represents the agent’s utilization cost 

based on its own private and public parameters. The expression inside the second square bracket represents the agent’s 

estimation of the other agents’ utilization cost. The term ‘µrs’ is non-zero for all other agents impacted by the decision 

and zero for all other agents not impacted by the decision. The term ‘sφkj’ represents the uncertainty associated with 



3 

 

such an estimation by one agent about other agents’ utilization costs, as for those agents the weights ‘W’s and private 

parameter values ‘Q’s are not known. The private parameters and preferences may be known or not known due to 

enforcement of aviation authorities, or due to operators not wanting to reveal strategies that are business essential. The 

term ‘gUk’ represents global reward for good decisions. Lastly, the term ‘tUk’ represents the time penalty for delaying 

the decision. So as time progresses, this penalty increases gradually. In summary, we hypothesize that overall better 

decisions depend on better estimates about other impacted agents’ decision factors. This constitutes the basis of the 

work presented in this paper, which is to predict the Q and W values. 

 To create a framework to predict these Q and W values, we created a synthetic dataset consisting of generated 

parameters and weights. The P and Q values representing the public and private parameters, respectively, are sampled 

from a normal distribution with a mean and standard deviation sampled from a uniform distribution. 

𝑃𝑖 ∼ 𝑁(μ𝑖 , σ𝑖),    μ𝑖 ∼ 𝑈(μ𝑚𝑖𝑛 , μ𝑚𝑎𝑥),    σ𝑖 ∼ 𝑈(σ𝑚𝑖𝑛 , σ𝑚𝑎𝑥),  

𝑄𝑗 ∼ 𝑁(μ𝑗 , σ𝑗),    μ𝑗 ∼ 𝑈(μ𝑚𝑖𝑛 , μ𝑚𝑎𝑥),    σ𝑗 ∼ 𝑈(σ𝑚𝑖𝑛 , σ𝑚𝑎𝑥),  

 The W values representing the public and private parameters, respectively, are sampled from a uniform distribution 

between 1 and 0 to determine the utilization cost for strategy k, based on: 𝑊𝑘𝑖 , 𝑊𝑘𝑗 ∼ 𝑈(0,1). 

 From this synthetic dataset of parameters and weights, we can then calculate the public part of the utilization cost, 

𝑈𝑘
𝑃𝑢𝑏 , which is the inner product of the vector of public parameters and the vector of public weights. Since we assume 

that the total utilization cost, 𝑈𝑘, is known, we also assume that the private part of the utilization cost, 𝑈𝑘
𝑃𝑟𝑖 , is known, 

since  𝑈𝑘 is simply the sum of 𝑈𝑘
𝑃𝑢𝑏  and 𝑈𝑘

𝑃𝑟𝑖 . We can then concatenate each sample for a single negotiation of the 

public parameters, 𝑃𝑗 , with the public weights, 𝑊𝑘𝑖, the total utilization cost, 𝑈𝑘, the public cost, 𝑈𝑘
𝑃𝑢𝑏 , and the private 

cost, 𝑈𝑘
𝑃𝑟𝑖. This establishes a single input sample for strategy k. Since we want to predict the private parameters, 𝑄𝑗 , 

and the private weights, 𝑊𝑘𝑗, we create a single output sample through the concatenation of each sample for a single 

negotiation of the public parameters, 𝑃𝑗, and the private weights, 𝑊𝑘𝑗. This similarly establishes a single output sample 

for strategy k. 

III. Implementation Scenario 

 To evaluate the utilization of the reverse parametrization for distributed decision-making, we picked a cargo 

delivery scenario as depicted in Fig. 1. 

 

 

Fig. 1 Cargo delivery scenario for reverse parametrization 

Operator 1 UAVs 

Operator 2 UAVs 

Delivery zone 

Town with residential and other public 

service buildings such as hospital 

Cargo hub 1 

Cargo hub 2 
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 In this scenario, there are two cargo delivery operators with cargo hubs in two distinct parts of the town. Three 

UAVs from operator 1 and two UAVs from operator 2 are tasked to deliver packages to a residential zone that includes 

several houses and a medical clinic. The packages being delivered have different priority levels such as normal 

delivery, rushed order, and urgent medical supplies. Due to safety and noise concerns, only one UAV is allowed to 

occupy the delivery zone at any given time. Furthermore, the operators 1 and 2 are not aware of each other’s UAV 

flight details. Publicly available information about the vehicles includes current positions (latitude, longitude, altitude, 

and timestamp), current speed and heading, remaining fuel/battery and flight time, and operator identifier. Aside from 

these public parameters there are several privately held information such as package type (heavy, standard, fragile, 

etc.), delivery type (normal, rushed, emergency, etc.), number of deliveries per sortie, fuel conservation preference, 

etc. Finally, for conflict resolution the vehicles are allowed to carry out one of the three strategies: (a) hold position 

(speed alteration), (b) reroute (position alteration), and (c) no changes (continue flying on the original course and flight 

plan). For the first two strategies the vehicle/operator receives a credit, and for the third strategy it pays a credit.  

 The entire concept of operation for the scenario is simulated in our custom developed advanced air mobility (AAM) 

simulator [13]. This simulator allows decentralized multi-agent operation where the agents are independently 

controlled by smart edge nodes [14]. The simulator also enables real-world environmental data access from NASA’s 

Data and Reasoning Fabric (DRF) platform [15] to bring in realism to the simulation environment. DRF serves as an 

online marketplace for data and analytics, packaged as services that aviation stakeholders, such as flight operators, 

smart vehicles etc., can subscribe to and receive operational and environmental data and analytics to build situational 

awareness, share information, and receive alerts. 

 In the absence of any inter-vehicle/inter-operator coordination, as shown in Fig. 2, we observed a grid lock in 

accessing the delivery zone. When the vehicle that is first to reach the delivery zone, enters it, the maximum occupancy 

for the delivery zone is reached and any other vehicle is denied access to the delivery zone until the vehicle that is 

currently occupying the delivery zone exits the zone. However, at that point all the remaining vehicles waiting outside 

the delivery zone are ready to enter, and without any coordination they get into a race condition that prevents any of 

them from entering the delivery zone. Note that, given the short time window for delivering the cargo at the recipients 

site that does not include any parking spot (or even considering that the cargo could be dropped or tethered down from 

the hovering vehicle), it is assumed that the occupancy status for the delivery zone does not change until the air vehicle 

flies out of the zone. So, the case that would consider the vehicle exiting the zone when landed in the zone, is excluded. 

 

 

Fig. 2 Grid lock due to no coordination among vehicles and operators 

 In the next section, we discuss the reverse parametrization approach to enhance the distributed decision-making 

process for active negotiation-based conflict resolution. 

Vehicle 1 finishing 

up delivery 

Delivery zone occupancy limit reached, 

as depicted by the change in color from 

blue to orange 

Vehicles waiting to enter the 

delivery zone but cannot enter 

due to race condition 
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IV. Reverse Parametrization Approach 

 The objective of the reverse parametrization approach is to determine the private parameters and corresponding 

preferential weights associated by the vehicle/operator, to expedite the convergence during negotiation. To evaluate 

machine learning approaches for the reverse parametrization due to their ease of use and prevalence, we chose the 

four following machine learning models for the multiple regression of the private parameters:  

 

i. Decision tree – A supervised machine learning algorithm using binary tree graph 

ii. Linear Model – A linear regression with ElasticNet regularization [16] 

iii. MLP-NAS (MLP- Neural Architecture Search) – A multilayer perceptron for regression that utilizes a neural 

architecture search for determining the number of layers and neurons in each layer 

iv. XGBoost (Extreme Gradient Boosting) – A scalable, distributed gradient-boosted decision tree (GBDT) 

machine learning library that provides parallel tree boosting [17] 

 

The Decision tree and Linear Model algorithms were implemented using Scikit-Learn, XGBoost from the XGBoost 

Python library, and the MLP-NAS from a combination of TensorFlow, Keras, Ray-tune, and HyperOpt. 

 We then created a dataset to test these four machine learning models. As mentioned in Section III, in our cargo 

delivery scenario, three conflict resolution strategies are available to each agent/operator, and for each strategy, the 

agent/operator can have different preferences (or parametric weights) for the public and private parameters. To 

simulate an exhaustive scenario, we generated a dataset that consists of 100 different preferences to represent 100 

different conflict avoidance strategies. Each of these preferences contains five private and five public parametric 

weights, each sampled from a uniform distribution between 0 and 1, as described in Section II.  

 Next, we generated the set of parameters for the evaluation of the reverse parameterization. The private parameters 

are generated using a normal distribution with random mean and variance, as described in Section II, and 5000 values 

are sampled from that distribution. To have a private parameter linked to each private preference we randomly sample 

a vector with 5 values to act as a single private parameter sample. Fig. 3 shows a histogram for each of the five ground-

truth private parameters. 

 

Fig. 3 Histogram of Original Private Parameter Distribution 

 Next, to generate the public parameters that correspond to each of the private parameters, we considered two cases 

where the private parameters are either uncorrelated or correlated to the public parameters. For the case where the 

private parameters are uncorrelated, public parameters were generated in the same way as private parameters, 

sampling from a normal distribution with a new random mean and variance. In the case where private parameters are 

correlated, we created public parameters by applying a linear equation to each sample 𝑖 in the private parameter set, 

where 𝑚 and 𝑏 , respectively, are a random slope and intercept, and 𝜀 is noise sampled from a normal distribution, as 

highlighted in Fig. 4. This creates correlated public parameter 𝑃𝑖,  where 𝑃𝑖 = (𝑚 ∗ 𝑄𝑖) + 𝑏 +  𝜀, 
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Fig. 4 Private parameter prediction (with correlation between public and private parameters) 

 Thus, for training the models, we used the public parameters, their private and public costs, and the total cost for 

each strategy as input features (or known values ‘X’), and the private parameters and their preferential weights as 

regression values (or unknown values ‘Y’), which creates a multiple regression problem. For the sake of simplicity, 

we assumed that the private parameters remain the same for all strategies and their preferential weights change for 

each strategy. For prediction 1,000 samples out of the 5000 input features were picked and their corresponding ‘Y’ 

values were predicted, which represents an 80/20 train/test split, with each 1000 samples being randomized for each 

strategy. When predicting the private parameters, we considered scenarios where there are certain assumptions of the 

input dataset were made as follows: 

1. No correlation between private and public parameters, but the private/total cost is known 

2. No correlation between private and public parameters, but the private/total cost is not known 

3. Correlation between private and public parameters, but the private/total cost is known 

4. Correlation between private and public parameters, but the private/total cost is not known 

V. Summary of Experimental Findings 

For each scenario highlighting different assumptions of the input dataset, we then measured the performance of the 

different model predictions by measuring the following metrics: 

 

1. R value between predicted and actual Private Parameters (Qj)  

2. R value between predicted and actual Private Parameter Preferences (Wj) 

3. R value between predicted and actual Private Cost (Qj * Wj) 

4. Distribution Overlap between the distribution of predicted and actual 

 

A higher R-value, which can range from -1.0 to 1.0, implies that the model can better predict parameters and 

preferences for a single negotiation instance, leading to shorter negotiation time for conflict resolution. Similarly, a 

higher distribution overlap, defined as the integral between the actual normal distribution of private parameters and a 

normal distribution created from the sample mean and variance of the predicted private parameters, can aggregate 

reverse parameterization performance results over many negotiation instances. Similarly, a higher distribution overlap 

value can lead to both shorter negotiation times, and better precision of private parameter predictions for high-density 

UAS operations.  

First, we tested the first scenario, where there is no correlation between private and public parameters, but the private 

cost is included in our input features, ‘X’. We first measured the R value between predicted and actual Private 

parameters (Qj). Fig. 5 illustrates the prediction of private parameters for a single, example strategy in the form of 

scatter plots and line of best fit, and each color represents one of the five private parameters used for this study. To 

aggregate results over all 100 strategies, we then calculated the R value between predicted and actual private 

parameters for all parameters in the form of a Monte Carlo simulation. This is shown in Fig. 6 using a combined box 

and scatter plot containing R values acquired from the Monte Carlo simulation. 

In summary, the XGBoost and Decision Tree models could have moderate performance for a small number of 

strategies, but they tended to overtrain to the dataset heavily, resulting in low performance overall when measuring 

private parameters. On the other hand, both the MLP-NAS and Linear Model demonstrated better performance than 

the latter two models, showing a consistent positive trend, with the MLP-NAS model having the highest average R 

value. Even though some models can predict private parameters with higher performance compared to other models, 

the performance of private parameter prediction was still highly variable for all models, with low R values, indicating 

that other scenarios with different assumptions of data may offer better reverse parameterization. 
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Fig. 5 Private parameter prediction (with correlation between public and private parameters) 

Next, by taking the inner product of the predicted parameter values and preferences (weights), we calculated the 

predicted private costs, 𝑈𝑘
𝑃𝑟𝑖, which is given as [Qj * Wj]. Example scatter plots of each model’s predicted private 

costs for a single strategy are shown in Fig. 7. Overall, MLP-NAS and Decision Tree show a consistent and positive 

trend when predicting 𝑈𝑘
𝑃𝑟𝑖 , but the costs are scaled incorrectly. On the other hand, XGBoost, and Linear Model show 

a strong, positive correlation when predicting the 𝑈𝑘
𝑃𝑟𝑖 , as shown in Fig. 8. This same performance is shown over 

aggregated results with the Monte Carlo simulation, with all models having high R values, but with MLP-NAS having 

a large variability in R values when compared to all other models.  

We also measured the R values for the private preferences predicted from each of the 100 strategies, as illustrated 

in Fig. 8, but each model had very high performance, predicting private preferences almost perfectly. This can be 

attributed to the fact that over each sample in ‘X’, the private preferences remain the same, and thus each model can 

easily optimize itself to predict this single value over many samples.  
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Fig. 6 Box-and-Scatter Plots of Real Private Parameters versus Predicted Private Parameters 

 

Fig. 7 Scatter Plots of Real Private Costs versus Predicted Private Costs 

 

Fig. 8 Box-and-Scatter plot of Private Cost Prediction R values over 100 strategies (without Correlation) 



9 

 

Lastly, we assess how well each model predicted the distributions of private parameters. The plots in Fig. 9 show 

example distributions of the predicted private parameters, 𝑄𝑗 , using the testing set. We then aggregated these results 

over 100 strategies using a Monte Carlo simulation, as shown in Fig. 10. Qualitatively, each model performs well 

when predicting the mean of the 𝑄𝑗  distributions, with varying levels of success when matching the standard deviation 

of the distributions. Decision trees remain close in standard deviation to the original distribution, while the MLP and 

XGBoost models tend to overfit to the mean, having tighter distributions than the original and Decision Tree-predicted 

distributions. The ElasticNet linear regression remains close in mean and standard deviation but has a much less evenly 

distributed distribution. However, when looking at the Monte Carlo simulation as illustrated in Fig. 10, we see that 

the tree models, XGBoost and Decision Tree, perform very well at predicting the distributions of private parameters. 

Notably, although XGBoost-predicted distributions do overfit to the mean, these tighter distributions still can be closer 

to the distributions generated by other models. MLP-NAS and the Linear Model similarly can perform well, but can 

on average, have lower distribution overlap values than the former two models. 
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Fig. 9 Histograms of Predicted Private Parameter Distributions for the Models 

Overall, all metrics except for the private parameter (Qj) prediction, R values are strong, with uncorrelated 

parameters and private cost [Qj * Wj] included, as shown in Fig. 11. However, model performance shifts drastically 

when doing an ablation study with the total and private cost. After repeating the same experiments on the scenario 

where parameters are still uncorrelated, but costs are removed, performance reverse overall is much lower. This can 

be illustrated in Fig. 12, which summarizes the performance of each model when costs are removed. While private 

preference (Wj) prediction performance is still strong, all other metrics are exceptionally low, indicating that the 

inclusion of private costs positively influences reverse parameterization performance. This may be because, with 

private costs removed, there remains no data that could aid in the prediction of private parameters. This is especially 

apparent with the prediction of the private parameters, as without any cost information, parameters cannot be inferred 

from a known preference and cost value.  
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Fig. 10 Box-and-Scatter plot for Distribution Overlap for 100 strategies (without Correlation) 

 

Fig. 11 Bar Plot Summarizing Performance of Reverse Parameterization with Noncorrelated Parameters and 

Private Costs Included 

 

Fig. 12 Bar Plot Summarizing Performance of Reverse Parameterization with Noncorrelated Parameters and 

Private Costs Removed 
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On the other hand, this scenario where there is no relationship between private and public parameters and costs 

may be unrealistic, so we then tested our two remaining scenarios where we assume correlation between private and 

public variables, as illustrated in Fig. 13 and Fig. 14. With correlated private preferences, all models achieved a higher 

overall reverse parameterization performance. The performance of the Decision Tree and MLP-NAS models only 

slightly improved, due to the poor inherent abilities of MLP and Decision Tree models to predict linear relationships. 

On the other hand, the XGBoost and Linear Models, which excel at predicting linear relationships, had very high 

reverse parametrization performance over every metric, with R values close to 1, and distribution overlap. From this, 

we can deduce the correlation of private and public parameters can have an even more positive effect on reverse 

parameterization than the inclusion of private cost information. With linearly correlated parameters, models that can 

approximate linear relations can directly infer private parameters, leading to exceptional performance for private cost 

and parameter prediction. This means that with linearly correlated private and public parameters, even lower conflict 

negotiation times can be achieved.  

 

Fig. 13 Bar Plot Summarizing Performance of Reverse Parameterization with Correlated Parameters and 

Private Costs Removed 

 

Fig. 14 Bar Plot Summarizing Performance of Reverse Parameterization with Correlated Parameters and 

Private Costs Included 

In summary, we observed that the estimation of the private parameter distribution is significantly aided by the 

information on private and public parameter correlation. It is also noteworthy that the correlation information has a 

stronger impact on the model accuracy and convergence speed in comparison to the total private cost (sum of private 

parameter * preferential weight) information. In a real-world implementation, the correlation information is easy to 

establish using physical or business models; for example: correlations between (a) temperature and battery 

performance, (b) headwind speed and engine throttle, (c) crude oil price and profit per flight, (d) number of available 

UAVs and wait time, (e) length of the route and passenger comfort, and so on. Such correlations help the prediction 

of private parameter costs, thereby offering a more accurate understanding of the vehicle/operator intent. Lastly, the 

model choice can have a large effect on model performance, depending on the assumption of data: for all cases, 

XGBoost had the highest reverse parameterization performance, but a Linear Model could have high performance if 

private and public parameters are assumed to have a linear relationship.  
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VI. Conclusion 

 This paper presented an artificial intelligence (AI) approach for intent prediction in multi-agent operations in 

shared airspace. The presented approach evaluated several models with unrelated as well as correlated data to reverse-

parametrize private parameters. This study is envisioned to enhance distributed decision-making by the shared 

airspace users and improve the overall convergence rate in multi-agent negotiations for resource sharing and conflict 

resolution.  

 In the future, our research will look to expand the Monte Carlo simulations to include different types of noise for 

correlated private parameters and different kinds of nonlinear correlation. Additionally, this research will work 

towards fine-tuning the prediction models, and implementing AutoML-based methods for predictions, duplicating the 

training processes of many modern cloud-based prediction services. The results presented in this paper exhibit strong 

correlation/conformance between the actual parametric distributions and corresponding AI-estimated reverse 

parametrized distributions. With more training data, especially from real-world parameters, we expect the machine 

learning (ML) approach to offer a more accurate and faster outcome, which will be a major part of the future work. 
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