
Multigraph-based Routing in Delay Tolerant
Networks: An Alternative to Contact Graph Routing

Alan Hylton
Near Space Network

NASA Goddard
Greenbelt, MD

alan.g.hylton@nasa.gov

Michael Moy
Department of Mathematics

Colorado State University
Fort Collins, CO

michael.moy@colostate.edu

Robert Kassouf-Short
Communications and Intelligent Systems

NASA Glenn
Cleveland, OH

robert.s.short@nasa.gov

Jacob Cleveland
Communications and Intelligent Systems

NASA Glenn
Cleveland, OH

jacob.a.cleveland@nasa.gov

Abstract—Satellites are leaving the realms of niche use, extend-
ing our day-to-day networked infrastructure to space – thereby
forcing a generalization of network architectures. The Delay
Tolerant Networking (DTN) protocol is being developed to give
rise to this new Solar System Internet.

Predominantly, DTNs in space use globally-distributed contact
tables to compute routes. In this paper, we propose and analyze a
novel optimized approach for route computations that improves
upon traditional approaches. As the general DTN will always
include some scheduled links, our new algorithm enables greater
scalability and practicality of DTN routing.

These contact tables include windows when two nodes can
communicate and were classically organized into a contact graph,
where the vertices represent contact opportunities. Because the
complexity of a contact graph grows with the number of
contacts, pathfinding on it does not scale. A new structure using
multigraphs with the same data is proposed. We show that a
multigraph-based approach, which we call contact multigraph
routing, exhibits performance superior to routing based on con-
tact graphs, allowing greater scaling to schedule-based routing.

In this paper, the multigraph-based algorithm is detailed and a
proof is included showing it outperforms the previous algorithm
given the same input. Pseudocode is included, as are simulation
results. We conclude with suggested future work.

I. INTRODUCTION

Classical space communications involves manually sched-
uled point-to-point links. After another record year of deploy-
ments in 2022 [1], an estimated 7,500 satellites are operational
[2], pushing the need to graduate to space networking. The cur-
rent effort towards a Solar System Internet is Delay Tolerant
Networking (DTN) – a store, carry, and forward networking
overlay. DTN routing remains under active research (see [3]–
[5]), and in this paper we propose an optimized, drop-in
replacement for the standard DTN routing algorithm to enable
operational use, targeting NASA’s LunaNet [6].

In the terrestrial Internet, a number of assumptions are made
that simplify the scalability problem. Among these are end-
to-end connectivity, low latency (round trip times less than
seconds), and low mobility. These assumptions allow networks

to be modeled by graphs. In space, however, these assumptions
fail – therefore, more general structures must be developed to
model space networks in order for routing to take place.

The current standard is to represent the network’s connectiv-
ity using a contact graph, where vertices represent individual
scheduled contacts instead of network nodes. As data can
be stored between forwarding opportunities, a path can be
computed using contact graph routing (CGR), which uses a
modified Dijkstra’s algorithm to optimize for delivery time.
The driver for complexity in CGR is that each contact becomes
a vertex in the contact graph. Hence, the algorithm does not
scale well with either the size of the network or the number of
contacts, limiting the number of contacts in a given schedule.

A. Contact Graph Routing

We give a brief overview of CGR and its pathfinding
algorithm, following [7] (see also [8]). A contact between two
DTN nodes is a scheduled window of time during which data
can be transmitted. A contact is written as Ct0,t1

A,B , where A
and B are the source and destination nodes, and t0 and t1
are the start and end times of the contact. In the algorithms,
the source and destination of an arbitrary contact C are
written as C.src and C.dst, and the start and end times are
written as C.start and C.end. CGR depends on a globally
distributed and consistent schedule of contacts between its
network constituents, called a contact plan (CP), and includes
data rates and one-way light times (OWLT) for each contact.

We place an edge between two contacts if data could be
sent successively along them; that is, there is a (directed)
edge from Ct0,t1

A,B to Ct2,t3
D,E if B = D and t3 > t0. If a

route from A to D is to be found starting at time t0, a root
contact Ct0,∞

A,A and a terminal contact CD,D are added to the
contact graph with appropriate edges. A version of Dijkstra’s
algorithm, optimizing for arrival time, is then used to find a
path from Ct0,∞

A,A to CD,D, giving a path from node A to node

D in the network. This is called the Contact Graph Dijkstra
Search [7], and is Algorithm 4 in the appendix.

CGR encompasses both this pathfinding algorithm and a
larger strategy for generating lists of routes and queuing. In
particular, CGR uses a version of Yen’s algorithm to generate
a list of routes to a given destination. A route for a message
is then selected based on its size, the available volume of
candidate routes, its time to live (TTL), etc. We show that by
using an alternative data structure, a multigraph, the scalability
of routing based on the same data is improved. This alternative
approach, which we call contact multigraph routing (CMR),
was first described in [3], and a more thorough overview was
given in [9].

II. CONTACT MULTIGRAPH ROUTING

A. The contact multigraph – a multigraph model of a network

A multigraph is a graph that allows for multiple edges
between a given pair of vertices, and the data of a contact plan
can be used to define a multigraph model of a network. We will
let the vertices be network nodes and let each contact Ct0,t1

A,B

be an edge from vertex A to vertex B. We call the resulting
multigraph a contact multigraph. The time intervals may be
thought of as labels on the edges, making this a labeled,
directed multigraph. Note that vertices here represent the
network nodes, making this model more similar to traditional
graph-based models of networks than contact graphs. A similar
approach was suggested in [10], which predates CGR, and
the current approach was independently suggested in [3], [9]
by the current authors. However, the proofs of improvement
and analyses presented here were previously unrealized. Much
more recently, an approach similar to ours has also been
suggested in [11] based on the same multigraph model of
the network. However, our approach differs in that we remain
within the framework of CGR.

Dijkstra’s algorithm can be used to find paths through a
contact multigraph, again optimizing for delivery time. This
algorithm follows the classic version of Dijkstra’s algorithm
but only explores through edges (contacts) that are available
after the arrival time to the current vertex.

Prior to the formalities, we provide an example. Consider
a network with three nodes, A, B, and D; the goal will be
to send messages from A to D. Figure 1 shows a contact
graph (top) and a multigraph (bottom), both modeling the same
network and the same four contacts in the contact plan.

We outline the steps of the respective algorithms on these
two graphs with starting time 0, source A, and destination D,
starting with the traditional Contact Graph Dijkstra Search (see
Algorithm 4 for pseudocode). We begin at C0,∞

A,A and explore
out each edge, finding arrival times of 0 to C0,1

A,B and 2 to
C2,3

A,B . Next, C0,1
A,B is chosen as the current contact as it has the

earliest arrival time of the unvisited contacts, and we repeat,
finding an arrival time of 4 to C4,5

B,D and 6 to C6,7
B,D. Next,

C2,3
A,B is chosen as the current contact since it has the next

smallest arrival time of 2, and we explore its outgoing edges,
finding that we cannot improve the arrival time to either C4,5

B,D

Fig. 1. A contact graph and a multigraph modeling the same network.

or C6,7
B,D. The next current contact would be C4,5

B,D, and since
it has a destination of D, we have found an optimal path with
destination D, which has a best delivery time of 4.

Next, we consider the corresponding Dijkstra search in the
multigraph (pseudocode is given in Algorithm 1). We begin
at A at time 0, and explore through both outgoing contacts,
finding an arrival time of 0 to B, arising from the contact
C0,1

A,B . Then B becomes the current vertex, and we explore
out through each of its outgoing contacts, finding an arrival
time of 4 to D through the contact C4,5

B,D. Since D becomes
the next current vertex, we have found an optimal path with
a best delivery time of 4.

These algorithms both found the same path with the same
best delivery time, but the search in the contact graph included
a redundant step by using C2,3

A,B as the current contact. This
step cannot improve the arrival time to either C4,5

B,D or C6,7
B,D

because they were already reached from C0,1
A,B , which had an

earlier arrival time than C2,3
A,B . If we remove this step from the

search, the contacts explored in the two algorithms are in one-
to-one correspondence. This suggests the search through the
multigraph will generally be faster. In fact, Theorems 1 and 2
given in Section III will show that the two algorithms exhibit
similar behavior on any given contact plan, thus showing that
the number of steps required by the search in the multigraph
will always be less than or equal to the number of steps
required by the search in the contact graph.

B. The Contact Multigraph Dijkstra Search

The new pathfinding algorithm is given in pseudocode; it is
split into three components: the main algorithm is Algorithm 1,
which uses Algorithms 2 and 3. This mimics the presentation
of the Contact Graph Dijkstra Search (Algorithm 4) given
in [7] for easy comparison. For a given contact C, the one-way
light time of C is written as C.owlt, and owltmgn is a margin
for one-way light times (see [7]). The predecessor v.pred of
a vertex v records an incoming contact and can be used at the
end of the algorithm to reconstruct a route.

Algorithm 1 finds a path from vr to vd with best delivery
time BDT (the earliest time to reach vd). Here, a “path”

Algorithm 1 Contact Multigraph Dijkstra Search
Data: Contact plan CP , root vertex vr, destination vertex vd,

initial time
Result: Route R from vr to vd with best delivery time BDT

1: construct vertex set V from all srcs and dests of CP
2: for all v ∈ V , set v.arr time = ∞, v.visited = False,

v.pred = {}
3: vr.arr time = initial time
4: vcurr = vr
5: while true do
6: V = MRP(CP, V, vcurr)
7: vnext = VSP(V)
8: if vnext ̸= {} then
9: vcurr = vnext

10: else
11: break
12: end if
13: end while
14: route reconstruction using predecessors to find R
15: BDT = vd.arr time

Algorithm 2 Multigraph Review Procedure (MRP)
Data: CP , V , vcurr
Result: Revised V

1: for contact C ∈ CP such that C.src = vcurr do
2: if C.end ≤ vcurr.arr time then
3: skip C
4: end if
5: if C.dst.visited then
6: skip C
7: end if
8: arr time = max(C.start, vcurr.arr time) +

C.owlt+ owltmgn

9: if arr time < C.dst.arr time then
10: C.dst.arr time = arr time
11: C.dst.pred = C
12: end if
13: end for
14: vcurr.visited = True

in the network means a sequence of contacts with matching
endpoints such that each contact is available after the arrival
time to its source vertex. The algorithm makes use of the fact
that arrival times cannot decrease along a path, mimicking the
reasoning of the usual Dijkstra’s algorithm. Note one could
modify the algorithm to find a shortest path tree reaching all
destinations [7], [11].

III. THEORETICAL COMPARISON

A. Complexity

The complexity of Algorithms 1 and 4 depend on their im-
plementation, and we have chosen to give similar pseudocode
for these algorithms for easy understanding and for the later
case-by-case comparison instead of optimizing.

Algorithm 3 Vertex Selection Procedure (VSP)
Data: V
Result: vnext

1: vnext = {}
2: tearliest arrival = ∞
3: for vertex v ∈ V do
4: if v.visited then
5: skip v
6: end if
7: if v.arr time ≥ vd.arr time then
8: skip v
9: end if

10: if v.arr time < tearliest arrival then
11: tearliest arrival = v.arr time
12: vnext = v
13: end if
14: end for

To analyze complexity, view a contact multigraph as a
(directed) simple graph with each edge storing a list of contacts
with source and destination equal to the source and destination
of the edge. An example corresponding to Figure 1 is shown
in Figure 2. Let |V | be the number of vertices and let |E|
be the number of edges in the underlying simple graph. We
will also assume there are no overlapping contacts for each
edge1. That is, the time intervals for the contacts over a given
edge are disjoint. For any ordering of the edges, let mi be the
multiplicity associated to the ith edge, that is, the number of
contacts in the contact plan with source and destination equal
to the source and destination of the ith edge. Let |CP | be
the total number of the contacts in the contact plan, so that∑|E|

i=1 mi = |CP |.

Fig. 2. The multigraph model of a network can be viewed as a simple directed
graph with a set of contacts associated to each edge. This example describes
the same multigraph as in Figure 1.

Algorithm 1 can be implemented by following any imple-
mentation of Dijkstra’s algorithm on the underlying simple
graph. Here the optimal contact associated to an edge is the
one producing the earliest arrival time, as in Algorithm 2, so
it is the first contact available after the arrival time to the
source vertex. The time complexity is thus equal to that of the
implementation of Dijkstra’s algorithm plus the time required
to find the optimal contact associated to each edge. A linear
search through the list of contacts associated to the ith edge
requires a time of O(mi). Since each edge is explored at
most once over the course of Dijkstra’s algorithm, these steps
contribute a total time of at most O(

∑|E|
i=1 mi) = O(|CP |).

1Algorithms 1 and 4 are general enough to handle overlapping contacts,
which could model multiple channels of communication between a given pair
of nodes. These complexity calculations could be adjusted to handle this.

We can improve this bound if we use our assumption
that contacts over a given edge do not overlap. Assuming
the contacts for each edge are stored sorted by end time,
a binary search takes O(log(mi)) for the ith edge. Again,
this is performed at most once for each edge, so the total
time required by these steps is O

(∑|E|
i=1 log(mi)

)
. Observing

that
(∏|E|

i=1 mi

) 1
|E| ≤ 1

|E|
∑|E|

i=1 mi by the arithmetic mean-
geometric mean inequality, we can bound the time as follows:

|E|∑
i=1

log(mi) = log

 |E|∏
i=1

mi

≤ log

 1

|E|

|E|∑
i=1

mi

|E|

= |E| log

 1

|E|

|E|∑
i=1

mi

= |E| log

(
|CP |
|E|

)
.

Therefore, the time required for determining the optimal
contact for each edge is O(|E| log(|CP |/|E|)). Note that the
term |CP |/|E| is the average multiplicity of an edge.

The remaining time required now depends on the im-
plementation of Dijkstra’s algorithm. The best known time
complexity for Dijkstra’s algorithm is O

(
|E| + |V | log |V |

)
(see [12]), giving an implementation of Algorithm 1 with a
time complexity of O

(
|E| log(|CP |/|E|) + |V | log |V |

)
.

The complexity given above shows that Algorithm 1 scales
better with the size of the contact plan than the classic Contact
Graph Dijkstra Search. Indeed, since the contact graph has
|CP | vertices, the corresponding Dijkstra search has a time
complexity of (at least) O(|CP | log |CP |), as noted in [7]. In
the following section, we will elaborate on this comparison by
considering the performance of the two algorithms.

B. A direct comparison of algorithms

The comparison of our Contact Multigraph Dijkstra Search
(Algorithm 1) with the traditional Contact Graph Dijkstra
Search (Algorithm 4) is eased through a simple modification
to Algorithm 4, made in Algorithms 7 and 8, which results
in essentially the same search as Algorithm 1. The main
modification occurs in lines 18-20 of Algorithm 8, which
marks additional contacts as visited. The justification is that no
contact with the same destination as Ccurr can achieve a better
arrival time to subsequent contacts as Ccurr was selected in
the prior loop as the unvisited contact with the earliest arrival
time. Thus, all contacts with the same destination should be
marked as visited at the same time. Additionally, the lists of
visited nodes for each contact are not recorded in the modified
algorithm, so lines 8-10 and line 15 of Algorithm 5 have
been removed to produce Algorithm 8. This is because the
modification marking all contacts with the same destination as

visited at the same time prevents loops, which was the purpose
of recording lists of visited nodes, as described in [7]. The only
modification found in Algorithm 7 is the use of Algorithm 8
in line 6. In particular, Algorithm 7 still uses Algorithm 6, like
the original Contact Graph Dijkstra Search.

The modification results in an algorithm that, in effect,
marks nodes as visited and associates arrival times to nodes
rather than to contacts. Since this is the same idea behind
Algorithm 1, it is not too surprising that these algorithms
execute similar searches. This is made precise by the following
theorem; the proof is a line-by-line comparison of the algo-
rithms and is left to the appendix.

Theorem 1. Given the same contact plan and routing problem,
Algorithms 1 and 7 require the same number of iterations of
their respective while loops, given the following: (1) the first
for loops of Algorithms 2 and 8 search through the contacts
in the same order and (2) the for loop of Algorithm 6 orders
contacts based on their destination vertices and this order is
consistent with the order of the for loop of Algorithm 3.

Informally, this theorem shows that Algorithms 1 and 7
run in approximately the same amount of time. Compared
to the original Algorithm 4, the modified Algorithm 7 marks
additional contacts as visited when they cannot improve arrival
times. That is, the original Algorithm 4 may perform some
iterations of its while loop that cannot improve arrival times,
which means that arrival times, visited markers, predecessors,
visited node lists, BDT , and Cfin are left unchanged for
these steps, and the current contact is marked as visited at
the end. So given the same inputs, the number of iterations
of the while loop in Algorithm 4 is greater than or equal to
the number of iterations of the while loop in Algorithm 7.
Therefore Theorem 1 implies the following, under analogous
assumptions on for loops.

Theorem 2. Given the same contact plan and routing problem,
the while loop of Algorithm 1 requires fewer than or equal
iterations compared to the while loop of Algorithm 4.

The similarity of the loops between the two algorithms
provides strong evidence that Algorithm 1 will run faster than
Algorithm 4 on the same input.

IV. EXPERIMENTAL COMPARISON

For comparison, both algorithms were implemented in
Python, closely following our pseudocode. Comparability be-
tween implementations took precedence over optimization.

tCG tMult tMult/tCG

1 day 1.234 .273 .222
7 days 78.567 12.845 .163
14 days 294.699 41.843 .142

TABLE I
RESULTS FOR NETWORK 1. tCG IS THE TIME IN SECONDS TAKEN BY
ALGORITHM 4, tMult IS THE TIME TAKEN BY ALGORITHM 1, AND

tMult/tCG IS INCLUDED TO COMPARE THE PERFORMANCE.

tCG tMult tMult/tCG

1 day .603 .110 .182
7 days 18.411 3.879 .211
14 days 75.730 15.826 .209

TABLE II
RESULTS FOR NETWORK 2. tCG IS THE TIME IN SECONDS TAKEN BY
ALGORITHM 4, tMult IS THE TIME TAKEN BY ALGORITHM 1, AND

tMult/tCG IS INCLUDED TO COMPARE THE PERFORMANCE.

100 contacts 1000 contacts 5000 contacts

10 vertices .308 .215 .220
30 vertices .311 .109 .088
50 vertices .361 .069 .058

TABLE III
RESULTS FOR RANDOMLY GENERATED NETWORKS OF VARIOUS SIZES.

THE TABLE SHOWS tMult/tCG IN EACH CASE WHERE tCG IS THE TIME
IN SECONDS TAKEN BY ALGORITHM 4 AND tMult IS THE TIME TAKEN BY

ALGORITHM 1.

Using the Satellite Orbital Analysis Program (SOAP), two
space networks were simulated, Network 1 and Network 2.
Network 1 contains 13 vertices (satellites and ground stations)
on Earth and the moon. Network 2 contains 11 vertices on
Earth, the moon, and Mars. SOAP was used to create contact
plans for these networks over periods of 1, 7, and 14 days,
where a contact between two objects was created whenever
there was a line of sight. For each contact plan, both algorithms
were used to search for paths between each distinct pair of
objects and with starting times on each hour for the duration
of the contact plan. The times taken by the two algorithms are
shown in Tables I and II, along with the ratios of the times.

Tests were also run on randomly generated networks, with
various numbers of vertices and contacts. These networks were
generated by choosing a random start time for each contact and
a random length of the contact, with the maximum duration of
a contact equal to one tenth of the total duration of the test (in
both cases, a uniform distribution was used). For each choice
of the number of vertices and contacts, ten different networks
were generated and both algorithms were run for each pair of
distinct vertices in each network. Table III shows the ratios of
the times taken by the two algorithms.

As expected based on Theorem 2, Algorithm 1 outperforms
Algorithm 4 in every case. We can also see that tMult/tCG

tends to be smaller for larger networks and contact plans,
which is not surprising given the difference in the time
complexities of the algorithms. These tests provide further
evidence that Algorithm 1 scales better with the size of the
network and contact plan.

V. CONCLUSION

As some links are very predictable and some OWLTs pre-
clude real-time discovery, space networks will always feature
scheduled components. Thus, it is necessary to improve the
algorithms that compute schedule-based routes.

Classical DTNs have used CGR, and without adding any
requirements a more economical data structure and its cor-

responding updated algorithm were proposed here. The algo-
rithm was shown to be superior to CGR and is readily imple-
mentable from the pseudocode; see the DTN implementation
HDTN [9], [13] to enhance scalability. Therefore, this product
has matured DTN routing in the name of practicality.

A. Future work

1) Rewrite Yen’s algorithm as used in CGR (see [7], [9]).
2) Research of the interplay of various routing “domains.”

• Solar-system scale DTNs may have several
schedule-based segments which are not globally
distributed. These pieces will need to be joined by
a routing protocol, which could be scheduled.

• Dynamic routing in DTNs will be limited by the
practicality of feedback. How do we route between
these dynamic and scheduled routing regions?

3) Data flows and priorities can now be optimized by
inspecting the nature of queuing in this framework.

VI. ACKNOWLEDGEMENTS

The authors acknowledge NASA interns Olivia Freides and
Brittany Story, who developed the SOAP simulations.

REFERENCES

[1] G. World, “How many satellites are orbit-
ing around earth in 2022?” 11 2022. [On-
line]. Available: https://www.geospatialworld.net/prime/business-and-
industry-trends/how-many-satellites-orbiting-earth/

[2] E. Space Debris Office, “Space environment statistics,” 12 2022.
[Online]. Available: https://sdup.esoc.esa.int/discosweb/statistics/

[3] A. Hylton, R. Short, J. Cleveland, O. Freides, Z. Memon, R. Cardona,
R. Green, J. Curry, S. Gopalakrishnan, D. V. Dabke, B. Story, M. Moy,
and B. Mallery, “A survey of mathematical structures for lunar net-
works,” in 2022 IEEE Aerospace Conference, 2022.

[4] J. Cleveland, A. Hylton, R. Short, B. Mallery, R. Green, J. Curry,
D. V. Dabke, and O. Freides, “Introducing tropical geometric approaches
to delay tolerant networking optimization,” in 2022 IEEE Aerospace
Conference, 2022.

[5] R. Short, A. Hylton, J. Cleveland, M. Moy, R. Cardona, R. Green,
J. Curry, B. Mallery, G. Bainbridge, and Z. Memon, “Sheaf theoretic
models for routing in delay tolerant networks,” in 2022 IEEE Aerospace
Conference, 2022.

[6] D. Baird, “Lunanet: Empowering artemis with communications
and navigation interoperability,” 10 2021. [Online]. Avail-
able: https://www.nasa.gov/feature/goddard/2021/lunanet-empowering-
artemis-with-communications-and-navigation-interoperability

[7] J. A. Fraire, O. De Jonckère, and S. C. Burleigh, “Routing in the
space internet: A contact graph routing tutorial,” Journal of Network
and Computer Applications, vol. 174, January 2021.

[8] J. A. Fraire, P. Madoery, S. Burleigh, M. Feldmann, J. Finochietto,
A. Charif, N. Zergainoh, and R. Velazco, “Assessing contact graph
routing performance and reliability in distributed satellite constellations,”
Journal of Computer Networks and Communications, July 2017.

[9] M. Moy, R. Kassouf-Short, N. Kortas, J. Cleveland, B. Tomko, D. Con-
ricode, Y. Kirkpatrick, R. Cardona, B. Heller, and J. Curry, “Contact
multigraph routing – overview and implementation,” in 2023 IEEE
Aerospace Conference, 2023.

[10] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
PROCEEDINGS OF ACM SIGCOMM, 2004.

[11] O. De Jonckère and J. A. Fraire, “A shortest-path tree approach for
routing in space networks,” China Communications, vol. 17, no. 7, pp.
52–66, 2020.

[12] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved
network optimization algorithms,” in 25th Annual Symposium on Foun-
dations of Computer Science, 1984, 1984.

[13] NASA, “High-rate delay tolerant networking,” 2023. [Online]. Available:
https://github.com/nasa/HDTN

APPENDIX

Algorithms 4, 5 and 6 are the Contact Graph Dijkstra Search
from [7], except line 7 of the Contact Selection Procedure
(Algorithm 6), where the if condition has been changed from
C.arr time > BDT to C.arr time ≥ BDT . This causes
Algorithm 4 to terminate if the arrival time to the route’s
destination is less than or equal to all unvisited contacts, in
which case an optimal path has been found.

Algorithms 7 and 8 give the modified versions of the
algorithms, described in Section III-B, which are used below in
the proof of Theorem 1. In both cases, the cleared working area
of CP means that C.visited = False, C.pred is empty, and
C.arr time = ∞ for all contacts C, except Croot.arr time
is set to be the starting time of the expected route. Additionally,
in the case of Algorithm 4, initially Croot.visited n contains
the source node S and all other C.visited n are empty.

Algorithm 4 Contact Graph Dijkstra Search (Simplified)

Data: root contact Croot, destination D, contact plan CP
(with cleared working area)

Result: Route RD
S from source S to destination D

1: RD
S = {}

2: Cfin = {}
3: BDT = ∞
4: Ccurr = Croot

5: while true do
6: Cfin, BDT = CRP(CP,Ccurr, Cfin, BDT)
7: Cnext = CSP(CP,Ccurr, BDT)
8: if Cnext ̸= {} then
9: Ccurr = Cnext

10: else
11: break
12: end if
13: end while
14: route reconstruction using predecessors to find RD

S

We now prove Theorem 1. The main idea comes from the
behavior observed in the example in Section II-A that the
contacts explored were in one-to-one correspondence once
redundancies are removed. Algorithm 7 results from removing
all such redundant steps, and we proceed to check that this
algorithm essentially performs the same search as Algorithm 1.

Proof of Theorem 1. The data stored by a contact in Al-
gorithm 7 correspond to the data stored by that contact’s
destination in Algorithm 1; for any n ≥ 1, on the nth iteration
of the while loop of Algorithm 7, the destination of Ccurr is
the same as vcurr on the nth iteration of the while loop of
Algorithm 1, as guaranteed by the loop conditions.

Moreover, we show at the beginning of the nth loops, the
“visited” marker of any contact in Algorithm 7 is equal to that
of the contact’s destination in Algorithm 1, and that the arrival
time of any vertex v in Algorithm 1 is equal to the minimum
arrival time of all contacts with destination v in Algorithm 7.

Algorithm 5 Contact Review Procedure (CRP) (Simplified)

Data: CP , Ccurr, Cfin, BDT
Result: revised CP , Cfin, BDT

1: for contact C ∈ CP with C.src = Ccurr.dst do
2: if C.end ≤ Ccurr.arr time then
3: skip C
4: end if
5: if C.visited then
6: skip C
7: end if
8: if C.dst ∈ Ccurr.visited n then
9: skip C

10: end if
11: arr time = max(C.start, Ccurr.arr time) +

C.owlt+ owltmgn

12: if arr time < C.arr time then
13: C.arr time = arr time
14: C.pred = Ccurr

15: C.visited n = Ccurr.visited n+ C.dst
16: if C.dst = D and C.arr time < BDT then
17: BDT = C.arr time
18: Cfin = C
19: end if
20: end if
21: end for
22: Ccurr.visited = True

Algorithm 6 Contact Selection Procedure (CSP) (Simplified)

Data: CP , BDT
Result: Cnext

1: Cnext = {}
2: tearliest arrival = ∞
3: for contact C ∈ CP do
4: if C.visited then
5: skip C
6: end if
7: if C.arr time ≥ BDT then
8: skip C
9: end if

10: if C.arr time < tearliest arrival then
11: tearliest arrival = C.arr time
12: Cnext = C
13: end if
14: end for

Similarly, BDT in Algorithm 7 corresponds to
vd.arr time in Algorithm 1, and we will also note
that Cfin corresponds to vd.pred.

We use induction, tracking each of the values listed, and
show that the algorithms terminate at the corresponding itera-
tions. For the base case, at the beginning of the first iteration,
the initial values meet the description above, with the arrival
times of Croot and vr equal to the initial time, all other
arrival times equal to infinity, and all “visited” markers false.
For the inductive step, we show that if the description holds
at the beginning of an iteration of the while loops, then it

Algorithm 7 Modified Contact Graph Dijkstra Search

Data: root contact Croot, destination D, contact plan CP
(with cleared working area)

Result: Route RD
S from source S to destination D

1: RD
S = {}

2: Cfin = {}
3: BDT = ∞
4: Ccurr = Croot

5: while true do
6: Cfin, BDT = MCRP(CP,Ccurr, Cfin, BDT)
7: Cnext = CSP(CP,Ccurr, BDT)
8: if Cnext ̸= {} then
9: Ccurr = Cnext

10: else
11: break
12: end if
13: end while
14: route reconstruction using predecessors to find RD

S

Algorithm 8 Modified Contact Review Procedure (MCRP)

Data: CP , Ccurr, Cfin, BDT
Result: revised CP , Cfin, BDT

1: for contact C ∈ CP such that C.src = Ccurr.dst do
2: if C.end ≤ Ccurr.arr time then
3: skip C
4: end if
5: if C.visited then
6: skip C
7: end if
8: arr time = max(C.start, Ccurr.arr time) +

C.owlt+ owltmgn

9: if arr time < C.arr time then
10: C.arr time = arr time
11: C.pred = Ccurr

12: if C.dst = D and C.arr time < BDT then
13: BDT = C.arr time
14: Cfin = C
15: end if
16: end if
17: end for
18: for contact C ∈ CP such that C.dst == Ccurr.dst do
19: C.visited = True
20: end for

holds at the beginning of the following iteration. The while
loops first apply Algorithms 2 and 8. By the assumption that
the destination of Ccurr is equal to vcurr, the first loops of
Algorithms 2 and 8 search through the same set of contacts.
The current contact Ccurr always has the minimal arrival
time of unvisited contacts, so by assumption it agrees with
the arrival time of vcurr; thus, the first if statements skip
the same contacts. Similarly, the second if statements skip
the same contacts because the C.visited in Algorithm 8
agrees with C.dst.visited in Algorithm 2. The values of
arr time computed on line 8 of each algorithm agree, as

Ccurr.arr time = vcurr.arr time. At this point, the two
algorithms update arrival times. In Algorithm 2, once the for
loop has finished, the arrival time has been reviewed for each
vertex v that was the destination of some contact of the loop.
Its arrival time has either been left unchanged if it could not
be improved, or it has been updated to the minimal arr time
found for contacts C in the loop such that C.dst = v. In
Algorithm 8, the arrival times of the contacts are updated if
they can be improved. The arrival times are not modified for
the remainder of the while loops of Algorithms 1 and 7, so we
have verified that at the beginning of the next loops, the arrival
time of any vertex v in Algorithm 1 is equal to the minimum
arrival time of all contacts with destination v in Algorithm 7.
Predecessors are updated in both algorithms. The if statement
on lines 12-15 of Algorithm 8 make sure that if BDT is
updated, it is assigned the minimal C.arr time amongst
contacts C considered by the for loop with C.dst = D. This
is exactly the value assigned to vd.arr time, if it is updated,
in the for loop of Algorithm 2, as required. By assumption
(1) in the statement of the theorem, the orders of the contacts
match between the two algorithms, so if Cfin is updated in
Algorithm 8, it is assigned to be the same contact as vd.pred in
Algorithm 2; this assumption is only needed in cases when two
different contacts can realize the same arrival time to the same
destination. Finally, at the end of Algorithm 8, all contacts with
destination equal to Ccurr.dst are marked as visited, whereas
in Algorithm 2, it is only vcurr that is marked as visited. This
verifies that in the following iteration of the while loops, the
“visited” marker of any contact in Algorithm 7 is equal to that
of the contact’s destination in Algorithm 1.

The next steps of the while loops in Algorithms 1 and 7 are
the selection procedures, Algorithms 3 and 6. As shown above,
if a contact has not yet been marked as visited in Algorithm 6,
then its destination has not yet been marked as visited in
Algorithm 3, and BDT corresponds to vd.arr time. Thus,
if a contact is not skipped in the for loop of Algorithm 6,
its destination vertex is not skipped in the for loop of Algo-
rithm 3. Since the arrival time at a vertex v in Algorithm 3
matches the minimal arrival time of contacts with destination
v in Algorithm 6, the two for loops will find the same
values of tearliest arrival. Assumption (2) in the statement
of the theorem is only necessary in the case when multiple
vertices have the same arrival times in Algorithm 3: assuming
compatible orders in the for loops, the final value of vnext
in Algorithm 3 will be the destination of the final value of
Cnext in Algorithm 6. Returning to Algorithms 1 and 7, the
final lines of the while loops update by setting vcurr = vnext
and Ccurr = Cnext as long as vnext and Cnext are not empty.
By the above, this verifies that in the following while loops,
the destination of Ccurr in Algorithm 7 is equal to vcurr in
Algorithm 1. The while loops terminate together if both vnext
and Cnext are empty. This completes the inductive step, and
since we determined that the while loops terminate at their
corresponding iterations, we conclude that Algorithms 1 and
7 require the same number of iterations.

