

Simulation and Analysis of NASA Lift Plus Cruise eVTOL Crash Test

VFS 79th Annual Forum West Palm Beach, FL, May 18, 2023

Jacob Putnam, Justin Littell Ph.D. Structural Dynamics Branch NASA Langley Research Center

Test Video

- Horizontal Velocity = 38.1 ft/s, Vertical Velocity = 31.4 ft/s
- Pitch 0.6 degrees nose down, 2 degrees yaw

Pre-Test Prediction Simulation

- Lift plus cruise (L+C) test article model developed using standard building block method
 - Single physics coupon testing conducted for all materials (external and internal structure)
 - Subsystem testing conducted for internal structural components
 - System level integration conducted to match external structure assembly and internal component integration
- Limitation: No subsystem testing of external structure conducted

L+C Structural Model – Material Characterization

- Samples of Carbon Composite (C/C) material used in L+C external structure acquired
 - Samples included skin and frame layups which were fabricated using same curing methodology
- Laminated composite fabric material model generated from static tension and compression test data

L+C Structural Model – Top level assembly

- Finite element model (FEM) generated to match geometry and assembly specifications of L+C test article
- · Test article fabricated in four sections
 - Post-cure bonded together using lap joints with 4500 psi adhesive
- FEM parts generated to dimensions of each fabricated section
 - Lap joint bonds represented using tied contacts
- Assumptions: Lap joint bond strength equal to adhesive specifications

L+C Structural Model – Top level assembly

- Subfloor and energy absorbing (EA) seat components fabricated from Carbon Kevlar® (C/K) composite
 - Extensive coupon and component level characterization conducted previously using C/K fabric
- New resin system used in L+C component fabrication characterized through coupon tests

Internal Structure: Subfloor – Component Testing

- Subfloor design: Self supported accordion cruciform
 - Proto-type design previously characterized (Putnam et al., 2022)
- Dynamic impact tests conducted to verify damage response prediction of component FEM

Internal Structure: Crush Tube – Component Testing

- Seat EA mechanism design: Accordion crush tube
 - Proto-type design previously characterized (Putnam et al., 2021)
- Dynamic impact tests conducted to verify damage response prediction of component FEM

Internal Structure: Component Model Integration

- Subfloor component models integrated into L+C structure matching test configuration
 - Tied contacts between subfloor floor and belly
- Crush tube model integrated into EA seat
 - Sliding joint used to approximate seat frame structure

Internal Floor/Seat Setup

NASA EA Seat

- Seats rigidly fixed to floor seat tracks
- Anthropomorphic test devices (ATDs) used in test represented as point masses
 - Occupant breakout simulations originally intended to simplify analysis
- Lifting hardware and mass integrated
- Accelerometer outputs included on structure, floor, and seats

Occupant Compartment Loading vs Structural Failure

Structural Acceleration Predictions

- Although composite structure failure was not captured, the accelerative load measured in structure was generally predicted by the test article FEM
 - Primary acceleration load occurred before composite failure progression

Post-Test Model Calibration

- L+C model was calibrated to improve test correlation
- Tuned parameters which defined damage and failure within the C/C structure material model
 - Element erosion strain limit (ERODS): 0.5 to 0.15
 - Material strength degradation after stress limit (SLIMS): 0.8 to 0.5
- ATD models were included in the vehicle simulation
 - De-coupling of occupant mass from seat found to have effect on accelerations predicted within occupant compartment
 - EA components in seat and subfloor sensitive to timing of seat/occupant mass interaction

ATD Model Integration

- LSTC H3 5th, 50th, 95th FEMs integrated into vehicle seat configurations
 - H3 10 YO ATD left as rigid mass due to lack of available FEM
- Pre-loading phase added to simulation fit under gravity and tension belts (0.10 s)

Post-Test Model Simulation

Post-Test Model Simulation – Acceleration Predictions

- Prediction of occupant compartment acceleration time history improved with inclusion of ATD models
 - Initial peak acceleration and oscillations in acceleration shape better captured
- Prediction improvement marginal at seat location which retained rigid mass representation of H3 10 YO ATD

Post-Test Simulation – ATD Injury Metric Prediction

- Post-test model simulation accurately identified capability of EA components to reduce occupant injury risk
 - Lumbar load ATD response closely predicted in rigid and NASA EA seat configurations
- Results provide confidence in using model to predict EA mechanism capability for future design optimization

- Damage and failure properties of C/C material models require calibration under representative loading conditions to accurately predict vehicle structural response to dynamic impact loading
 - Coupon testing of C/C material not sufficient to develop material model which predicted failure observed in test
- Component level model calibration of internal structures led to accurate prediction of acceleration measured in the vehicle cabin
- Rigid mass representation of occupants not always valid in vehicle level analysis
 - Deformable structures are sensitive to coupling between occupant mass and vehicle

Next Steps – Component Testing of Fuselage Specimens

- Tuning material model parameters improved prediction of vehicle structural response but did it do so for the right reason?
- Currently conducting component tests of structural specimens gathered from the L+C test article (post test)
- Goal: quantify L+C structural material characteristics under dynamic load
 - Assess possible effects of fabrication defects

- Second L+C test article fabricated
 - In the process of defining upcoming test conditions
- Verification of tuned L+C model
 - Extensibility of model outside tuned conditions
- Verification of final EA Mechanism design
 - Optimized using tuned L+C model
- Additional assessment of composite structural response variability between builds

Questions?

Jacob Putnam jacob.b.putnam@nasa.gov

