National Aeronautics and Space Administration

Cruise Propulsion System Thermal Analysis for NASA's X-57 "Maxwell" Mod II Configuration

Nicholas K. Borer, NASA Langley Research Center

Trong Bui, NASA Armstrong Flight Research Center

Andrew D. Smith, NASA Glenn Research Center

15 June 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Meet "Maxwell"

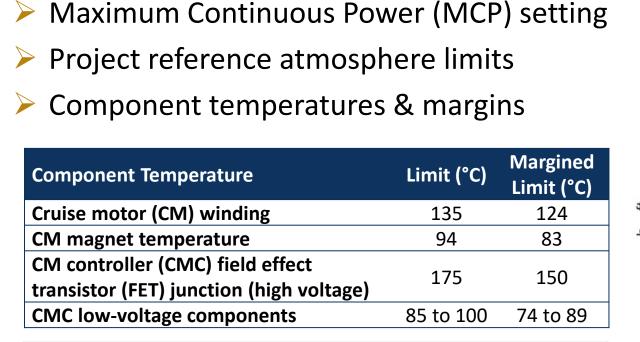
- > X-57 is NASA's Flight Demonstrator for Distributed Electric Propulsion Technology (DEP)
- Project Goals: generate data and procedures and share these with academia, industry, standards organizations, and regulators to enable design and certification of DEP concepts
- Project Approach: spiral development through multiple design "Mods"

Mod I: Baseline performance of gasoline-powered aircraft

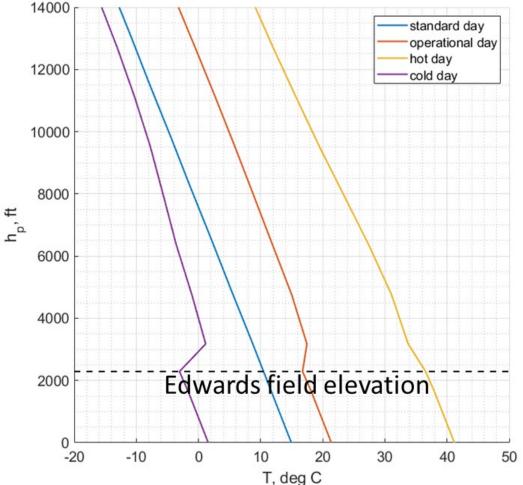
Mod IV: High-lift propeller takeoff, landing, handling qualities

Is the air cooling setup for the motors and associated control equipment adequate for Mod II?

Mod II: High-voltage powertrain integration, impact of electric retrofit

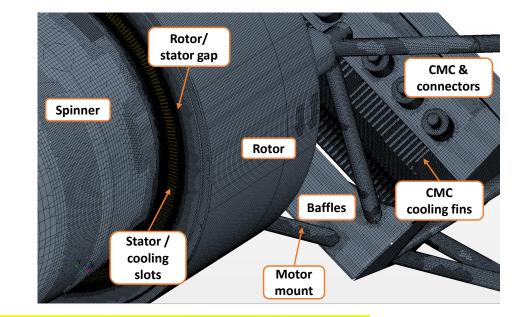


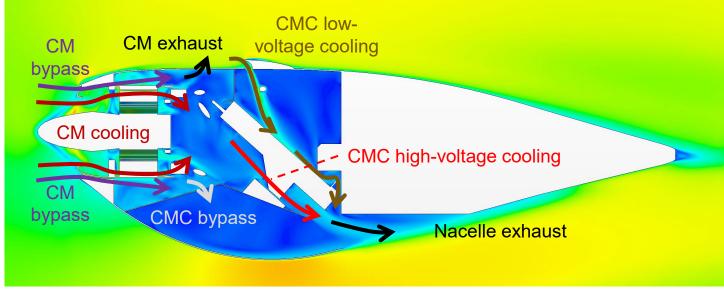
Mod III : Impact of cruisesized wing, wingtip propellers


2

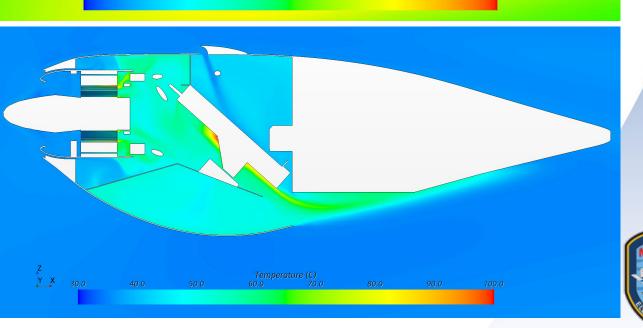
Cooling Requirements

Flight Condition	Pressure altitude (h _p) / Airspeed (V)	Power Setting	
Initial takeoff climb	2,500 ft / 70 KEAS	Peak (72.1 kW)	
Cruise climb	2,500 ft / 81 KEAS	MCP (60.0 kW)	
High-speed cruise	8,000 ft / 150 KTAS	Peak (72.1 kW)	


KEAS: Knots Equivalent Airspeed KTAS: Knots True Airspeed



Mod II Nacelle Components & Airflow


nicholas.k.borer@nasa.gov

Initial Takeoff Climb, Project Hot Day

Highest heat loads, lowest airspeed, hottest ambient conditions

Component	Heat (W)	Efficiency	
CM stator windings	5,237	92.53%	
CM rotor magnets	582	92.55%	
CMC high-voltage heat sink	810	97.96%	

- CM cooling flow: 67.2 deg C
- CMC high-voltage flow: 62.1 deg C
- CMC low-voltage flow: 46.7 deg C
- "Mickey Ear" jet over 100 mph at high-speed cruise condition

AIAA AVIATION Forum 2023

Component Temperature Estimates

Component	Initial takeoff climb		Cruise climb		High-speed cruise	
	Т (°С)	Additional margin (°C)	T (°C)	Additional margin (°C)	Т (°С)	Additional margin (°C)
CM winding	109.4	14.6	92.2	31.8	85.6	38.4
CM magnet	45.4	37.6	43.1	39.9	31.9	51.1
CMC FET junction	104.9	45.1	91.7	58.3	85.3	64.7
CMC FPGA	75.9	13.1	73.2	15.8	58.5	30.5
CMC driver board	76.2	12.8	73.6	15.4	59.2	29.8
CMC AC/DC board	75.6	-1.6	73.1	0.9	58.7	15.3
CMC CPU board	75.1	-1.1	72.4	1.6	57.7	16.3
MDAU case	61.4	12.6	57.0	17.0	44.8	29.2
FOBE case	55.7	18.3	51.3	22.7	39.9	34.1

All components within margined limits other than two low-voltage CMC components

- Both components within 2 deg C of margined limits
- Project considering additional testing to confirm margin, planning to set early operational limits below maximum hot day extremes by 2 deg C in the meantime

AIAA AVIATION Forum 2023

Summary

- > Developed thermal models for X-57 Mod II nacelle and cruise motor components
- Identified sizing flight conditions and environments
- > Determined that cooling design was mostly adequate
 - Some additional scrutiny needed for low-voltage side of CMC
 - Identified mitigations as necessary

> Just because it's efficient, doesn't mean it's not hard to cool!

Acknowledgements

- NASA's Aeronautics Research Mission Directorate provided funding for this effort via the Flight Demonstrations and Capabilities Project within the Integrated Aviation Systems Program
- > Empirical Systems Aerospace provided data and analyses for thermal model inputs
- > Sydney Schnulo led X-57 thermal analysis efforts throughout her career at NASA

