Probably FRET?

Anastasia Mavridou, Marie Farrell, Tom Pressburger, Johann Schumann

Probabilistic
requirements?

EEE—

* Reviewed requirements from
industry and academia

* Let’s dive into probabilistic
requirements and classify them
into patterns

Probabilistic requirement patterns

“The probability of avoiding collisions with an obstacle shall be greater
than 99%*% over the course of the mission” -

T'.Qg

“With a probability of at least 0.95 no error will occur in the next 1000
seconds”

*this probability is application and system dependent

Probabilistic requirement patterns

“The probability of avoiding collisions with an obstacle shall be greater
than 99% over the course of the mission”

“With a probability of at least 0.95 no error will occur in the next 1000
seconds”

Probabilistic invariance
Predicate holds (always or continuously within a time bound) with a
probability bound

Probabilistic requirement patterns 0,

: Runway
“The aircraft shall not leave the taxiway” W
(2)— A
“The aircraft shall not turn more than a prescribed (3)— . <
degree”
Centerline

Corina Pasareanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum, Imrie, Radu Calinescu, and Huafeng
Yu,Closed-loop Analysis of Vision-based Autonomous Systems: A Case Study, Submitted to CAV 2023.

Erfan Asaadi, Ewen Denney, Ganesh Pai. Towards Quantification of Assurance for Learning-enabled Components, EDCC
2019. 5

Probabilistic requirement patterns

What is the probability that the aircraft eventually leaves the taxiway

What is the probability that the aircraft eventually turns more than a
prescribed degree

Calculate the probability that eventually the system reaches an error state

Probabilistic existence
Predicate will eventually become true with a probability bound

Probabilistic requirement patterns

“Whenever error X, the rover shall avoid collisions with a probability
greater than bound”

“if FSM_STATE = MapSending_SendMapData, rover shall within
<watchdog timeout> transfer_map with probability greater than bound”

Probabilistic requirement patterns

“Whenever error X, the rover shall avoid collision with a probability
greater than bound”

“if FSM_STATE = MapSending SendMapData, rover shall within
<watchdog timeout> transfer map with probability greater than bound”

Probabilistic response
Whenever predicatel holds, predicate? must become true with a
probability bound

Create Requirement ASSISTANT TEMPLATES GLOSSARY

Ready to speak FRETish?
Project
Please use the editor on your left to write your requirement

Requirement ID Parent Requirement ID Demo-FSM
or pick a predefined template from the TEMPLATES tab.

Rationale and Comments

Requirement Description

A requirement follows the sentence structure displayed below, where fields are optional unless indicated

with "*". For information on a field format, click on its corresponding bubble.

(SCOPE) (CONDIT\ONS) GOMPONENTD SHALL* TIMING

Do you speak
FRETish?

S —

SEMANTICS

Adding probabilities in FRET

SCOPE COMPONENT*) SHALL* ({ PROBABILITY RESPONSES*

template key: [scope, condition, timing]

scope null (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter
null, regular, trigger

TIMING immediately, next, always, never, eventually, until, before, for, within, after

10

Adding probabilities in FRET

SCOPE COMPONENT*) SHALL* ({ PROBABILITY RESPONSES*

template key:[scope, condition, probability, timing]

scope null (global), in, before, after, notin, onlyln, onlyBefore, onlyAfter
null, regular, trigger
PROBABILITY null, bound, query

TIMING immediately, next, always, never, eventually, until, before, for, within, after

11

Translate to the PRISM language

* PRISM'’s property specification language subsumes several probabilistic
temporal logics

 Several probabilistic model checkers accept PRISM'’s language
* E.g., STORM, ISCASmc

P operator: P bound [temporal property |
* P>0.99[F terminate |
* P>0.98] F (request & (X ack)) |

P=7 [property| quantitative approach
* P=?[F terminate |

12

Adding probabilities in FRET

SCOPE COMPONENT*) SHALL* { PROBABILITY

[scope, condition, probability, timing]

For example:

[null, null, null, immediately]: P>=1[SresponseS |

[null, null, bound, immediately]: P~bound| Sresponse$ |
[null, null, query, immediately]: P=?[Sresponses |

RESPONSES*

13

Probabilistic invariance

SCOPE COMPONENT SHALL* PROBABILITY ‘RESPONSES ,

[null, null, bound, always]: P~bound| G (SresponseS) |
[null, null, bound, for]: P~bound [G<=T (Sresponse$) |

“The probability of avoiding collision with an obstacle shall be greater than 99% over the
course of the mission”

FRETish: The rover shall with probability > 0.99 always satisfy ! collision
P>=0.99[G (! collision)]

“With a probability of at least 0.95 no error will occur in the next 1000 seconds.”
FRETish: The sw shall with probability >= 0.95 for 1000 seconds satisfy ! error

P>=0.95[G<=1000 (! error)] ”

Probabilistic existence

SCOPE COMPONENT SHALL* PROBABILITY ‘RESPONSES ,

[null, null, bound, eventually]: P~bound| F SresponseS |
[null, null, query, eventually]: P=?[F Sresponses |

“What is the probability that eventually the system reaches an error state”
FRETish: The aircraft shall with what probability eventually satisfy error

P=?[F error]

“What is the probability of battery depletion before completing mission objectives”
FRETish: The rover shall with what probability eventually satisfy battery depleted

P=7[F battery _depleted]

15

Probabilistic response

SCOPE CONDITIO) COMPONENT*) SHALL* GROBABILITD < TIMING > GESPONSES}

[null, regular, bound, always]:
P>=1[G (Sregular_condition$ -> P~bound[G Sresponse$])]

“If error, the rover shall avoid collision with a probability greater than bound”
FRETish: Whenever error, the rover shall with probability > bound always satisfy ! collision

P>=1[G (error => P>bound[G (! collision)])]

16

More complex formulas

FRETish: if FSM STATE = MapSending SendMapData, rover shall with
probability bound within <watchdog timeout> satisfy transfer_map

P>=1[((G (((! (FSM_STATE = MapSending SendMapData)) &
(X (FSM_STATE = MapSending _SendMapData))) =>
(P~bound[X (F<=watchdog timeout transfer map)]))) &
(FSM_STATE = MapSending _SendMapData) =>
P~bound[F<=watchdog timeout transfer_map]))]

17

Ongoing work

* More than 40 different formalizations for probabilistic requirements
* Probabilistic requirements for ODIN-Fire

* if ODIN gets a fire/smoke probability > X it sends notification within Y sec with a
probability P_A

* if fire location > location threshold and fire spread vector > fire spread threshold
the situational awareness system shall satisfy that the blockage probability for
escape route 1is P_BER1

el X

—_— e o lwasz;e;s?“
Delphire

|
N S

|

I VAR

! X
|

H situational awareness

data acquisition layer data aggregation layer | data integration layer

REFSQ 2023 paper

ML requirement attributes and
characteristics

13 sanitized requirement types

Obtained by manually analyzing
/70 requirements

Missions and industrial case studies

Exploring Requirements for Software that
Learns: A Research Preview

Marie Farrell!, Anastasia Mavridou?, and Johann Schumann?

! Department of Computer Science, The University of Manchester, UK
? KBR. NASA Ames Research Center, USA

Abstract. Context & motivation: The development of software that
learns has revolutionized how many systems perform. For the most part,
these systems are neither safety- nor mission-critical. However, as tech-
nology and aspirations advance, there is an increased desire and need
for Machine Learning (ML) software in safety- and mission-critical sys-
tems, e.g., driverless cars or autonomous space robotics. Problem: In
these domains, reliability is crucial and systems have to undergo much
scrutiny in terms of both the developed artefacts and the adopted de-
velopment process. Central to the development of such systems is the
elicitation and definition of software requirements that are used to guide
the design and verification process. The addition of software compo-
nents that learn, and the associated capability for unforeseen behavior,
makes defining detailed software requirements especially diflicult. Prin-
cipal ideas/results: In this paper, we identify unique characteristics of
software requirements that are specific to ML components. To this end,
we collect and examine requirements from both academic and industrial
sources. Contribution: To the best of our knowledge, this is the first
work that presents real-life, industrial patterns of requirements for ML
components, Furthermore, this paper identifies key characteristics and
provides a foundation for developing a taxonomy of requirements for
software that learns.

Bibliography

M. Kwiatkowska, G. Norman, D. Parker, PRISM 2.0: A tool for probabilistic model checking, QEST,
2004.

L. Grunske, Specification patterns for probabilistic quality properties. In ICSE, 2008.

M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, A. Tang, Aligning Qualitative, Real-Time, and
Probabilistic Property Specification Patterns Using a Structured English Grammar. IEEE Transactions
on Software Engineering, 2015.

E. Asaadi, E. Denney, J. Menzies, G. J. Pai, and D. Petroff. Dynamic Assurance Cases: A Pathway to
Trusted Autonomy. Computer, 2020.

J. Horkoff. Non-functional requirements for machine learning: Challenges and new directions. In RE,
20109.

D.M. Berry. Requirements engineering for artificial intelligence: What is a requirements
specification for an artificial intelligence? In REFSQ, 2022.

C. Menghi, C. Tsigkanos, M. Askarpour, P. Pelliccione, G. Vazquez, R. Calinescu, and S. Garcia.
Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative
Properties. IEEE Transactions on Software Engineering. 2022. 20

Back-up slides

Derived TROUPE requirement

* For the entire mission: The probability of collision with an obstacle
shall be less than 1%

* For a specific error (e.g., rover pose): An error X is likely to occur with a
probability 5%.

 Derived requirement: Given error X, rover shall always avoid collisions
with a probability less than <calculatedValueToSatisfyMissionRqt>

It implicitly defines the integrity of the barrier preventing or recovering
from error X.

Probabilistic requirement patterns

“What is the probability of error conditioned on the
model never aborting”

3)

Centerline

Conditional probabilities
What is the probability of formulal conditioned on formulaZ2

23

Conditional probabilities

SCOPE ' COMPONENT*)~ SHALL* GROBABILITD (MG) GESPONSES)

“What is the probability of error conditioned on the model never aborting”
FRETish: Upon !Future(abort) the aircraft shall with what probability
eventually satisfy error

P=?[F[error] & (! (F abort))] / P=? [! (F abort)]

24

Requirement Patterns

* 13 sanitized patterns
* Obtained by manually analyzing 770 requirements
* Missions and industrial case studies that use Al

“The sw shall estimate PARAMETER to be within +- X with a Y% confidence”

25

