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This work illustrates the use of artificial neural network modeling to study and characterize

broadband blade-wake interaction noise from hovering sUAS rotors subject to varying airfoil

geometries, rotor geometries, and operating conditions. Design of Experiments was used to

create input feature spaces and a high-fidelity strategy was implemented at the discrete data

points defined by the input feature spaces to design airfoils and rotor blades, predict the

unsteady rotor aerodynamics and aeroacoustics, and isolate the blade-wake interaction noise

from the acoustic broadband noise. A metric for the blade-wake interaction noise was developed

and the ANOPP2 Artificial Neural Network Tool was used to identify an optimal prediction

model for the nonlinear relationship between the input features and the metric for blade-wake

interaction noise. This optimal artificial neural network was then validated over training/test

data, and exhibited prediction accuracy over 91% for data previously unseen by the model.

A sensitivity analysis was conducted, which showed that input features that directly modify

the thrust coefficient had a dominant effect over blade-wake interaction noise. The optimal

prediction model along with aerodynamic simulations were used to further study the effect of

varying input features on blade-wake interaction noise and three types of blade-wake interaction

noise were identified.

Nomenclature

𝑎 fluid speed of sound, in/s

𝐶 𝑓 skin friction coefficient

𝐶𝑇 thrust coefficient

𝑐(𝑟) rotor blade chord length distribution, in

𝑐root root chord length, in
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𝑐tip tip chord length, in

𝑒 𝑗 residual between the true value, 𝑦 𝑗 , and predicted value, �̂� 𝑗

𝑓 (𝑥𝑖) prediction model output

𝐺𝑥𝑥 power spectral density, Pa2/Hz

𝑔(𝑥) continuous system representation

𝑘 turbulent kinetic energy, in2/s2

𝐿1 ridge regression regularization

𝐿2 lasso regression regularization

𝑀tip Mach number at the rotor blade tip

𝑚 airfoil camber, %chord

𝑁𝑏 number of rotor blades

𝑛 number of samples in an input feature space

𝑝𝑟𝑒 𝑓 reference pressure, 20 `Pa

𝑅 rotor radius, in

𝑅2
𝑑

coefficient of determination

𝑅𝑒tip Reynolds number at the rotor blade tip

𝑟 rotor blade span location normalized by rotor radius

𝑆𝑖 global sensitivity index corresponding to the 𝑖th model input

𝑠 number of input features

𝑇 thrust produced by rotor, lb

𝑇𝑅 taper ratio, 𝑐tip
𝑐root

𝑡/𝑐 airfoil thickness, %chord

𝑈 𝑓 𝑟𝑖𝑐 friction velocity, in/s

u fluid velocity, in/s

𝑣𝑖 induced rotor velocity, in/s

𝑤 downwash velocity, in/s

x̃ normalized model input

𝑥𝑐 nondimensional chord length

𝑥𝑘
𝑖
, x𝑘 samples in input feature space pertaining to the 𝑘 th input feature

y 𝑗 𝑗 th output from physical system

ŷ 𝑗 𝑗 th predicted value of y 𝑗

𝑦+ normalized wall distance
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𝑧 neuron output in an artificial neural network

𝛼0 zero lift angle of attack, deg

𝛾 activation function used by an artificial neural network neuron

Δf narrowband spectra frequency resolution, Hz

Δ𝑂𝐵 outer boundary of VR region, in

𝜖 turbulent kinetic energy dissipation rate, in2/s3

Θ𝑜𝑏𝑠 observer angle relative to rotor plane, deg

\ (𝑟) rotor twist distribution, deg

\𝑡𝑤 linear twist, deg

\0 collective pitch, deg

`𝑝 multiplicative weight between the 𝑝th neuron and output layer in an artificial neural network

`0 bias term added to the output layer in an artificial neural network

a kinematic fluid viscosity, in2/s

𝜌 fluid density, lb/in3

𝜎mean mean rotor solidity

𝜎(𝑟) rotor solidity distribution

𝜏𝑤𝑎𝑙𝑙 wall shear stress, lb/in2

𝜓 azimuthal distance between rotor blades, deg

Ω rotor speed, RPM

𝜔ℎ𝑖 multiplicative weight between the 𝑖th input and ℎth neuron in an artificial neural network

𝜔ℎ0 bias term added to the ℎth neuron in an artificial neural network

𝜔𝑖 weight function in the 𝑖th direction

I. Introduction
The past decade has seen considerable interest in advanced air mobility (AAM) vehicles, capable of transporting

personnel and packages across various environments in a safe and sustainable way. These vehicles are typically

comprised of multirotor systems and generally range in size from small unmanned aerial systems (sUAS) (i.e., drones) to

single- or multipassenger vehicles designed for operation in urban environments. Though the AAM industry is growing

at a rapid pace, noise is still a large inhibitor toward the development and real-world application of these AAM vehicles,

which has motivated research in identifying and characterizing noise sources produced by vehicles such as quadcopters,

among other types of sUAS vehicles.

The difference in size of these sUAS vehicles, when compared to traditional helicopters, has shown somewhat of a
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paradigm shift in the relative importance of different noise-generating mechanisms. For example, it has been shown that

the stochastic, or broadband, portion of the noise emanating from such sUAS vehicles lies in the most perceptible range

of human audibility and is a dominant noise source when compared to the deterministic, or tonal, noise [1, 2]. This is in

contrast to traditional helicopters where tonal noise dominates over broadband and, for this reason, limited work has

been done in the prediction and analysis of broadband noise until recently.

There are three types of broadband noise: blade self-noise, turbulence ingestion noise (TIN), and blade-wake

interaction (BWI) noise. Blade self-noise, produced by near wake turbulence scattering over a rotor blade trailing edge

(i.e., boundary layer dependent), has been studied and modeled extensively [1, 3–10]. TIN noise, caused by the ingestion

of atmospheric turbulence into the rotor system, is typically seen in outdoor testing environments [11] and is thought to

be prevalent in real-world operation. A low-fidelty TIN prediction model exists [12]; however, due to the random nature

of atmospheric turbulence, this noise source is not well understood. BWI noise can be loosely defined as noise caused

by blade interactions with rotor-wake turbulence. This rotor-wake turbulence associated with BWI noise is entrained

in blade-tip vortices and interacts with subsequent blades in a perpendicular fashion, elucidating the frequently used

synonymous term, perpendicular blade-vortex interaction (BVI) noise, in lieu of BWI noise.

Fig. 1 Illustration of the flowfield encountered by a
rotor blade and the associated noise sources. Adapted
from Brooks and Burley [13].

BWI noise was first introduced as a prominent broad-

band noise source by Brooks et al. [14] during a testing

campaign over a scaled MBB BO-105 helicopter main

rotor performed in the German-Dutch Wind Tunnels

(DNW). This work showed that mid-frequency broadband

noise was dependent on the rotor tip-path plane (TPP)

angle, proving that this mid-frequency noise was related

to interactions between rotor blades and shed blade-wake,

whereas previously, this noise was believed to be caused

by atmospheric turbulence ingestion. Brooks et al. also

postulated that, since the TPP angle changes the tip vortex

trajectory, this BWI noise is caused by perpendicular BVI

events, where the shed blade-wake entrained in the tip

vortex interacts with subsequent rotor blades. An example of this can be seen in Fig. 1 taken from Ref. [13]. Since the

work in Ref. [14] identified BWI noise by varying the TPP angle, the presence of this noise source was only postulated

for forward flight conditions. The introduction of BWI noise promoted further experimental [15–17] and computational

[13, 18–20] research to study the characteristics of, and create prediction models for, BWI noise in forward flight

conditions.

An analytical model for predicting BWI noise was first developed by Glegg [18], which used the turbulent vortex
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model of Phillips and Graham [21] coupled with TIN prediction techniques devised in Refs. [3, 22–24]. This work

assumed BWI noise to be caused by turbulence in the tip vortex core, rather than the entrained blade-wake surrounding

the tip vortex, and used measured turbulence levels in the vortex core produced by stationary (i.e., nonrotating) airfoils

in the prediction scheme. In concluding this work, Glegg hypothesized that BWI noise may be caused by the entrained

blade-wake surrounding the tip vortex rather than the assumed turbulence in the vortex core, explaining the poor

accuracy of his prediction model. Since it was also established in this work that a more detailed investigation into the

tip vortex structure was necessary for accurate predictions, Wittmer et al. [15–17] conducted experimental studies of

rectangular NACA 0012 blade planforms downstream of a half-span NACA 0012 used as a vortex generator, shown

in Fig. 2. The primary focus of this work was on the tip vortex structure before and after its impingement on the

downstream NACA 0012 interaction blade. The findings of this research suggest that there is not enough turbulence

surrounding a tip vortex to produce BWI noise until after it has interacted with a downstream blade.

Fig. 2 Illustration of the experimental setup used by Wittmer et al. [16, 17] to study blade-vortex interactions.
Adapted with permission from Wittmer and Devenport [16].

The results from Wittmer et al. were used in conjunction with the BWI noise prediction model devised by Glegg

[18] in Ref. [19]. A modification to the BWI noise prediction model was implemented where the first BWI event was

ignored and only the second and subsequent interactions were considered, which improved the prediction results, though

underprediction was still encountered.

Brooks and Burley [13] also devised a BWI prediction methodology, which used cross-spectral relationships between

leading edge blade surface pressures and measured acoustic results. Although this prediction method was somewhat

accurate, it was highly dependent on the experimental results from the DNW campaign [14] and could not be generalized

to other rotors without highly resolved surface pressure data measured at specific leading edge locations on the suction

and pressure sides of a rotor blade.

More recently, Thurman et al. [8] showed the presence of BWI noise for a small canonical rotor at various hover

operating conditions. High-fidelity lattice-Boltzmann simulations were conducted and the rotor blade surfaces were

split into various regions, shown in Fig. 3, to separate acoustic contributions from different regions of the rotor blades at
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the observer. It was found that BWI noise from the leading edge region of the blade (i.e., Region IV) was responsible

for approximately 6 dB of the total predicted broadband noise, as shown in Fig. 3. It was also shown in Ref. [8] that

noise from the rotor without the leading edge region of each blade (i.e., Regions I, II, III, and V) compared well with

predictions made using the semiempirical self-noise model of Brooks, Pope, and Marcolini [4]. This finding suggests

that BWI noise emanates primarily from the leading edge region (i.e., Region IV) for the rotor geometry used in Ref. [8].

Fig. 3 Acoustic spectra of the calculated broadband noise at an observer located approximately 6.2 ft away
from the rotor and −35◦ below the rotor plane.

Thurman [25] also used the predicted acoustics from the split rotor blade regions shown in Fig. 3 to devise an acoustic

metric for BWI noise. This metric was calculated using the difference in overall sound pressure level (OASPL) between

the broadband noise from the entire rotor and the rotor without the leading edge region (i.e., Region IV) between 500

Hz and 20 kHz. This BWI noise metric was used with a Design of Experiments (DoE) methodology in an effort to

characterize BWI noise under varying collective pitch angles and rotor speeds for the same canonical rotor used in Ref.

[8]. This work showed that BWI noise increased with rotor speed, which was believed to be due to increasing tip vortex

strength caused by increases in both the induced axial and induced tangential velocities. It was also shown that BWI

noise decreased with collective pitch variations about the design operating condition.

The literature review shows that there are substantial deficits in the work done toward understanding and predicting

BWI noise. First, BWI noise was only identified as a broadband noise source by varying the TPP angle [14]. The

implication of this was that the hover operating condition was assumed to lack BWI noise, which was shown in

Refs. [8, 25] to be false. Therefore, no work has been done toward the development of BWI noise prediction models for

hovering rotors and very limited work has been done toward acoustic characterization of this broadband noise source at

hover operating conditions [25]. Second, the prediction modeling methodology devised by Glegg [18] has only been

used with turbulence data from the tip vortex of a fixed, rectangular NACA 0012 blade. It is well known that the loading
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distribution of a rotating rotor blade varies significantly from a fixed (i.e., nonrotating) blade [26], meaning that the tip

vortex of a rotor blade also differs from that of a fixed blade, elucidating the invalid use of turbulence data from the tip

vortices generated by fixed blades. Lastly, all previous work, except that of Refs. [8, 25], has been done for traditional

helicopter main rotors with blades consisting of symmetric airfoil profiles. In comparison, sUAS vehicles have largely

differing airfoil geometries, rotor geometries, rotor dynamics, and operating conditions; the effects of which have only

been sparsely studied.

The objectives of this current work can be summarized as follows:

1) Develop a BWI noise prediction model for hovering sUAS rotors using state-of-the-art machine learning (ML)

methodologies. This prediction model will use training data generated from high-fidelity simulations, capable

of resolving the turbulence associated with blade-wake entrained in tip vortices. The prediction model will

include input parameters commonly associated with sUAS vehicles, such as rotor twist distribution, rotor taper

distribution, airfoil camber, airfoil thickness, etc. It should be noted that though rotor blade dihedral and anhedral

would serve to modify the tip vortex, the inclusion of such parameters is outside the scope of this work and will be

investigated in future BWI noise mitigation studies. The model developed in this work will use a discrete metric

for BWI noise, derived in Ref. [25] and in Section II.B.3, to define the BWI noise over a range of frequencies

at a single observer location. The prediction model developed herein and the data gathered through this effort

will serve as the basis for future prediction modeling efforts to create a BWI noise model capable of predicting

acoustic results at any arbitrary observer located in the far field.

2) Utilize the developed BWI noise prediction model for a parameter characterization study. This study will

elucidate the effect of varying different input parameters on BWI noise and will indicate which input parameters

have the largest influence on BWI noise. This information will further the understanding of BWI noise and will

support future broadband noise mitigation studies.

II. Technical Approach

A four-step approach similar to that used in Ref. [10] and shown in Fig. 4 was adopted in this work. Most ML

prediction modeling strategies require the apriori development of a sample space consisting of varying combinatorial

levels of the input parameters under investigation, which will be discussed in Section II.A. Once the sample space was

created, training data were generated at each design point. The generation of these data entailed the use of high-fidelity

lattice-Boltzmann simulations and subsequent post-processing techniques discussed in Section II.B. Once the dataset

was generated, ML-based approaches, described in Section II.B.4, were used to develop prediction models. These

prediction models were then validated and used for the characterization study in Section III.C.
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Design of Experiments

High-Fidelity Tools

Machine Learning Prediction Modeling

Characterization Study

x𝑘 , x𝑘+1, ..., x𝑠

y 𝑗 , y 𝑗+1, ..., y𝑚

𝑓 𝑗 (x𝑘 , x𝑘+1, ..., x𝑠) = ŷ 𝑗 ,
𝑓 𝑗+1 ((x𝑘 , x𝑘+1, ..., x𝑠) = ŷ 𝑗+1,
...,
𝑓𝑛 (x𝑘 , x𝑘+1, ..., x𝑠) = ŷ𝑚

Fig. 4 Block diagram representation of technical approach where x𝑘 is the 𝑘 th input feature, y 𝑗 is the 𝑗 th result
using the high-fidelity tools, and 𝑓 𝑗 is the 𝑗 th machine learning prediction model used to predict ŷ 𝑗 .

A. Design of Experiments

DoE is a process used for planning an experiment so that appropriate data can be collected and analyzed by statistical

methods, resulting in valid and objective conclusions [27]. DoE is typically used in systems comprised of multiple

inputs when a nonlinear functional relationship between the quantities of interest, such as force and moment coefficients,

and the regressors, or inputs, and their interactions is required. DoE can be broken up into two categories: classical

and modern. A comprehensive study of both categories of DoE was performed by Thurman and Somero [28], which

showed the superiority of modern DoE in the context of computer-based experiments. A brief comparison between the

two DoE methodologies is given in Table 1.

Table 1 Comparison between classical and modern DoE.

Classical DoE Modern DoE
Application to physical experiments Application to computer-based experiments
Fewer experimental points required More experimental points required
Based upon statistical methodology No statistical basis; more of an interpolation approach
Fewer available modeling procedures More available modeling procedures
Factor screening and model reduction N/A
Limited order of polynomial model (typically < (𝑥𝑦)3) Unlimited nonlinear modeling capability

Computer-based experiments, such as those performed in this work, are deterministic in nature. This means that
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they are only susceptible to systemic error associated with defficiencies related to modeling a physical problem. Typical

systemic error arises from grid discretization error, round off error, numerical convergence error, etc., meaning that for a

fixed number of iterations, a replicated simulation should produce the same result (i.e., absent of random error). Due to

this lack of inherent stochasticism, there is no statistical basis for procedures commonly associated with classical DoE,

such as the analysis of variance (ANOVA), which allow for input feature ranking and model reduction. Hence, modern

DoE lends itself as a suitable methodology for these deterministic computer-based experiments.

Contrary to classical DoE, which leverages aggressive input feature spacing, modern DoE commonly utilizes a

space-filling approach. There are many space-filling designs such as the Latin Hypercube Design (LHD), Sphere-Packing

Design, Uniform Design (UD), etc., which all aim to minimize the difference of the overall mean between the physical

system being modeled (i.e., continuous), 𝑔(𝑥), and the prediction model (i.e., discrete), 𝑓 (𝑥𝑘
𝑖
), throughout the design

space [29]:

𝑚𝑖𝑛

(�����∫𝐶𝑁

𝑔(𝑥)𝑑𝑥 − 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑘𝑖 )
�����
)
, (1)

where n is the number of samples over the 𝐶𝑁 input feature space and k corresponds to each input feature.

In general, space-filling designs can be generated randomly or deterministically. The LHD is the most common

example of a randomly generated space-filling design where the elements of each column, k, correspondent to each

input feature, are a random permutation of (1, 2, ..., 𝑛). Although the LHD is considered to be ‘randomly’ generated, it

outperforms a completely random design space in terms of Eq. 1. To further improve the minimization problem in Eq.

1, various deterministic approaches can be taken that entail an optimization procedure. This optimization typically

involves the use of a metric representing the amount of information contained in the distribution of the design space

(i.e., entropy [30]) or the uniformity of sample distribution in the design space (i.e., minimax, maximin, etc. [31]). If an

optimal design space is created using a uniformity criterion, it is considered to be a UD.

Since ML prediction modeling is an interpolation problem, it is imperative to spread the samples in the design space

in a manner which best represents the entirety of the experimental domain. The UD has been shown to successfully

achieve this goal in previous studies [10, 28, 32] and was selected as the design space for this work. The creation of this

UD followed a threshold-accepting (TA) heuristic [33] over the modified 𝐿2 discrepancy metric [33, 34]. This process

was added to the ANOPP2 [35] math module by the main author and a user tool, the ANOPP2 DoE Tool (ADOET), was
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developed to allow for quick implementation of the DoE routines via a user namelist. ADOET was modified to allow

for the use of one categorical (i.e., discrete) input feature, such as the number of rotor blades, 𝑁𝑏. This modification

entailed the design of separate feature spaces at each discrete value of the categorical input feature, with their ensemble

yielding the final outputted input feature space. Further details of the UD generation process are provided in Ref. [36].

The input features used in this work were: 𝑁𝑏, rotor radius, R, rotor speed, Ω, linear twist, \𝑡𝑤 , taper ratio, TR, tip

chord length, 𝑐tip, collective pitch, \0, airfoil camber, m, and airfoil thickness, 𝑡/𝑐. The location of maximum camber

was determined to be both aerodynamically and acoustically insignificant by Thurman et al. [10] and was held constant

at 40% chord throughout this work. These input features were chosen due to their potential effect on the blade-wake

structure and tip vortex trajectory as well as their tonal and broadband self-noise significance shown in Ref. [10]. The

range of the input features was thought to be representative of the entire hover operating condition for typical sUAS

rotors. It should be noted that only three- and four-bladed rotors were included in this work due to computational

resource limitations and the inclusion of two- and five-bladed rotors in the input feature space is anticipated for future

work. The range and type of each input feature are shown in Table 2.

Table 2 Input feature space. (* indicates categorical
features. All other features are continuous.)

Input Feature Range
𝑁𝑏* 3, 4
R 6 in - 12 in
Ω 3000 RPM - 6000 RPM
\𝑡𝑤 −20◦ - 0◦

𝑇𝑅 0.33 - 1
𝑐tip 0.5 in - 1.5 in
\0 −5◦ - +10◦

m 0% - 10%
𝑡/𝑐 6% - 15%

It is common with ML approaches to split a dataset

into training and testing data; however, when using DoE,

this data split may produce bias toward specific regions

of the design space. For example, if all split training

data are located in a particular region of the design space,

there will be inadequate coverage over the entirety of the

design space to train the prediction model. For this reason,

ADOET was used to generate a UD for training data and

additional, randomly generated samples were used for test

data. Test data are necessary in ML modeling procedures to validate the prediction models against data that were not

used in the training procedure. This validation process is vital to ensuring the prediction model can produce accurate

predictions everywhere in the design space and can generalize to new data points within the design space that have not

previously been seen by the model during the training process.

It was shown by Thurman and Somero [28, 32] that accurate ML prediction models can be generated using eight to
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ten samples per input feature in a UD. Since the high-fidelity simulations performed in this work were computationally

expensive, the training dataset consisted of 44 samples, or roughly five samples for each of the nine input features,

whereas the randomly generated test data had a total of only five samples. Illustrations of the training and test input

feature spaces are provided in Fig. 5 where all data points are projected on a 2-D subdimension of the input feature

spaces.

6 7 8 9 10 11 12
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4500
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5500

6000

(a) R vs. Ω.

-20 -15 -10 -5 0
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1

(b) \𝑡𝑤 vs. TR.

0 2 4 6 8 10
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(c) m vs. 𝑡/𝑐.

Fig. 5 Training and test datasets projected on a 2-D input feature space.

B. High-Fidelity Tools

To the authors’ knowledge, BWI has yet to be explicitly isolated via experiment. This type of noise emanates from

the leading edge of rotor blades, and its isolation from other broadband noise sources (e.g., blade self-noise) can only be

accomplished computationally. Because of this, a computational strategy was adopted in this work, which first entailed

the design of airfoil geometries and rotor blades. Thurman et al. [8] developed the first computational strategy for the

isolation and prediction of BWI noise from a rotor of similar size and operating conditions as the rotors in this work.

This BWI noise prediction technique was leveraged in this work and first involved the splitting of the designed rotor

blades into various regions. High-fidelity lattice-Boltzmann simulations were then conducted for each rotor design

and the acoustic pressure time history (APTH), calculated using the simulated unsteady aerodynamics acting on each

rotor blade region, was propagated to a farfield observer location using a time-domain implementation of the Ffowcs

Williams and Hawkings acoustic analogy [37]. Different acoustic post-processing techniques were then used to modify

the acoustic results before the ML prediction modeling methodology discussed in Section II.B.4 was utilized. The

computational approach used throughout this work and its implementation are provided in this Section.
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1. Rotor Design

Throughout this work, various computational tools were utilized to allow for rotor designs comprised of the NACA

four-digit airfoil geometric parameters: m and 𝑡/𝑐, as well as characteristic rotor properties such as 𝑁𝑏, R, Ω, \𝑡𝑤 , TR,

𝑐tip, and \0. Analytical equations taken from Ladson et al. [38] were used to design the airfoil for each rotor design.

Previous work done by Thurman et al. [10] used an analytical expression to define the twist distribution, \ (𝑟), which

had a functional dependence on the airfoil zero lift angle of attack, 𝛼0, the rotor solidity distribution, 𝜎(𝑟), and a target

thrust value, 𝐶𝑇𝑑𝑒𝑠𝑖𝑔𝑛 , calculated apriori:

\ (𝑟) = 1
𝑟

( 4𝐶𝑇𝑑𝑒𝑠𝑖𝑔𝑛

5.73𝜎(𝑟) +
√︂

𝐶𝑇𝑑𝑒𝑠𝑖𝑔𝑛

2

)
− 𝛼0, (2)

where r is the normalized span location. Since Eq. 2 is calculated using various rotor properties, the input features from

this previous work were highly coupled; with the variation of rotor properties directly affecting \ (𝑟). In an effort to

decouple the inputs for a more direct comparison of their effect on the prediction output, a linear twist distribution,

given in Eq. 3, was used in this work:

\ (𝑟) = \0 + \𝑡𝑤 (𝑟 − 0.75), (3)

where \0 is measured at 0.75𝑅. To calculate the chord distribution along the span of the blade, 𝑐(𝑟), the chord length at

the root, 𝑐root, was first calculated using Eq. 4:

𝑐root =
𝑐tip

𝑇𝑅
. (4)

Linear interpolation was then used to determine the chord length distribution, as shown in Eq. 5:

𝑐(𝑟) = 𝑐root + 𝑟 (𝑐tip − 𝑐root). (5)

Typically, sUAS rotors utilize a hub system meaning that the rotor blades must have an inboard root section dedicated

to hub installation (e.g., lofted root shank). After defining \ (𝑟) and 𝑐(𝑟) along the entirety of the rotor span, the inboard

0.2𝑅 was removed from the rotor blades to accommodate any sort of geometry modification necessary for the use of a
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hub system. This inboard 0.2𝑅 was shown to be acoustically insignificant by Thurman et al. [8].

Fig. 6 Orthographic view of tessellated blade sur-
face.

The airfoil coordinates, \ (𝑟), and 𝑐(𝑟) were provided to

OpenVSP [39] to generate a CAD representation of the ro-

tor blades that was then tesselated with anisotropic triangular

cells using the commercial preprocessing software suite, Pow-

erDELTA 2020-R3, and can be seen in Fig. 6.

Thurman et al. [8] showed that by splitting a rotor blade sur-

face into separate regions, the broadband noise at the observer

from each blade region could be ascertained. This methodol-

ogy allowed for the identification and isolation of BWI noise

emanating from the leading edge of each rotor blade. This work

used a similar approach to split the rotor blade surface into

separate regions, which can be seen in Fig. 7. There are two

differences in the splitting approach used in this work when compared to what was done in Ref. [8]. The first is the

inclusion of Region III, shown in Fig. 7. Reference [8] showed prominent BWI noise over the outer 0.25𝑅 of the blade

leading edges, however, it was not shown whether BWI noise occurred inboard of this location. The inclusion of Region

III in this work will elucidate BWI noise contributions between 0.5𝑅 and 0.75𝑅, if any. The second difference between

this work and what was done in Ref. [8] is the absence of a region dedicated to the isolation of tip vortex formation

noise (Region V in Fig. 3). Tip vortex formation noise is a form of broadband self-noise [4], which is not the primary

focus of this study. Because of this, its inclusion in Region IV of Fig. 7 was deemed acceptable.

Fig. 7 Top view of split rotor blade surface.
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Table 3 Split rotor blade region summary.

Region Spanwise Extents Chordwise Extents
I 0.2𝑅 < 𝑟 ≤ 0.5𝑅 0 ≤ 𝑥𝑐 ≤ 𝑐

II 0.5𝑅 < 𝑟 ≤ 0.75𝑅 0.25𝑐 < 𝑥𝑐 ≤ 𝑐

III 0.5𝑅 < 𝑟 ≤ 0.75𝑅 0 ≤ 𝑥𝑐 ≤ 0.25𝑐
IV 0.75𝑅 < 𝑟 ≤ 𝑅 0.25𝑐 < 𝑥𝑐 ≤ 𝑐

V 0.75𝑅 < 𝑟 ≤ 𝑅 0 ≤ 𝑥𝑐 ≤ 0.25𝑐

The inboard region, Region I, spanned from 0.2𝑅 ≤

𝑟 ≤ 0.5𝑅 of the blade and included both the suction

and pressure side blade surfaces. The second region,

Region II, spanned from 0.5𝑅 < 𝑟 ≤ 0.75𝑅 and only

included the suction and pressure side blade surfaces

from 0.25𝑐 < 𝑥𝑐 ≤ 𝑐. Region III encompassed the leading edge up to the quarter chord location, 0 ≤ 𝑥𝑐 ≤ 0.25𝑐, of

both the suction and pressure sides of the blade between 0.5𝑅 < 𝑟 ≤ 0.75𝑅. Similarly, Regions IV and V spanned the

outer 0.25𝑅 of the blade (0.75𝑅 < 𝑟 ≤ 𝑅) and included the suction and pressure side surfaces from 0.25𝑐 < 𝑥𝑐 ≤ 𝑐 and

0 ≤ 𝑥𝑐 ≤ 0.25𝑐, respectively. Regions VI and VII, not shown in Fig. 7, correspond to the end caps at the blade root

and tip, respectively. Emphasis is drawn away from Regions VI and VII due to their negligible acoustic impact, when

compared to Regions I–V. A summary of the spanwise and chordwise extents of Regions I–V is given in Table 3.

The final rotors were then assembled within the commercial software suite, PowerCASE 6-2021, using the tesselated

blade geometries, where the azimuthal distance between blades was 𝜓 = 2𝜋
𝑁𝑏

. Example rotor geometries are shown in

Fig. 8 for clarity.

(a) Example of a three-bladed rotor (𝑁𝑏 = 3) (b) Example of a four-bladed rotor (𝑁𝑏 = 4).

Fig. 8 Orthographic view of final rotor geometries.

2. Computational Strategy

The lattice-Boltzmann method (LBM) employed by the commercial software suite, PowerFLOW 6-2021, was used

throughout this work due to its proven accuracy on similarly complex rotorcraft problems [2, 8, 40, 41]. LBM is based

on kinetic theory and is explicit in nature, solving first for the convection of mesoscopic fluid particles before solving

for the collision of these particles on a Cartesian mesh (i.e., lattice). In this work, a statistical description of discrete
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particle motion along 19 directions in 3-D space (D3Q19 stencil) was used. The reader is referred to Refs. [42, 43] for a

more detailed theoretical explanation of LBM.

Contrary to standard turbulence modeling procedures used by traditional Navier-Stokes solvers, which use closure

models to approximate the Reynolds stress as an effective eddy viscosity contribution to the governing equations,

PowerFLOW uses a very-large-eddy simulation (VLES) to model the unresolved, subgrid turbulence. The VLES process

entails recalibrating the viscous relaxation time in the Boltzmann equation using a turbulent relaxation time calculated

via a two-equation 𝑘 − 𝜖 renormalization group (RNG) [44]. Since, in general, LBM involves the use of a Cartesian

mesh with isotropic volumetric cells (i.e., voxels), the use of body-fitted, stretched boundary layer grids, like those

commonly associated with Navier-Stokes solvers, is not possible. This places a stringent requirement on the number of

near-body voxels required to resolve the boundary layer. To circumvent the computational cost associated with this high

voxel count, PowerFLOW employs wall-functions in the first voxel adjacent to the geometry to model the boundary layer.

Since PowerFLOW simulations were performed for all samples in the training and test datasets, it was imperative

to define an arbitrary computational setup based on rotor properties that could be automated for all training and test

data. PowerFLOW automatically discretizes the volumetric computational domain using hexahedron cells (i.e., voxels),

provided user-specified variable-resolution (VR) regions. The boundary of two adjacent VR regions contains hanging

nodes, where the edge length of the voxels in the coarser region are twice the length of the voxels in the adjacent,

finer region, which can be seen in Fig. 9b. Thurman et al. [2, 8] showed that for similar rotor geometries, a cuboidal

computational domain extending 10𝑅 away from the rotor was sufficient for accurate broadband noise prediction. This

previous work also showed that a cylindrical VR region dedicated to resolving the rotor wake and extending 2.25𝑅

away from the center of the rotor was necessary, with a series of seven spherical VR regions growing outward from the

wake region to the outer cuboidal boundary of the computational domain, which can be seen in Fig. 9a. This same

computational domain was used for all simulations performed in this work.

A grid sensitivity study was performed by Thurman et al. [2], which showed that the finest voxel size in the first VR

region adjacent to the rotor should be no larger than approximately 𝑐tip/250 for accurate noise predictions from an sUAS

rotor with tapered blades. References [8, 25] investigated two different finest voxel sizes, 𝑐tip/400 and 𝑐tip/300, and it

was shown that the coarser of these two resolutions was suitable for BWI noise prediction while substantially reducing

the computational cost when compared to the finer resolution. Based on these findings, a finest voxel size of 𝑐tip/300
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(a) Front view of the volumetric computational domain. (b) Nearfield resolution regions adjacent to rotor.

Fig. 9 Illustration of the computational domain used in this work.

was used throughout this work. Similar to this previous work, three VR regions adjacent to the rotor geometry were

used. The outer boundary of the first three VR regions, Δ𝑂𝐵, shown in Fig. 9b, was calculated using Eqs. 6 and 7 from

White [45], based on 𝑦+ distances of 250, 400, and 1200, respectively:

Δ𝑂𝐵 =
𝑦+a

𝑈 𝑓 𝑟𝑖𝑐

, (6)

where

𝑈 𝑓 𝑟𝑖𝑐 =

√︂
𝜏𝑤𝑎𝑙𝑙

𝜌
, 𝜏𝑤𝑎𝑙𝑙 =

𝐶 𝑓 𝜌(Ω𝑅)2

2
, 𝐶 𝑓 =

0.026
𝑅𝑒tip

, 𝑅𝑒tip =
(Ω𝑅)𝑐tip

a
. (7)

A VR region containing the rotor geometry and first three VR regions, shown in Fig. 9a, was also defined with a

rotational speed equivalent to the rotor speed and interpolation was used between this rotational VR region and the

adjacent stationary computational domain.

A no-slip boundary condition was imposed on the rotor surfaces and ambient standard temperature and pressure

(STP) conditions, as well as a zero velocity condition, were imposed on the outer boundaries of the computational
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domain for all hover simulations performed in this work. Transitional wall-functions [46? ] were used to predict the

boundary layer behavior on the rotor blade surfaces based on their successful implementation in Ref. [8]. Flowfield

convergence was shown to occur near the seventh simulated rotor revolution in Ref. [36], so each simulation was

conducted over fourteen rotor revolutions, with the last six being used for acoustic data analysis.

3. Acoustic Post-Processing

Unsteady blade loading was sampled over the last six predicted rotor revolutions at a rate of 133 kHz. These

sampled data were then provided to PowerACOUSTICS 6-2021 for the computation of propagated APTH at a defined

observer location using a forward-time implementation of Farassat’s F1A [47]. Since unsteady loading directly on the

blade surfaces was used for this acoustic calculation, it is considered an impermeable formulation. PowerACOUSTICS

was used was used to propagate the APTH from the impermeable rotor blade surfaces (Regions I – VII in Fig. 7) to

an observer located 15𝑅 away from the center of each rotor and Θ𝑜𝑏𝑠 = −45◦ below the rotor plane. This observer

location was selected in lieu of others due to broadband noise having a dipole directivity with larger significance out of

the rotor plane [36, 48]. It is anticipated that results at other observer locations will be used to develop a BWI noise

prediction capability at any arbitrary observer location in a Part II of this work; however, for the proof of concept and

characterization purposes of this study, a single observer location was deemed suitable.

The APTH at each observer location calculated using PowerACOUSTICS from the six revolutions of sampled

unsteady blade loading was then separated into six equally sized blocks correspondent to each revolution of rotor data.

These six revolutions of data were averaged together to obtain a mean revolution of APTH, which is the periodic (i.e.,

tonal) noise signal. This tonal noise signal was then subtracted from the raw, aperiodic APTH from the six revolutions of

data and the resultant residual APTH served as the stochastic (i.e., broadband) noise signal. This technique for periodic

averaging and broadband noise signal extraction has been applied extensively to both experimental and computational

data with great success in previous work [1, 2, 7–9, 49]. Since broadband noise, and more specifically BWI noise, is the

primary focus of this work, only the broadband noise signal was used for further post-processing.

The broadband noise, or residual APTH, was treated as an aperiodic signal over, which a Fast Fourier Transform

(FFT) was calculated. The sound pressure level (SPL) of this processed signal was then calculated using Eq. 8 with a

frequency resolution, Δf = 50 Hz, due to the limited number of rotor revolutions of data:
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SPL = 10 log10

(
𝐺𝑥𝑥 ∗ Δf
𝑝2
𝑟𝑒 𝑓

)
, (8)

where 𝐺𝑥𝑥 is the resultant power spectral density (PSD) from the FFT with units of Pa2/Hz and 𝑝𝑟𝑒 𝑓 = 20 `Pa. These

narrowband broadband noise SPL values were then used to generate one-third octave band (SPL1/3) representations.

SPL1/3 values were calculated for the entire rotor, SPL1/3𝑡𝑜𝑡𝑎𝑙 , as well as for the rotor without the leading edge over the

outboard 0.5𝑅 of the rotor blades (i.e., Regions III and V), SPL1/3𝑡𝑜𝑡𝑎𝑙−𝐿𝐸
. The difference between these two broadband

noise signals was then calculated to obtain the BWI noise represented on a one-third octave band basis:

SPL1/3𝐵𝑊𝐼
= SPL1/3𝑡𝑜𝑡𝑎𝑙 − SPL1/3𝑡𝑜𝑡𝑎𝑙−𝐿𝐸

. (9)

It should be noted that SPL1/3𝐵𝑊𝐼
is the relative contribution of BWI noise calculated on a logarithmic basis, which

differs drastically from the SPL calculated using the APTH of Regions III and V. The calculated SPL1/3𝐵𝑊𝐼
values were

used for preliminary post-processing to distinguish frequencies over which BWI noise was prominent. After initial

post-processing of the acoustic results, it was found that some samples in the training and test data had no BWI noise at

frequencies below 2500 Hz and above 10 kHz. Because of this, frequencies outside the 2500 Hz to 10 kHz range were

omitted from the OASPL calculations performed using Eqs. 10, 11, and 12.

Post-processing methods, similar to what was done in Ref. [25], were used to calculate a discrete BWI noise metric

at Θ𝑜𝑏𝑠 = −45◦ to be used for characterization purposes. For this method, the broadband APTH was filtered using a

second-order Butterworth bandpass filter between 2500 Hz and 10 kHz. This range restriction ensured that changes in

OASPL between samples reflected changes in, and not elimination of, BWI noise. The root mean square value of this

resultant filtered signal, 𝑝𝑟𝑚𝑠 , was used to calculate an OASPL value using the following:

OASPL = 20log10

(
𝑝𝑟𝑚𝑠

𝑝𝑟𝑒 𝑓

)
. (10)

Equation 10 was used to calculate OASPL values for the entire rotor (OASPL𝑡𝑜𝑡𝑎𝑙), the entire rotor without the

leading edge over the outboard 0.5𝑅 of the rotor blades (Regions III and V in Fig. 7), OASPL𝑡𝑜𝑡𝑎𝑙−𝐿𝐸 , and the entire

rotor without the leading edge between the 0.5𝑅 and 0.75𝑅 spanwise locations (Region III in Fig. 7), OASPL𝑡𝑜𝑡𝑎𝑙−𝑅3.

The difference between OASPL𝑡𝑜𝑡𝑎𝑙 and OASPL𝑡𝑜𝑡𝑎𝑙−𝑅3 was calculated via the following:
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OASPL𝐵𝑊𝐼−𝑅3 = OASPL𝑡𝑜𝑡𝑎𝑙 − OASPL𝑡𝑜𝑡𝑎𝑙−𝑅3, (11)

which served as the BWI noise metric over Region III to determine this region’s contribution to the total BWI noise.

The difference between OASPL𝑡𝑜𝑡𝑎𝑙 and OASPL𝑡𝑜𝑡𝑎𝑙−𝐿𝐸 :

OASPL𝐵𝑊𝐼 = OASPL𝑡𝑜𝑡𝑎𝑙 − OASPL𝑡𝑜𝑡𝑎𝑙−𝐿𝐸 , (12)

was used as the total BWI noise metric, which was calculated for all samples in the training and test input feature spaces

and was used as the output quantity for which ML prediction models were trained using techniques discussed in the next

Section.

4. Machine Learning Prediction Modeling

In general, ML involves the development of input-output functional relationships, or prediction models, using

prescribed input data points (x𝑘 , x𝑘+1, ..., x𝑠; where s corresponds to the number of input features). The ML prediction

model is ‘trained’ over the input data points using some form of algorithmic optimization (e.g., stochastic gradient

descent) until the prediction model adequately ‘learns’ the underlying input-output relationship. The main goal of

any ML procedure is not only to fit the input data points, but to develop prediction models that can generalize to

new data, previously unseen by the models, to make accuracte predictions anywhere within the prescribed region of

experimentation, or input feature space. A detailed discussion on the types of ML tasks and their applicability is

provided in Ref. [36]. Artificial neural networks (ANNs) were selected as the ML prediction model architecture used in

this work based upon their successful implementation by Thurman and Somero [28, 32] and their proven application to

aeroacoustic problems [50, 51]. The ANN aims to replicate the architecture of the neurons in the human brain, set

up in layers as shown in Fig. 10. Each “hidden” layer consists of a number of nuerons represented by circles in Fig.

10, aligned in parallel. All neurons of a particular layer are activated in unison, with different multiplicative weights

along the connections between neurons, inputs, and outputs. In general, if an ANN has more than one hidden layer, it is

considered a multilayer perceptron (MLP); otherwise, it is a single-layer perceptron (SLP).

In the case of the two-layer MLP shown in Fig. 10, the general equations defining the ANN are:
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Fig. 10 Illustration of an MLP where the subscripts 𝑘 , ℎ, and 𝑝 correspond to the 𝑘 th input feature, the ℎth

neuron in the first hidden layer, and the 𝑝th neuron in the second hidden layer, respectively. The terms 𝜔 and `

are multiplicative weights, 𝛾 is the activation function evaluated over the summed inputs multiplied by their
respective weights, \ are the neurons in a hidden layers, and 𝑓 𝑗 is the 𝑗 th ANN prediction model.

𝑧1ℎ = 𝛾1

(
𝑠∑︁

𝑘=1
𝜔ℎ𝑘x𝑘 + 𝜔ℎ0

)
, (13)

𝑧2𝑝 = 𝛾2

(
𝐻∑︁
ℎ=1

𝜔𝑝ℎ𝑧1ℎ + 𝜔𝑝0

)
, (14)

𝑓 𝑗 (x𝑘 , x𝑘+1, ..., x𝑠) = 𝛾3
©«

𝑃∑︁
𝑝=1

`𝑝𝑧2𝑝 + `0
ª®¬ = ŷ 𝑗 , (15)

where s is the number of input features, H is the number of neurons in the first hidden layer, and P is the number of

neurons in the second hidden layer. In Eq. (13), 𝛾 is the activation function used by the neurons in a hidden or output

layer, z is the output from a neuron in a hidden layer, 𝜔ℎ𝑘 are the weights between the input features and the first hidden

layer, 𝜔𝑝ℎ are the weights between the first and second hidden layers, `𝑝 are the weights between the second hidden

layer and the output, 𝜔0 and `0 are commonly used bias terms (i.e., intercepts) added to each hidden layer, and 𝑓 𝑗 is the

𝑗 th ANN model producing the predicted values, ŷ 𝑗 .

The activation functions, 𝛾, can be thought of as functional ‘mappings’ of a neuron’s input onto highly nonlinear
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hyperplanes defined by the structure of 𝛾. These activation functions are necessary to introduce nonlinearity to the

ANN, enabling it to effectively model complex, nonlinear input-output relationships.

The training procedure for an ANN first involves the random initialization of all weights along the connections

between neurons, inputs and outputs. The input data, (x𝑘 , x𝑘+1, ..., x𝑠), are then provided to the ANN in a feedforward

manner and predicted values, ŷ 𝑗 , are produced. These predicted values are then tested against the provided output,

or labeled, data associated with the input data, and a cost function, �̃� , is evaluated. This cost function is a numerical

description of the error between the labeled output data, y 𝑗 , and the predicted output, ŷ 𝑗 . The error calculated by the

cost function is then propagated from the output, ŷ𝑖 , back through the ANN via the chain rule of differentiation:

𝜕�̃�

𝜕𝜔ℎ𝑘

=
𝜕�̃�

𝜕ŷ 𝑗

𝜕ŷ 𝑗

𝜕𝑧2ℎ

𝜕𝑧2ℎ
𝜕𝜔𝑝ℎ

𝜕𝜔𝑝ℎ

𝜕𝑧1ℎ

𝜕𝑧1ℎ
𝜕𝜔ℎ𝑘

, (16)

where 𝜕�̃�/𝜔ℎ𝑘 is the change in error associated with changing the value of the weight, 𝜔ℎ𝑘 , between the input layer and

the first hidden layer for the two-layer MLP shown in Fig. 10. This method for propagating the error back through the

ANN has been coined backpropagation by Rumelhart et al. [52]. The gradients calculated using this backpropagation

are typically used with an optimization algorithm to update the weights along each connection in the ANN. One

optimization cycle through the training data samples, 𝑁 , is considered to be one epoch.

Various forms of regularization are often used in the ANN training process to promote optimization convergence and

to help prevent the trained model from overfitting the input data. These regularizations may include normalization of the

input data, penalizing �̃� with 𝐿1 (i.e., ridge regression) or 𝐿2 (i.e., lasso regression) regularization, using dropout [53],

or randomly eliminating a certain percentage of the neurons in the hidden layer during each epoch of the optimization

procedure, and imposing an early stopping criteria on the training process based upon a satisfactory value of �̃� . Various

ensemble methods such as K-fold cross-validation [54], boosting [55], bootstrap aggregation [56], etc. are also used.

5. Artificial Neural Network Model Development

In general, there are a multitude of different ANN model architectures (number of hidden layers, number of neurons

per hidden layer, type of activation function used, etc.), regularization techniques (data scaling, 𝐿1 or 𝐿2 regularization,

early stopping, etc.), and hyperparameters that can be used to generate accurate prediction models. These elements

of the ANN modeling procedure are typically determined heuristically and are problem specific, varying with the
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input-output relationship being modeled. In other words, the optimal ANN structure used for one problem may be

different from the ANN structure of another. Because of these potential ANN model form variations as well as the

common difficulties associated with creating ANNs, the NASA code, the ANOPP2 Artificial Neural Network Tool

(AANNT) [57], was utilized in this work for prediction model development, deployment, and model sensitivity analyses.

The reader is referred to Refs. [36] and [57] for more details on the usage and applicability of AANNT.

The prediction model development portion of AANNT was first used to rescale the continuous input features in the

input feature space using:

x̃𝑘 =
x𝑘 − x𝑘𝑚𝑖𝑛

x𝑘𝑚𝑎𝑥
− x𝑘𝑚𝑖𝑛

, (17)

where the subscript, k, corresponds to the number of input features. In Eq. 17, x̃ corresponds to the rescaled input

feature, x, ranging from 0 ≤ x̃ ≤ 1. One-hot encoding was used for 𝑁𝑏 since it was a categorical input feature. This

process of one-hot encoding generates additional binary input features correspondent to the discrete values associated

with 𝑁𝑏 (i.e., 𝑁𝑏 = 3 or 𝑁𝑏 = 4).

Once the data were rescaled, the grid search functionality of AANNT was used to explore various model architectures,

which included various combinations of hidden layer activation functions, output layer activation functions, number of

neurons in the hidden layers, loss functions used by the optimizer, and various types of regularization (e.g., 𝐿1, 𝐿2,

and dropout). The hidden layer activation functions tested in the grid search procedure were the exponential linear

unit (ELU), Gaussian error linear unit (GELU) [58], and Swish [59]. ANN architectures including one, two, and three

hidden layers consisting of 25, 50, and 100 neurons were also tested in the grid search. Three loss functions were tested

in the grid search which included the mean absolute error (MAE), mean squared error (MSE), and HUBER [60], which

is a combination of the MAE and MSE loss functions. Various amounts of regularization were tested in the grid search

including dropout rates of 0 and 25%, as well as 𝐿1 and 𝐿2 regularization values of 0, 0.01, and 0.1. All models were

trained over 2500 epochs using the adaptive moment estimation (ADAM) optimizer [61] and an early stopping criterion

was used, which terminated the training procedure if there was no improvement of �̃� after 50 epochs. Training time

took approximately 120 seconds per model without early stopping; however, this time was significantly reduced with the

early stopping criteria. The total number of trained models in the grid search, based on all possible combinations of the

various namelist inputs, was 3888 models. It should be noted that no parallel processing was used for ANN training
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throughout this work, however, the training of different models could be performed on different processors, drastically

decreasing the overall training time required for the grid search procedure. A table summarizing the different model

parameters used in the grid search is provided in 4.

Table 4 Model parameters explored with AANNT grid search.

Hyperparameter Values
Number of Hidden Layers 1, 2

Number of Neurons in each Hidden Layer 25, 50, 100
Hidden Layer Activation Functions ELU, GELU, Swish
Output Layer Activation Functions linear, ELU, GELU, Swish

Loss Functions MAE, MSE, HUBER
Dropout Rates 0, 25%

𝐿1 Regularization 0, 0.01, 0.1
𝐿2 Regularization 0, 0.01, 0.1

The optimal ANN produced by AANNT using these grid search parameters was used over samples in both the

training and test data to calculate �OASPL𝐵𝑊𝐼 values, where the hat is used to denote a predicted value. These predicted

values were then compared against the training/test data values, OASPL𝐵𝑊𝐼 , to calculate various error metrics such as the

MAE, root mean squared error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination,

𝑅2
𝑑
, which will be discussed in Section III.B.

Lastly, the sensitivity analysis portion of AANNT was used to evaluate the sensitivity of �OASPL𝐵𝑊𝐼 to the various

input features shown in Table 2 and plots were generated to distinguish trends in �OASPL𝐵𝑊𝐼 with the most significant

input features. Additionally, flow visualization results were generated to provide further insight to how certain input

features affect the tip vortex structure and the BWI event.

III. Results

A. Midspan BWI Significance

In order to distinguish the contribution of Region III in Fig. 7 to the total OASPL𝐵𝑊𝐼 noise metric for each sample

in the training and test input feature spaces, it was first necessary to calculate OASPL𝐵𝑊𝐼−𝑅3. This metric was then

divided by the OASPL𝐵𝑊𝐼 value for each sample to calculate its contribution on a relative percentage basis. The

OASPL𝐵𝑊𝐼−𝑅3 value, as well as its relative percentage of the total OASPL𝐵𝑊𝐼 , are shown in Table 5 for samples where

the value of OASPL𝐵𝑊𝐼−𝑅3 contributed more than 5% of the total OASPL𝐵𝑊𝐼 . It should be noted that the full training
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and test datasets are available in Ref. [36].

Table 5 Contribution of Region III to the total OASPL𝐵𝑊𝐼 for samples where OASPL𝐵𝑊𝐼−𝑅3 contributed over
5% of the total.

Sample Number OASPL𝐵𝑊𝐼 (dB) OASPL𝐵𝑊𝐼−𝑅3 (dB) 100% ∗ OASPL𝐵𝑊𝐼−𝑅3
OASPL𝐵𝑊𝐼

Training Sample No. 6 1.752115 0.115034 6.57
Training Sample No. 11 4.079201 0.331398 8.12
Training Sample No. 12 4.275085 2.296847 53.73
Training Sample No. 19 5.241988 0.734991 14.02
Training Sample No. 32 6.727732 2.429200 36.12
Training Sample No. 42 5.133381 1.341385 26.13

The samples in Table 5 with OASPL𝐵𝑊𝐼−𝑅3 contributions were seen to have negative values of collective pitch, \0,

and relatively slow rotor speeds, Ω, when compared to the the fastest Ω in the input feature spaces (i.e., Ω = 6000 RPM).

It is well known that decreases in Ω will decrease the angles of attack along the blade span, which would be decreased

further with negative values of \0. Since these rotors aren’t trimmed to a target thrust condition, it is likely that the

rotors in Table 5 are operating in a turbulent-wake state. To validate this assumption, a vorticity contour generated on a

plane aligned with the 𝑐/4 blade span location of Training Sample No. 12 is shown in Fig. 11. It should be noted that

the horizontal lines in all PowerFLOW flowfield visualizations correspond to the interpolation interface between the

rotating and stationary VR regions and these VR regions were not exactly aligned.

Fig. 11 Vorticity contour of Training Sample No. 12 in Table 5. Turbulent-wake state is shown where vortex
convects past suction side of interaction blade.
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It can be seen in Fig. 11 that this rotor induces upwash due to the slow rotor speed (Ω = 3300 RPM) and negative

value of collective pitch (\0 = −3.5◦). It can be inferred that this turbulent-wake state is present for all samples in

Table 5, which all have significant OASPL𝐵𝑊𝐼−𝑅3 contributions caused by the impingement of a blade wake-sheet on

subsequent blades, as shown in Fig. 11. Though rotor operation in a turbulent-wake state is undesirable for hover, its

inclusion in the input feature spaces elucidates two things:

1) Primary BWI (i.e., caused by impingement of blade-wake entrained in tip vortices) is the dominant source of

BWI noise, regardless of whether the tip vortex convects past the suction or pressure side of subsequent blades.

This can be ascertained based on the relative contribution of OASPL𝐵𝑊𝐼−𝑅3 to OASPL𝐵𝑊𝐼 being less than 50%

for all but one case in Table 5.

2) Another form of BWI exists in the turbulent-wake state and presumably in mild vertical descent conditions,

where BWI noise is generated by the impingement of a blade wake-sheet on the midspan leading edge of a

subsequent blade. This secondary form of BWI can cause upward of 2.5 dB of noise for the rotor cases in this

work as shown in Table 5.

Since this alternate form of BWI noise only exists for a small subset of samples (operating at undesired flight

conditions) in the training and test input feature spaces, its isolation from the total OASPL𝐵𝑊𝐼 metric is unneccesary.

However, the finding of this alternate BWI noise source may warrant further study.

B. Optimal ANN Prediction Model Validation

Using the grid search procedure in AANNT, an optimal prediction model was identified, which maintained good

prediction accuracy over both the training and test data. This ANN had two hidden layers, each consisting of 25 neurons,

which used the Swish activation function. The activation function in the output layer was linear, meaning that it served

as a summation of the outputs from the second hidden layer, multiplied by the weights of the output layer with the

addition of a bias term. All weights and biases associated with the ANN have been tabulated in Appendix C of Ref.

[36] for the purpose of replication. It should also be noted that the HUBER loss function was used throughout the

training procedure of this ANN, coupled with 𝐿1 = 0.01, 𝐿2 = 0.1, and no dropout. Though these regularizations are

insignificant to the final ANN architecture, they were still used during the training process and should be mentioned.

The optimum ANN was used to make �OASPL𝐵𝑊𝐼 predictions over all training and test data samples, along

with the calculated residuals, 𝑒𝑖 = OASPL𝐵𝑊𝐼𝑖 − �OASPL𝐵𝑊𝐼𝑖 . The predicted values are plotted against the labeled,

25



output data for both the training and test data in Fig. 12. This figure also includes a dashed line plotted along�OASPL𝐵𝑊𝐼 = OASPL𝐵𝑊𝐼 to determine any prediction outliers. As it can be seen, all predicted �OASPL𝐵𝑊𝐼 values

are relatively close to the actual OASPL𝐵𝑊𝐼 values with no significant outliers, indicating good ANN prediction

performance over both the training and test data. Another commonly used method for interpreting prediction model

results is to plot the residuals, 𝑒𝑖 , against the predicted values, �OASPL𝐵𝑊𝐼 , as shown in Fig. 13.
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Fig. 12 Predicted �OASPL𝐵𝑊𝐼 vs. actual OASPL𝐵𝑊𝐼

values
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Fig. 13 Residuals, 𝑒 𝑗 , vs. predicted �OASPL𝐵𝑊𝐼

values.

In Fig. 13, the horizontal dashed lines correspond to three standard deviations of the predicted training and test

residuals. These results, again, show no significant prediction outliers, further demonstrating the ANNs prediction

performance. Other prediction error metrics such as the MAE, MAPE, RMSE, and 𝑅2
𝑑

are shown in Table 6.

Table 6 Optimal ANN prediction error metrics.

Metrics over training data Metrics over test data Metrics over total data
MAE 0.0704 0.4107 0.1051
MAPE 2.28% 8.49% 2.91%
RMSE 0.0927 0.4553 0.1669
𝑅2
𝑑

0.9975 0.9335 0.9916

In comparing the MAE and RMSE values calculated over the training and test data, respectively, no significant

differences are seen. Since the RMSE calculation imposes a larger weight on residual outliers, its negligible difference

when compared to the MAE further indicates no significant prediction outliers. In general, the MAE and RMSE

values for the training and test data predictions are below the minumum observed OASPL𝐵𝑊𝐼 values of 0.1 and 1.646,

respectively, elucidating that the ANN is capable of accurate predictions for all samples in both the training and test data.
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The MAPE is another commonly used metric for determining prediction modeling performance, with lower percentage

values dictating better performance. It can be inferred by the MAPE values in Table 6 that the ANN predictions are

97.72% and 91.51% accurate when compared to the outputted OASPL𝐵𝑊𝐼 values. These results indicate that the ANN

is not overfit to the training data (i.e., biased) since high prediction accuracy is also observed for the test data, previously

unseen by the model. Lastly, the 𝑅2
𝑑

is commonly referred to as a ‘goodness of fit’ metric, representing the amount of

variability in the underlying physical problem accounted for by the prediction model. The high values of 0.9975 and

0.9335 indicate that the ANN accounts for 99.75% and 93.35% of the variability associated with the training and test

data, respectively, further illustrating the ANN predictive capabilities over the input feature space. The ANN ability to

accurately predict the test data samples, previously unseen by the model, demonstrates that it can generalize well over

new data and adequately represents the entirety of the input feature space.

C. BWI Noise Characterization

Table 7 First-order sensitivity indices.

Feature Ranking Sobol’ Indices FAST Indices
1 𝑆𝑀 = 0.1719 𝑆𝑀 = 0.1570
2 𝑆Ω = 0.03592 𝑆Ω = 0.03701
3 𝑆𝑐tip = 0.03422 𝑆𝑐tip = 0.03539
4 𝑆𝑡/𝑐 = 0.02799 𝑆𝑡/𝑐 = 0.03030
5 𝑆\0 = 0.02521 𝑆\0 = 0.01693
6 𝑆𝑅 = 0.005729 𝑆𝑇𝑅 = 0.01159
7 𝑆\𝑡𝑤 = 0.005407 𝑆𝑅 = 0.008707
8 𝑆𝑇𝑅 = −0.001950 𝑆\𝑡𝑤 = 0.003015
9 𝑆𝑁𝑏

= −0.008320 𝑆𝑁𝑏
= 0.001769

First-order sensitivity indices, 𝑆𝑘 , calculated with

the sensitivity analysis portion of AANNT using both

Sobol’ Sensitivity Analyis [62] and Fourier Amplitude

Sensitivity Test (FAST) [63, 64] are shown in descending

order, based on input feature ranking, in Table 7. It should

be noted that the Sobol’ Sensitivity analysis used a Saltelli

[65] sample space consisting of 40,960 samples, FAST

used a self-named sample space with 36,000 samples, and

the optimal ANN was used for predictions at the points in each respective sample space for the sensitivity analyses. In

general, model-independent forms of sensitivity analysis can be dependent on the size of the sample space and the

predictive precision of the model. Because of this, two sensitivity analysis methods were used, whenever applicable,

and the number of points in each respective sample space was increased until sensitivity analysis results were invariant

to the size of the sample space, which added robustness to the approach.

The results from both sensitivity analyses conclude that the amount of airfoil camber, m, has the largest effect on the

predicted output, �OASPL𝐵𝑊𝐼 , followed by Ω, 𝑐tip, 𝑡/𝑐, and \0. It was shown by Zhang et al. [66] that increases in m

increase the tip vortex strength while decreasing the amount of shed blade-wake for fixed, rectangular wing sections.
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This conclusion suggests that though the tip vortex of a cambered wing may be more capable of entraining blade-wake

than a symmetric wing, there is less blade-wake available, implying a reduced turbulent region surrounding the tip

vortex. For a rotating wing, increasing m increases the lift generated by a spanwise wing section, thus increasing the

thrust, T, generated by the rotor. T is related to the induced velocity, 𝑣𝑖 , and downwash speed, 𝑤, via the following:

𝑣𝑖 =

√︄
𝑇

2𝜌𝜋𝑅2 and 𝑤 = 2𝑣𝑖 , (18)

meaning that increases in m would not only increase T, but would also increase 𝑤, and consequently would increase

the vortex miss distance (i.e., vertical separation distance between a tip vortex and the leading edge of a subsequent

blade), causing a reduction in BWI noise. This effect can be seen in Fig. 14 where �OASPL𝐵𝑊𝐼 was predicted using the

ANN model while varying m between its minimum and maximum extents (i.e., 0% and 10%) and keeping all other

input features at their mean values (i.e., 𝑅 = 9 in, Ω = 4500 RPM (𝑀tip = 0.32), \𝑡𝑤 = −10◦, 𝑇𝑅 = 0.665, 𝑐tip = 1 in

(𝑅𝑒tip = 193420), \0 = 2.5◦, and 𝑡/𝑐 = 10.5%).
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Fig. 14 Effect of varying airfoil camber, m, on�OASPL𝐵𝑊𝐼 for 3-bladed and 4-bladed rotors. All other
input features were held constant at their mean values
of 𝑅 = 9 in, Ω = 4500 RPM (𝑀tip = 0.32), \𝑡𝑤 = −10◦,
𝑇𝑅 = 0.665, 𝑐tip = 1 in (𝑅𝑒tip = 193420), \0 = 2.5◦, and
𝑡/𝑐 = 10.5%.

Figure 14 also shows that the effect of increasing

m is similar for 3-bladed and 4-bladed rotors, however,�OASPL𝐵𝑊𝐼 has a larger value for 4-bladed rotors up to

𝑚 = 7%, which is likely due to the decrease in azimuthal

blade spacing (i.e., 𝜓 = 90◦ vs. 𝜓 = 120◦) when com-

pared to a 3-bladed rotor. The faster rate of �OASPL𝐵𝑊𝐼

decrease for the 4-bladed rotor can be explained by the

increased production of T and hence higher 𝑤 when

compared to a 3-bladed rotor with the same input features.

To further illustrate the effect of varying m for 4-

bladed rotors, PowerFLOW simulations with a coarse

spatial resolution (i.e., 𝑐tip/200) were conducted over ten

revolutions to visualize the tip vortex and its proximity to the leading edge of subsequent blades for cases with minimum

and maximum camber (i.e., 𝑚 = 0% and 𝑚 = 10%), respectively, which are shown in Fig. 15. This figure shows both

vorticity and turbulent kinetic energy calculated over an azimuthal slice rotated such that its location is 𝑐tip/4 ahead of
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the tip of an interactional rotor blade. It should be noted that all other input feature values were held constant at their

mean values, similar to what was done in Fig. 14. Calculated T, 𝑀tip, and 𝑅𝑒tip values have also been provided.

(a) Low camber vorticity: 𝑚 = 0%, 𝑇 = 0.53 lb, 𝑀tip = 0.32,
𝑅𝑒tip = 193420.

(b) Low camber turbulent kinetic energy: 𝑚 = 0%, 𝑇 = 0.53
lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

(c) High camber vorticity: 𝑚 = 10%, 𝑇 = 6.3 lb, 𝑀tip = 0.32,
𝑅𝑒tip = 193420.

(d) High camber turbulent kinetic energy: 𝑚 = 10%, 𝑇 = 6.3
lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

Fig. 15 Dimensionless contours illustrating tip vortex impingement for cases with varying airfoil camber, m, for
4-bladed rotors. All other input features were held constant at their mean values of 𝑅 = 9 in, Ω = 4500 RPM,
\𝑡𝑤 = −10◦, 𝑇𝑅 = 0.665, 𝑐tip = 1 in, \0 = 2.5◦, and 𝑡/𝑐 = 10.5%.

Figure 15 serves to validate the assumed increase in T and 𝑤 caused by increasing m. It can be seen that the vortex

miss distance does increase with increases in m, however, the leading edge of a subsequent blade is still within the tip

vortex region of influence, as shown in Fig. 15d. It is also illustrated in Figs. 15a and 15b that for the 4-bladed case

with no camber (i.e., 𝑚 = 0%), the core of the tip vortex impinges on the leading edge of a subsequent blade, causing

vortex bursting, and consequently, higher BWI noise when compared to cambered cases, as seen in Fig. 14. This is an

important result because there was initial ambiguity as to whether BWI noise was caused by blade-wake entrained in the

tip vortex or by the vortex core itself in the work done by Glegg [18]. All subsequent work [13, 15–17, 19] claimed that

BWI noise was due to blade-wake entrained in the tip vortex, however, the findings from Fig. 15 confirm that BWI noise

is, in fact, caused by both the blade-wake entrained in the tip vortex and the vortex core itself, with higher BWI noise

emission for the latter, in cases with varying m.
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Both Ω and 𝑐tip serve to modify the Reynolds number at the blade tip, 𝑅𝑒tip, and the similar first-order sensitivity

index values for these two input features in Table 7 can be accounted for by the linear dependence of 𝑅𝑒tip on both of

these parameters (i.e., 𝑅𝑒tip = 𝑉tip𝑐tipa
−1). Though an increase in 𝑅𝑒tip would serve to increase the tip vortex strength,

it is thought that increasing Ω would also increase the T and 𝑤, serving to decrease �OASPL𝐵𝑊𝐼 . To illustrate this

postulation, the effect of varying both Ω and 𝑐tip on BWI noise has been plotted in Figs. 16 and 17, respectively. For

these two plots, all other input features were held constant at their mean values while Ω and 𝑐tip were varied between

their minimum and maximum values, respectively, similar to what was done in Fig. 14. To isolate the effect of varying

𝑐tip in Fig. 17, TR was held constant at a value of 𝑇𝑅 = 1, representative of a rectangular rotor blade. The value of TR

was also held constant at 𝑇𝑅 = 1 for Fig. 16 to provide a more direct comparison between varying Ω and varying 𝑐tip.

As can be seen in Fig. 16, the �OASPL𝐵𝑊𝐼 does indeed decrease with increasing Ω after approximately Ω = 4250 RPM

for the 3-bladed case and after approximately Ω = 3750 RPM for the 4-bladed case.
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Fig. 16 Effect of varying rotor speed, Ω, on�OASPL𝐵𝑊𝐼 for 3-bladed and 4-bladed rotors. All
other input features were held constant at their mean
values of 𝑅 = 9 in (0.21 ≤ 𝑀tip ≤ 0.42), \𝑡𝑤 = −10◦,
𝑐tip = 1 in (128950 ≤ 𝑅𝑒tip ≤ 257900), \0 = 2.5◦,
𝑚 = 5%, and 𝑡/𝑐 = 10.5% except for TR which was set
to one.

0.5 0.75 1 1.25 1.5

2

3

4

5

6

7

Fig. 17 Effect of varying tip chord length, 𝑐tip

(96711 ≤ 𝑅𝑒tip ≤ 290130), on �OASPL𝐵𝑊𝐼 for 3-
bladed and 4-bladed rotors. All other input features
were held constant at their mean values of 𝑅 = 9 in,
Ω = 4500 RPM (𝑀tip = 0.32), \𝑡𝑤 = −10◦, \0 = 2.5◦,
𝑚 = 5%, and 𝑡/𝑐 = 10.5% except for TR which was set
to one.

Coarse resolution PowerFLOW simulations were conducted for cases with varying Ω and 𝑐tip in Figs. 18 and 19,

respectively, similar to what was done in Fig. 15, however, with a constant value of 𝑇𝑅 = 1. It can be seen from Fig.

18 that although higher values of Ω would increase 𝑤, the vortex miss distance does not change when compared to

low Ω values. The structure of the tip vortex for the higher Ω case in Fig. 18c does appear to have more entrained
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(a) Low rotor speed vorticity: Ω = 3000 RPM, 𝑇 = 1.3 lb,
𝑀tip = 0.21, 𝑅𝑒tip = 128950.

(b) Low rotor speed turbulent kinetic energy: Ω = 3000 RPM,
𝑇 = 1.3 lb, 𝑀tip = 0.21, 𝑅𝑒tip = 128950.

(c) High rotor speed vorticity: Ω = 6000 RPM, 𝑇 = 5.7 lb,
𝑀tip = 0.42, 𝑅𝑒tip = 257900.

(d) High rotor speed turbulent kinetic energy: Ω = 6000 RPM,
𝑇 = 5.7 lb, 𝑀tip = 0.42, 𝑅𝑒tip = 257900.

Fig. 18 Dimensionless contours illustrating tip vortex impingement for cases with varying rotor speed, Ω, for
4-bladed rotors. All other input features were held constant at their mean values of 𝑅 = 9 in, \𝑡𝑤 = −10◦, 𝑐tip = 1
in, \0 = 2.5◦, 𝑚 = 5%, and 𝑡/𝑐 = 10.5% except for TR which was set to one.

blade-wake and interactional mixing between the tip vortex and blade-wake sheet of preceding blades, possibly caused

by the increased 𝑅𝑒tip; however, since the tip vortex is stronger for this case, the region of influence is smaller, which

can be seen by comparing the turbulent kinetic energy for both rotor speeds in Figs. 18b and 18d, respectively. It is

thought that the smaller region of influence for the higher Ω case and hence the increased distance between the center

of the vortex core and the leading edge of a subsequent blade may explain the decrease in BWI noise for increases in

Ω. This result elucidates that the vortex miss distance is dependent on the thrust coefficient, 𝐶𝑇 rather than T, since

𝐶𝑇 is typically constant with variations in Ω; however, increases in m would increase both 𝐶𝑇 and T, resulting in the

previously shown increase in vortex miss distance and resultant decrease in BWI noise.

Increasing 𝑐tip would also increase T, though to a lesser extent than for increasing Ω. The results from Fig. 17

indicate that the increased vortex strength due to increases in 𝑐tip (i.e., larger 𝑅𝑒tip) values serves to increase the BWI

noise. This effect is more pronounced for the 4-bladed case when compared to the 3-bladed case.
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(a) Low tip chord length vorticity: 𝑐tip = 0.5 in, 𝑇 = 2.02 lb,
𝑀tip = 0.32, 𝑅𝑒tip = 96711.

(b) Low tip chord length turbulent kinetic energy: 𝑐tip = 0.5
in, 𝑇 = 2.02 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 96711.

(c) High tip chord length vorticity: 𝑐tip = 1.5 in, 𝑇 = 3.7 lb,
𝑀tip = 0.32, 𝑅𝑒tip = 290130.

(d) High tip chord length turbulent kinetic energy: 𝑐tip = 1.5
in, 𝑇 = 3.7 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 290130.

Fig. 19 Dimensionless contours illustrating tip vortex impingement for cases with varying tip chord length, 𝑐tip,
for 4-bladed rotors. All other input features were held constant at their mean values of 𝑅 = 9 in, Ω = 4500 RPM,
\𝑡𝑤 = −10◦, \0 = 2.5◦, and 𝑡/𝑐 = 10.5% except for TR which was set to one.
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Fig. 20 Effect of varying collective pitch, \0, on�OASPL𝐵𝑊𝐼 for 3-bladed and 4-bladed rotors. All other
input features were held constant at their mean values
of 𝑅 = 9 in, Ω = 4500 RPM (𝑀tip = 0.32), \𝑡𝑤 = −10◦,
𝑇𝑅 = 0.665, 𝑐tip = 1 in (𝑅𝑒tip = 193420), 𝑚 = 5%, and
𝑡/𝑐 = 10.5%.

PowerFLOW results for cases with both a low 𝑐tip (i.e.,

𝑐tip = 0.5 in) and high 𝑐tip (i.e., 𝑐tip = 1.5 in), respectively,

are shown in Fig. 19. This figure illustrates a more

turbulent region surrounding the tip vortex with higher

vorticity for the high 𝑐tip case in Fig. 19c when compared

to the low 𝑐tip case in Fig. 19a. This behavior is thought to

be caused by the resultant increase in 𝑅𝑒tip due to increase

in 𝑐tip.

It was shown in Section III.A that negative values of

collective pitch, \0, were seen to cause rotor operation in

the turbulent-wake state, causing inboard secondary BWI

noise due to a blade wake-sheet impinging on the leading edge of a following blade. It was also shown that the tip
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vortex was positioned above the leading edge of subsequent blades in the turbulent-wake state. The effect of increasing

\0 on the BWI noise has been plotted in Fig. 20 for both a 3-bladed and 4-bladed rotor. It can be ascertained that

increasing \0 leads to an increase in BWI noise as the tip vortex location changes from above a subsequent blade to

below. This implies that there is indeed BWI noise generation while the tip vortex core impinges directly on the leading

edge of a blade, contrary to the findings of Wittmer [15–17] for fixed (i.e., nonrotating), symmetric blades. It was shown

that increasing a fixed blade section’s angle of attack increased the tip vortex strength in Ref. [66] and it is believed

that this effect, outside of the turbulent-wake state (i.e., \0 ≥ 0◦), is responsible for the increase in BWI noise. After

approximately \0 = 4◦, Fig. 20 shows a decrease in �OASPL𝐵𝑊𝐼 , thought to be due to the increased T and 𝑤 caused by

increasing \0, similar to what was shown in Fig. 14 for increases in m.

(a) Low collective pitch vorticity: \0 = −5◦, 𝑇 = 0.127 lb,
𝑀tip = 0.32, 𝑅𝑒tip = 193420.

(b) Low collective pitch turbulent kinetic energy: \0 = −5◦,
𝑇 = 0.127 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

(c) High collective pitch vorticity: \0 = 10◦, 𝑇 = 8.98 lb,
𝑀tip = 0.32, 𝑅𝑒tip = 193420.

(d) High collective pitch turbulent kinetic energy: \0 = 10◦,
𝑇 = 8.98 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

Fig. 21 Dimensionless contours illustrating tip vortex impingement for cases with varying collective pitch, \0,
for 4-bladed rotors. All other input features were held constant at their mean values of 𝑅 = 9 in, Ω = 4500 RPM,
\𝑡𝑤 = −10◦, 𝑇𝑅 = 0.665, 𝑐tip = 1, 𝑚 = 5%, and 𝑡/𝑐 = 10.5%.

PowerFLOW simulations were also conducted for cases with varying \0 while keeping all other input features at

their mean values, which are shown in Fig. 21. This figure shows similar results to those illustrated in Fig. 15 for
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variations in m. It can be seen that for the high \0 case (i.e., \0 = 10◦) in Figs. 21c and 21d, the vortex miss distance is

much larger than for variation in other input features. It can be seen that the low \0 case in Figs. 21a and 21b exhibits

turbulent-wake state rotor operation, with the tip vortex residing some distance above the leading edge of a subsequent

blade and with the blade-wake sheet impinging upon the leading edge of a subsequent blade further inboard, causing

secondary BWI noise.

It should also be noted that 𝑁𝑏 was seen to have a significant effect on �OASPL𝐵𝑊𝐼 in all first-order effect plots,

however, due to categorical input features having discrete levels, the first-order sensitivity of this input feature was not

adequately captured by the sensitivity analyses performed in this work. Coarse resolution PowerFLOW simulations

were conducted for 3-bladed and 4-bladed rotor cases while maintaining all other input features at their mean values,

which is illustrated in Fig. 22.

(a) Three-bladed rotor vorticity: 𝑁𝑏 = 3, 𝑇 = 2.87 lb, 𝑀tip =

0.32, 𝑅𝑒tip = 193420.
(b) Three-bladed rotor turbulent kinetic energy: 𝑁𝑏 = 3,
𝑇 = 2.87 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

(c) Four-bladed rotor vorticity: 𝑁𝑏 = 4, 𝑇 = 3.26 lb, 𝑀tip =

0.32, 𝑅𝑒tip = 193420.
(d) Four-bladed rotor turbulent kinetic energy: 𝑁𝑏 = 4,
𝑇 = 3.26 lb, 𝑀tip = 0.32, 𝑅𝑒tip = 193420.

Fig. 22 Dimensionless contours illustrating tip vortex impingement for cases with varying number of rotor
blades, 𝑁𝑏. All other input features were held constant at their mean values of 𝑅 = 9 in, Ω = 4500 RPM,
\𝑡𝑤 = −10◦, 𝑇𝑅 = 0.665, 𝑐tip = 1 in, \0 = 2.5◦, 𝑚 = 5%, and 𝑡/𝑐 = 10.5%.
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Fig. 23 Laser light sheet flow visualization of a fully
developed blade-tip vortex. Adapted with permission
from Ramasamy et al. [67].

It can be seen that although the 4-bladed rotor case

generates higher T than the 3-bladed rotor case, the tip

vortex has less time to convect downward, which can

be seen by comparing the vortex miss distance between

the two cases in Fig. 22. Another important result from

the 4-bladed rotor case in Fig. 22c is that at the mean

\0 = 2.5◦ value, the tip vortex is below the leading edge

of a subsequent blade. When comparing this finding to

the resultant effect of varying \0, shown in Fig. 20, it

can be said that the peak in BWI noise at approximately

\0 = 3.5◦ does not occur during a direct impingement of the tip vortex on the leading edge of a subsequent blade.

Rather, maximum BWI noise occurs when the tip vortex is below the leading edge of a subsequent blade, which suggests

that there is a specific region in the turbulence field surrounding the tip vortex that is responsible for maximum BWI

noise. It is thought that this specific region responsible for maximum BWI noise is that of Region 2 in Fig. 23, or the

‘transitional region with eddies of different scales’ [67]. Higher order effects are outside the scope of this manuscript;

however, the reader is referred to Ref. [36] if interested. It will be noted that second-order effects suggest that the rotor

solidity, 𝜎mean, has a large effect on BWI noise.

IV. Conclusions

Prior to this work, only BWI noise for traditional helicopter rotors was studied for forward flight conditions. This

previous work assumed BWI noise to be negligible for hovering rotors and efforts toward BWI noise prediction modeling

heavily relied on data from fixed, rectangular, symmetric blade sections. This manuscript has not only elucidated the

importance of BWI noise for hovering rotors, but also investigated this noise source for sUAS rotors, which has not been

done to date. This work also provided a full characterization of BWI noise for hovering sUAS rotors using various input

features correspondent to different airfoil and rotor designs, as well as different operating conditions. The results of this

work provide fruitful information regarding the cause and types of BWI noise, which can be used for future broadband

noise mitigation studies as well as prediction modeling efforts.

It was shown in this work that there are three types of BWI noise for hovering sUAS rotors, where previously, there
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was only presumed to be one type. The three types of BWI noise are as follows:

1) The first, and most significant type of BWI noise is the type identified in previous studies, which is caused by

impingement of the entrained blade-wake surrounding a tip vortex on the leading edge of a subsequent blade.

This primary form of BWI noise is responsible for upward of 7 dB of noise for the rotors in this work.

2) The second-most significant type of BWI noise is caused by a direct impingement of the tip vortex on the leading

edge of a subsequent blade. Though this second type of BWI noise may be caused by the bursting of a vortex

on the leading edge of a subsequent blade and may not necessarily be influenced by the entrained blade-wake

surrounding a tip vortex, the preexisting nomenclature discerning BWI noise (i.e., perpendicular blade-vortex

interaction) suggests this form of noise to be BWI noise. Since this type of BWI noise was found by adjusting \0,

its acoustic magnitude is somewhat arbitrary. However, for the cases in this work involving the variation of \0, it

can be said that this form of BWI noise can cause approximately 6 dB of noise, which is on par with the acoustic

contribution of primary BWI noise.

3) The third and least significant form of BWI noise occurs in turbulent-wake state and mild vertical descent

conditions when the blade-wake travels upward through the rotor system. This form of BWI noise is caused by a

midspan inpingement of the blade-wake sheet produced by a preceding blade and can cause upward of 2.5 dB of

noise.

The characterization study performed in this work showed that the distance between the tip vortex of a preceding

blade and the leading edge of a subsequent blade (i.e., vortex miss distance) is not dependent on the thrust produced by

a rotor or the correspondent downwash velocity, but is instead dependent on the thrust coefficient. This phenomenon

was illustrated by the negligible change in vortex miss distance with varying rotor speeds; however, it was seen that

increasing the rotor speed serves to increase the vortex strength, thus reducing the size of its core, which in turn,

decreases BWI noise. Input features that directly influence 𝐶𝑇 , such as airfoil camber and collective pitch, were seen

to have a dominant effect on the vortex miss distance with increases to these input features leading to decreases in

BWI noise. BWI noise was shown herein to have the highest sensitivity to airfoil camber, and the work in Ref. [36]

showed that this was followed by interactional effects concerning parameters that influence the rotor solidity. Lastly, in

comparing the effect of the number of rotor blades and collective pitch on the vortex miss distance, it was seen that

direct impingement of a vortex core on the leading edge of a subsequent blade does not cause maximum BWI noise,
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rather, there is a specific region in the turbulence field surrounding a tip vortex that is responsible for maximum BWI

noise emission.

Though the BWI noise prediction model developed herein provides valuable insight to an important and highly

misunderstood broadband noise mechanism, it is limited to the developed input feature space for isolated hovering rotors.

Moreover, the prediction model output is only a discrete metric representative of the BWI noise at a single observer

location. Subsequent work will use the database and machine learning methodology utilized in this work to develop a

full prediction model capable of predicting one-third octave spectra of BWI noise at any arbitrary observer location,

which will be the emphasis of a Part II to this work.
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