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Test Video
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• Horizontal Velocity = 38.1 ft/s, Vertical Velocity = 31.4 ft/s

• Pitch 0.6 degrees nose down, 2 degrees yaw



Pre-Test Prediction Simulation

3



Vehicle Model development Overview 

• Lift plus cruise (L+C) test article model 

developed using standard building block 

method 

– Single physics coupon testing conducted for all 

materials (external and internal structure)

– Subsystem testing conducted for internal 

structural components

– System level integration conducted to match 

external structure assembly and internal 

component integration

• Limitation: No subsystem testing of 

external structure conducted

4



L+C Structural Model – Material Characterization
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• Samples of Carbon Composite (C/C) material used in 

L+C external structure acquired

– Samples included skin and frame layups which were fabricated 

using same curing methodology

• Laminated composite fabric material model generated 

from static tension and compression test data
Tension Compression



L+C Structural Model – Top level assembly
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• Finite element model (FEM) generated to match 

geometry and assembly specifications of L+C test 

article

• Test article fabricated in four sections 

– Post-cure bonded together using lap joints with 4500 psi 

adhesive

• FEM parts generated to dimensions of each fabricated 

section

– Lap joint bonds represented using tied contacts

• Assumptions: Lap joint bond strength equal to adhesive 

specifications



L+C Structural Model – Top level assembly
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Test Article Assembly FEM Assembly



Internal Structure – Material Characterization 

• Subfloor and energy absorbing (EA) seat components 

fabricated from Carbon Kevlar® (C/K) composite

– Extensive coupon and component level characterization 

conducted previously using C/K fabric

• New resin system used in L+C component fabrication 

characterized through coupon tests
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Internal Structure: Subfloor – Component Testing

• Subfloor design: Self supported accordion cruciform

– Proto-type design previously characterized (Putnam et al., 2022)

• Dynamic impact tests conducted to verify damage 

response prediction of component FEM
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Internal Structure: Crush Tube – Component Testing

• Seat EA mechanism design: Accordion crush tube

– Proto-type design previously characterized (Putnam et al., 2021)

• Dynamic impact tests conducted to verify damage 

response prediction of component FEM
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Internal Structure: Component Model Integration

• Subfloor component models integrated into L+C structure 

matching test configuration

– Tied contacts between subfloor floor and belly

• Crush tube model integrated into EA seat

– Sliding joint used to approximate seat frame structure
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NASA EA SeatInternal Floor/Seat Setup



Complete L+C Test Article FEM

• Seats rigidly fixed to floor seat tracks

• Anthropomorphic test devices (ATDs) used in test 

represented as point masses

– Occupant breakout simulations originally intended to simplify 

analysis

• Lifting hardware and mass integrated

• Accelerometer outputs included on

structure, floor, and seats 
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Occupant Compartment Loading vs Structural Failure
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Structural Acceleration Predictions

• Although composite structure failure was not captured, 

the accelerative load measured in structure was 

generally predicted by the test article FEM

– Primary acceleration load occurred before composite failure 

progression
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Post-Test Model Calibration

• L+C model was calibrated to improve test correlation

• Tuned parameters which defined damage and failure 

within the C/C structure material model

– Element erosion strain limit (ERODS): 0.5 to 0.15

– Material strength degradation after stress limit (SLIMS): 0.8 

to 0.5

• ATD models were included in the vehicle simulation

– De-coupling of occupant mass from seat found to have effect 

on accelerations predicted within occupant compartment

– EA components in seat and subfloor sensitive to timing of 

seat/occupant mass interaction
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ATD Model Integration
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• LSTC H3 5th, 50th, 95th FEMs integrated into vehicle 

seat configurations

– H3 10 YO ATD left as rigid mass due to lack of available FEM

• Pre-loading phase added to simulation fit under gravity 

and tension belts (0.10 s)  
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Post-Test Model Simulation



Post-Test Model Simulation – Acceleration Predictions
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• Prediction of occupant compartment acceleration time 

history improved with inclusion of ATD models

– Initial peak acceleration and oscillations in acceleration shape 

better captured

• Prediction improvement marginal at seat location which 

retained rigid mass representation of H3 10 YO ATD
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Post-Test Simulation – ATD Injury Metric Prediction
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• Post-test model simulation accurately identified capability 

of EA components to reduce occupant injury risk 

– Lumbar load ATD response closely predicted in rigid and NASA EA 

seat configurations

• Results provide confidence in using model to predict EA 

mechanism capability for future design optimization



Conclusions

• Damage and failure properties of C/C material models require 

calibration under representative loading conditions to accurately 

predict vehicle structural response to dynamic impact loading

– Coupon testing of C/C material not sufficient to develop material model which  

predicted failure observed in test

• Component level model calibration of internal structures led to 

accurate prediction of acceleration measured in the vehicle cabin  

• Rigid mass representation of occupants not always valid in vehicle 

level analysis

– Deformable structures are sensitive to coupling between occupant mass and 

vehicle
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Next Steps – Component Testing of Fuselage Specimens

• Tuning material model parameters improved prediction of 

vehicle structural response but did it do so for the right 

reason?

• Currently conducting component tests of structural 

specimens gathered from the L+C test article (post test)

• Goal: quantify L+C structural material characteristics under 

dynamic load

– Assess possible effects of fabrication defects
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Next Steps – Full Scale Verification Test

• Second L+C test article fabricated

– In the process of defining upcoming test conditions

• Verification of tuned L+C model

– Extensibility of model outside tuned conditions

• Verification of final EA Mechanism design

– Optimized using tuned L+C model

• Additional assessment of composite structural 

response variability between builds
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Questions?
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Jacob Putnam
jacob.b.putnam@nasa.gov
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