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Abstract—Routing in the space internet must face many unique
challenges - from unplanned disconnections and interruptions
to predictable intermittent connectivity due to high network
mobility and long propagation delays. NASA’s current approach
to such routing is Contact Graph Routing (CGR), using a graph
formed of prescheduled communication contacts to compute
routes through the network. While this approach manages to
tackle issues of connectivity and propagation delays, it is a
global approach that requires continuous knowledge of the entire
network. In a potential future Solar Space Internet (SSI) such
an approach on its own cannot scale to large networks with
thousands of members. In this paper we propose clustering
as a solution to CGR scalability. Clustering has been used in
many networking problems as a way to subdivide the network
and allow for localized routing and better scalability. Using
techniques from graph theory and game theory, we explore
various existing clustering algorithms and adapt them to the
Contact Graph Routing setting. We propose a way to combine
multiple algorithms to create a Delay Tolerant Clustering Proto-
col (DTCP). In addition, we explore the underlying networking
mechanisms such as multicast, neighbor discovery, and software
defined networking that may be used to enable DTCP.

Index Terms—Delay Tolerant Networking, Cooperative Net-
works, Game Theory, Clustering, Contact Graph Routing, Soft-
ware Defined Networking, Controller Placement

I. INTRODUCTION

As NASA sets its sights on the Moon once again, a robust
space internet is needed to accommodate the increasing need
for bandwidth. This network has to tackle many challenges
imposed by the space environment. End-to-end connectivity
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in the network may never exist, connections can vary over
time and frequent delays and interruptions can occur. As
a result, many algorithms that function well in terrestrial
internet are not suitable for the space environment, but rather
Delay-Tolerant Networking (DTN) protocols and algorithms
are needed [1].

One of the main challenges faced by DTN algorithms is
that of routing [2]. Paths in a time-varying space network
may change over time, connections can form and disappear
and sometimes no path exists between two endpoints. These
unique challenges mean than in DTN it is not possible to
use common terrestrial algorithms and protocols that assume
a stable, connected network. However, in space networks most
connections are planned and known well in advance [3]. This
allows us to form contact plans detailing the exact contacts
expected between nodes of the network in the nearby future.
Using these contacts, we can construct a contact graph and
adapt various routing algorithms to this setting. This approach
is known as Contact Graph Routing (CGR) [4].

In Contact Graph Routing we assume that every node in
the network possesses the knowledge of the entire network
topology with all the relevant contacts planned to take place
in the near future. The node maintains these contacts in a
data structure known as a Contact Graph and runs pathfinding
algorithms on it. As networks become larger, these pathfinding
algorithms become slow and inefficient, imposing a heavy
computational burden on the nodes of the network. Further-
more, maintaining an up-to-date contact plan at every node in
the network requires an expensive communication overhead
as nodes join or leave the network and connections change
over time. To allow CGR to function for the future of space
internet, with thousands of nodes or more, we need to address
its scalability. This issue of DTN scalability was explored in
[5], however this work is not immediately applicable to CGR
as it does not consider contact based routing solutions.

In [6], the authors first suggest the idea of using clustering



as a possible way to address scalability in DTN with CGR in
mind. Their work introduces the notion of dividing the network
into regions and applying different routing algorithms for
inter- and intra-region routing. Clustering can offer additional
benefits to space communication, allowing the integration of
commercial networks and various methods of routing within
and between different clusters.

In this paper we aim to build upon the work in [6] by
proposing a clustering scheme fit for CGR. In our approach
the network is divided into clusters, each run by a cluster
head. The cluster head is responsible for maintaining the
cluster and holds more information about the global network.
Cluster members can then query the cluster head for the
additional information it holds. We consider both global and
local knowledge available to nodes in the network and provide
a protocol for creating and maintaining cluster structures:
forming clusters, changing cluster membership, appointing
cluster heads and merging or splitting clusters.

To do so we consider various approaches to clustering
problems. As we aim to tackle scalability, we require an
algorithm that needs little knowledge of the global network
and runs on a small, local scale. We use tools from both
cooperative and non-cooperative game theory to model the
decisions around forming clusters and electing cluster heads.
This allows for a distributed, local algorithm with global
consequences.

Organization

In section II we introduce some necessary background on
Contact Graph Routing and Game Theory. Then, in section
III, we introduce three different existing clustering algorithms
that are helpful for the problem of clustering in CGR. We
adapt these algorithms to the CGR setting in section IV
and then propose a clustering protocol that combines the
three approaches in section V. In section VI we show some
preliminary simulated results as to the performance of the
proposed protocol. Finally, in section VII we discuss several
considerations towards an implementation approach.

II. BACKGROUND

A. Contact Graph and Multigraph Routing

Contact Graph Routing (CGR) refers to a collection of
routing algorithms for DTN running on a data structure called
a contact graph[4]. A contact is a period of time when two
nodes in the network are able to communicate and data can
be transmitted. We denote a contact as Ct0,t1

A,B , where A is
the source node, B is the destination node, t0 is the time
at which the contact starts and t1 the time at which it ends.
These contacts are precomputed and distributed throughout the
network in the form of Contact Plans.

Pathfinding in CGR unifies these contacts into a data
structure known as a Contact Graph. In this graph the vertices
represent the contacts, not the nodes in the original network,
and edges represent the fact that data can be transferred
between two contacts. More formally, a directed edge is drawn
between Ct0,t1

A,B and Ct2,t3
D,E if B = D and t3 > t0. This

represents that data can be transferred to B using Ct0,t1
A,B and

then forwarded to E using Ct2,t3
D,E . To find a path between node

A to node D starting at a particular time t0, a root and contact
Ct0,∞

A,A and a terminal contact CD,D are added to the contact
graph [4].

Another way to represent these contacts, introduced in [7],
is through a Multigraph, a graph in which two vertices can
have multiple edges between them. In this representation, the
nodes of the graph correspond to the nodes of the network
and edges between two nodes represent a contact. These
time varying intervals of the contacts can be considered as
labels on the edges. As the vertices now represent the original
network nodes, this model is more intuitive and more similar
to traditional network models.

As an example for the two representations, consider a simple
network with three nodes A,B,D, shown below in both
Contact Graph and Multigraph form.

Fig. 1. A Contact Graph (above) and a Multigraph (below) of the same
network [7].

It was shown in [7] that the same pathfinding algorithms
used in CGR can be applied to the multigraph representation
and are in fact more efficient. Therefore, for the remainder
of this paper we will consider the problem of routing on a
Contact Multigraph.

B. Game Theory

Game theory is a field of mathematics that studies models
of conflict and cooperation between intelligent rational de-
cision makers. Game theory provides general mathematical
techniques for analyzing situations in which two or more
individuals make decisions that will influence one another’s
welfare [8]. We can differentiate between two types of games
- cooperative, where the players share a common goal, and
non-cooperative, where the players aim to maximize their
own payoff without regarding that of their contenders. Both
of these types of games can be of use when considering
delay tolerant networks. While we might assume nodes would
want to cooperate in order to maximize the well being of
the entire network, sometimes such cooperation might be
implausible due to long distances and disconnections. It is also



beneficial to consider non-cooperative games as they require
less communication overhead and allow nodes to make local,
individual decisions.

1) Cooperative Games: First we consider cooperative
games, specifically coalition games. Informally, we think of
such a game as players trying to form a coalition, where every
subset of the players (or coalition) has some given value. The
players would like to divide this value among the members of
the subset, to determine how much each player is “worth” to
the coalition. More formally:

Definition 1 (Cooperative Games [9]). A cooperative game
on n players S = {s1, . . . , sn} is defined by a characteristic
function v. v : 2S → R is defined on subsets of the players
and measures the value, or payoff, that a subset of players can
achieve on their own, regardless of what the remaining players
do. This value can then be split among the players in any way
that they agree on. The characteristic function satisfies the
following properties:

• v(Ø) = 0.
• Monotonicity: For any two subsets T1, T2 ⊆ S, if T1 ⊆
T2, then v(T1) ≤ v(T2).

Given a characteristic function v, an outcome of the game
is an allocation vector ψ(v) ∈ Rn where ψi(v) is the
share of the payoff allocated to player i. The Shapley Value
is a solution concept that allocates each player the payoff
that matches its marginal contribution to the coalition. It is
uniquely determined by Shapley’s four desired properties of a
solution: symmetry, or that identical players receive the same
payoff; dummy, or that a player whose addition to the coalition
does not change it value receives no payoff; efficiency, or that
the payoff of all individual players adds to the value of the
coalition of all of them together; additivity, or that the payoff
of a player in the sum of two games is equal to the sum of its
payoffs in each game. The Shapley Value is defined as follows.

Definition 2 (Shapley Value [9]). The Shapley Value of a
player i is defined as:

ψi(v) =
1

n!

∑
π∈Sn

φi(v, π).

Where φi(v, π) is defined as the marginal contribution of
player i at the time of its arrival, assuming players arrive
in the order of the permutation π,

φi(v, π) = v
(
π
{
1, . . . , π−1(i)

})
−v

(
π
{
1, . . . , π−1(i)− 1

})
.

We will use the Shapley Value in future algorithms to
measure the relative ’importance’ of nodes in the network.
This will help identify nodes that are most central in their
environment and can function as good cluster heads.

2) Non-Cooperative Games: Next, we consider non-
cooperative games, where players compete to optimize their
individual payoff based on their own and other payers’ strate-
gies.

Definition 3 (Non-cooperative Games [10]). A non-
cooperative game is defined as a set of players, each with

a set of strategies, and a payoff function. Formally, we write
(N, (∆0)i∈N , (Pi)i∈N where

• N is the set of players.
• ∆i is the strategy set of player i.
• Pi : ∆1 × . . .×∆n → R is the payoff of player i given

the choice of strategies by all players.

In non-cooperative games we consider a point of equilib-
rium, a set of strategies for each players at which none would
benefit by switching strategies. We call such a point a Nash
Equilibrium.

Definition 4 (Nash Equilibrium [10]). A strategy profile δ∗ =
(δ∗1 , . . . , δ

∗
n) is said to be a Nash Equilibrium of a game if for

every i ∈ [n],
Pi(δ

∗) ≥ Pi(δi, δ
∗
−1).

Where δi ∈ ∆i. In other words, a Nash Equilibrium is a state
at which no player has any incentive to change their chosen
strategy.

When considering non-cooperative games we compute their
Nash Equilibria, as the players in the games will continuously
change their strategies to improve their individual payoffs until
such a point is reached. It is therefore usually the case that
players’ strategies correspond to a point of Equilibrium and
we can analyze the overall payoff at these points to evaluate
the outcome of the game.

III. EXISTING APPROACHES TO CLUSTERING

Clustering is a well studied problem in networking, applied
in various setting to graph routing problems. Clustering has
been studied as a way to reduce the size of routing tables,
subdivide a network and improve the scalability of routing
algorithms, all while impairing path efficiency by at most a
constant factor [11].

In this section we will introduce three recently published
clustering algorithms that are useful for our problem of clus-
tering in Contact Graph Routing. In the following sections we
will explore how to adapt these algorithms to our Contact
Graph setting and how to use them in a delay tolerant
clustering protocol.

A. First Approach - Cooperative Game Based Clustering

This algorithm is based on the one introduced in Game
Theory Based Network Partitioning Approaches for Controller
Placement in SDN [10]. It divides the network by computing
each node’s Shapley Value based on a specific value function.
At every iteration the algorithm chooses the node with highest
Shapley value, assigning a controller at that location and
assigning any node close enough to it (depending on a preset
threshold) to its cluster. This is done iteratively until all nodes
have been assigned to clusters.

Denote the set of nodes in the graph by S = {s1, . . . , sn}
The value function used in this approach is

v(F ) =
∑

s1 ̸=s2∈F

U(d(s1, s2)),



where U is defined using the diameter of the graph diam, by
U(x) = 1− x

1+diam .
While the Shapley value is usually very costly to compute,

in the case of this algorithm we are using a convex game, a
game where the marginal contribution of a player increases in
larger coalitions. In such cases the Shapley value comes out
to a simple sum,

Φi =
1

2

∑
sj∈S,j ̸=i

U(d(si, sj)).

Using this Shapley Value, the algorithm is as follows:

Algorithm 1 Cooperative Game Theory Initialization[10]
Input: Set of nodes S, all pair shortest path matrix D,

threshold α ∈ (0, 1].
Output: Set of cluster heads C0.

1: Q = S, C0 = Ø.
2: for i = 1, . . . , n do
3: Φi =

1
2

∑
sj∈S,j ̸=i U(d(si, sj)).

4: while Q ̸= Ø do
5: m = argmaxi∈Q Φi.
6: C0 = C0 ∪ {m}.
7: Tm = {i ∈ Q : U(d(si, sm)) ≥ α}.
8: Q = Q \ Tm.

This approach provides a balanced partition of the network
with centralized, distributed cluster heads. However, it requires
the knowledge of the entire network in order to compute the
all pair shortest path matrix and in turn the Shapley Values
of all the nodes. Therefore, for the cases in which we do not
have access to the entire network we need to consider more
local clustering approaches.

B. Second Approach - Dynamic Local Clustering

The second approach we consider is based on the algorithm
introduced in Dynamic Local Clustering for Hierarchical Ad
Hoc Networks [12]. In this paper the authors introduce a
measure of ’graph fitness’ that by optimizing it we create
clusters that are both dense and introvert. For a subset of nodes
C ⊆ V , define degint(C) to be the number of edges with both
endpoints in C and degext(C) to be the number of edges with
exactly one endpoint in C. We then define the fitness of a
cluster to be

f(C) =
2degext(C)

2

|C|(|C| − 1)(degint(C) + degext(C))
.

In the algorithm proposed in [12], when a node joins the
network it queries all its neighbors. Each neighbor responds
with the cluster it belongs to, along with the parameters
|C|, degint(C), degext(C). Using this information, the node can
then compute the cluster for which its joining would create the
highest increase in fitness (or smallest decrease). A node can
later decide to move from cluster C1 to C2 if by doing so the
value of f(C1) + f(C2) is increased.

In this approach, cluster heads are selected as the first node
to join the cluster. This happens when a node is disconnected

from the graph and receives no responses to its cluster queries,
in which case it creates its own cluster and appoints itself as
the cluster head. In the last approach we consider we tackle
the problem of smart cluster head selection.

C. Third Approach - Non-Cooperative Game Based Cluster
Head Selection

The third and final approach we consider is based on
the clustering algorithm proposed in Game Theory Based
Distributed Clustering Approach to Maximize Wireless Sensors
Network Lifetime [13]. This paper introduces a clustering
algorithm centered around the selection of cluster heads. The
clusters are then formed by each node joining the cluster
of the cluster head closest to it. These cluster heads are
selected through a non-cooperative game played by the nodes
in the network. In the game, players can choose whether to
participate (thus volunteering to possibly become a cluster
head) or stay out of the game, while attempting to optimize
their individual residual energy. This quantity of residual
energy is formalized in an energy model introduced in [13].

Formally, the algorithm introduced in [13] is called the
Profitable Energy Market Game (PEMG). In this game each
player can choose between two strategies: enter the game or
stay out of the game. Denote the players by 1, . . . , N . The
decision of the player j is denote by x(j), where

x(j) =

{
1 if S(j) enters the game.
0 if S(j) stays out of the game.

If no nodes decide to enter the market, no cluster head is
selected and all players get a payoff of 0. If a player decides
not to enter the market while some other player has decided to
enter, the first player’s residual energy is its original residual
energy at the beginning of the round, plus the energy it gains
over the course of one round charging its battery. If a player
decides to enter the market, its residual energy is the energy it
had at the beginning of the round minus the energy consumed
by sending a message.

Using the residual energy of players as a payoff function
we obtain the following utility function

U(j) =


g(j) + f(j) if x(j) = 0 and ∃k x(k) = 1

0 if x(k) = 0 for all k ∈ [N ]

g(j)− C(j) if x(j) = 1

,

where C(j), the cost function, is the total energy consumed
by j to send a message, the gain function g(j) is the node j’s
residual energy and f(j) is the energy harvested to recharge
the sensor’s battery in the case it doesn’t participate.

Using this framework, we can analyze the Nash Equilibrium
of this game to see the probability of each member to enter the
game and become a cluster head. This analysis, as presented
in [13], shows the arrival at a stable state where one node
volunteers to become cluster head.



IV. ADAPTING CLUSTERING TO CONTACT GRAPH
ROUTING

In this section we adapt the three clustering algorithms
introduced in section III to the case of Contact Graphs and
show how to use them together. The first issue we face with
doing so is that all three of the algorithms run on unweighted,
undirected graphs. We need different approaches to address
these discrepancies for each algorithm.

A. First Approach - Cooperative Game Based Clustering

In approach III-A the algorithms calls for shortest path dis-
tances between all pairs of vertices in the graph. In the Contact
Multigraph we can instead compute the earliest arrival time.
The earliest arrival time from node A to node B, tARR(A,B),
is defined to be the earliest time at which data can reach the
node B when starting at node A at the current time. This value
needs to consider changes in link availability over time and
propagation delays. In [7] a variation of Dijkstra’s algorithm is
presented which allows an efficient computation of this value.

Using the earliest arrival time we can define a notion
of distance between two nodes. Define the arrival distance
between nodes A,B as,

dARR(A,B) = tARR(A,B)− t0.

Where t0 denotes the current time.
Using these distances we can define an all-pair-shortest-path

matrix D,
D[A,B] = dARR(A,B).

We can now use Algorithm 1 as presented in section III-A.
However, this algorithm requires the knowledge of the entire
network to allow for the computation of the matrix D. It
can therefore only be used when such global knowledge
exists, for instance during the construction of the contact plan.

B. Second Approach - Dynamic Local Clustering

In approach III-B the algorithm uses internal and external
degrees of clusters. To adapt these parameters to the Contact
Multigraph we define a weight function on each pair of nodes.
First we define a similar notion of arrival time which only
considers paths of one step, namely the earliest arrival time
along a single edge between two nodes.

d̃ARR(A,B) =

{
dARR(A,B) if ∃Ct1,t2

A,B s.t. t2 > t0

∞ else
.

Where t0 once again denotes the current time.
This value can be computed faster than the general dARR as

it only requires scanning the edges between A and B. Using
this distance, we define a weight function:

w(A,B) :=
1

d̃ARR(A,B)
.

Using the weight function we can define a notion of internal
and external degree. Given a multigraph with nodes V and a
cluster C ⊆ V , define its internal and external degrees as:

degint(C) :=
∑

(u,v)∈C×C

w(u, v).

degext(C) :=
∑

(u,v)∈C×V \C∪V \C×C

w(u, v).

Note that this definition extends the definition of internal and
external degrees introduced in section III-B, by defining the
weight function as 1

2 in the unweighted undirected case.

C. Third Approach - Non-Cooperative Game Based Cluster
Head Selection

Finally, approach III-C can be used as presented in [13] by
considering the residual energy of all nodes of the network.
Formalizing the measurement of residual energy along with the
cost of participating in the network in CGR is left to future
work.

D. Combining All Three Approaches
We can now propose a clustering algorithm combining the

three approaches. In our contact multigraph a cluster is a set
of nodes consisting of a cluster head and cluster members.
We use the various approaches during the different stages of
clustering: initialization, new nodes joining a cluster, cluster
maintenance (merging or splitting clusters, reassigning a node
from one cluster to another) and election of new cluster heads.

1) Initialization: we can use approach III-A to initialize
clusters and cluster heads. Since this requires knowledge
of the entire network it can be done while computing
contact plans and the assigned cluster heads and mem-
bers can be distributed along with the contact plan.

2) Joining clusters: we can use approach III-B to allow
nodes to choose a cluster to belong to when they first
join the network.

3) Maintaining clusters: cluster heads will be responsible
for maintaining clusters. Since edge weights change over
time, the contribution of every node to the internal and
external degree changes. The cluster head will ask for
periodic updates and can use these to make decisions
about splitting/merging clusters. Nodes can also choose
to switch clusters as the network changes. We use
approach III-B to make individual cluster membership
decisions.

4) Electing a Cluster Head: as clusters change (merge,
lose cluster head, periodically change cluster head to
conserve energy) we can use approach III-C to reelect
a new cluster head.

5) Dividing Big Clusters: as clusters get too big we can
use approach III-A to split them up into smaller clusters,
using the knowledge of the entire cluster.

In the following section we propose a clustering protocol
that uses this algorithm on the contact multigraph. This
protocol can be implemented and integrated with CGR and
other DTN protocols.



V. PROPOSED PROTOCOL: DELAY TOLERANT
CLUSTERING PROTOCOL (DTCP)

After considering three approaches to clustering, their adap-
tation to CGR and their combination together, we can now
propose a clustering protocol for CGR. In this section we
outline the Delay Tolerant Clustering Protocol (DTCP), the
data each member of the network must maintain and the
packets communicated between different nodes at various
stages of the clustering process.

DTCP packets maintain and adapt clusters throughout the
network. A node in the network can be either a cluster head
or a cluster member. When clusters change, cluster heads
update each other on membership. The information is therefore
available when a member of the cluster wants to send a packet
outside the cluster. They query the cluster head to learn which
cluster the destination belongs to and route to it. While the
inter- and intra- cluster routing algorithms are beyond the
scope of this work, a simple way to do this is by maintaining
a partial Contact Multigraph. For a given node belonging to
some cluster C, this partial graph contains only the edges
within the cluster C or between clusters. It abstracts every
cluster other than C into a single node in the graph, and
knowing the cluster of its destination, routes its data to the
cluster. When the packet leaves the cluster C, the path is
recomputed in the next cluster in a similar way.

In order to participate in DTCP, all nodes must maintain
some information regarding the cluster. Cluster members need
to maintain the ID of the cluster they belong to and its cluster
head, to allow them to query the head for any information
they do not hold themselves. They also maintain three pa-
rameters regarding the structure: size, internal degree and
external degree. This allows them to provide this information
to new nodes joining the network while they are deciding
which cluster to join. Cluster heads maintain the additional
information of global cluster membership and a list of cluster
members and their contribution to the total cluster internal and
external degree.

Cluster heads send out a periodic CLUSTER INFO packet
containing the cluster ID, cluster head, cluster size and cluster
internal and external degree. These information packets are
broadcast throughout the cluster and to neighboring clusters, in
which they are sent only to the cluster head. Cluster members
can also send such packets when prompted, containing the
same information. When a new node joins the network it can
send a CLUSTER QUERY packet, prompting its neighbors to
send a CLUSTER INFO packet. Using the information from
whichever CLUSTER INFO packets reach it before a certain
timeout period, the node computes the cluster it wants to
join. After doing so, it sends the appropriate cluster head
a CLUSTER JOIN packet, announcing its request to join
the cluster and a CLUSTER UPDATE packet, reporting its
contribution to the total internal and external degree. The
CLUSTER JOIN packet is broadcast through the cluster to
announce the new member to all existing members.

To maintain the cluster structure, nodes in the cluster send

out periodic CLUSTER UPDATE packets, reporting to the
cluster head that node’s contribution to the total internal and
external degree (as this contribution changes over time). The
cluster head uses this information to maintain and update its
list of nodes and their contributions. When a node doesn’t
send an update packet for long enough, it is removed from the
cluster. In this case the cluster head send a CLUSTER LEAVE
packet, announcing the change to the cluster members.

Periodically, a cluster head can decide to merge with a
neighboring cluster - clusters C1 and C2 will join if f(C1) +
f(C2) < f(C1 ∪ C2). In this case we use approach III-C to
select the new cluster head, as detailed in section IV. On the
other hand, if a cluster becomes bigger than a set threshold,
it splits up into smaller clusters using approach III-A. An
individual node v can also decide to move from cluster C1

to C2 if

f(C1 \ {v}) + f(C2 ∪ {v}) > f(C1) + f(C2).

In this case it will send a CLUSTER LEAVE packet to the head
of C1 and a CLUSTER JOIN packet to the head of C2.

We can allow cluster head status to be either static (in the
case of a relay node for instance) or dynamic. In the case of
a cluster with no static cluster head, this role can be passed
between different members. As this role requires spending
more energy on communication, it might be transferred
from one node to another after some time has elapsed.
When a cluster head changes, the original cluster head sends
a CLUSTER INFO packet with the new cluster head. To
confirm, the new cluster head sends the same packet, and
from this point on it acts as the cluster head. Using the
periodic CLUSTER UPDATE packets, the new head learns
the contribution of all members of the network.

In total, there are five types of DTCP packets:
• CLUSTER INFO: Sent periodically by a cluster head, or

by a cluster member when prompted. Contains the cluster
ID, cluster head, cluster size, cluster internal degree and
external degree.

• CLUSTER QUERY: Sent by a node not associated to
a cluster. Doesn’t contain any information, prompts any
node that receives it to send an info packet.

• CLUSTER JOIN: Sent by a node to announce joining a
cluster. Contains the ID of the node and the cluster it
joined.

• CLUSTER LEAVE: Sent by a node/cluster head to an-
nounce leaving a cluster. Contains the ID of the leaving
node and the cluster it left.

• CLUSTER UPDATE: Sent by a cluster member periodi-
cally, containing its ID, the cluster it belongs to and its
contribution to the internal and external degree.

VI. SIMULATION

To evaluate the proposed clustering algorithm, we imple-
mented the logic behind approach III-B on a multigraph
of satellite communication links. The graph was constructed
using the python library skyfield [14], which provides the



Fig. 2. Time Varying Clusters in a Satellite Line-of-Sight Network.

location of satellites orbiting the Earth. The edges in the graph
were computed as the times in which two satellites have a line-
of-sight connection to one another.

Preliminary results show intuitive cluster formations which
remain relatively stable over time. The clusters are presented
in Fig. 2. The six graphs represent the network at six different
points in time. The black edges in each graph represent the
connections available at that exact time and the grey edges
represent connections that are expected to appear in the very
near future.

VII. IMPLEMENTATION CONSIDERATIONS

Delay Tolerant Clustering Protocol, as the name implies
is intended for delay tolerant networks. As, such it will
require a DTN bundle agent to perform much of its base
functionality. Future work will focus on developing a DTCP
implementation for the High-rate Delay Tolerant Networking
(HDTN) bundle agent [15]. HDTN supports store-and-forward
capability, Licklider Transmission Protocol, Contact Graph
Routing, and Contact Multigraph Routing. In addition to flight
missions [16], HDTN also has a focus on several research
areas relevant to DTCP, such SDN [17] and cognitive networks
[18], [19].

A successful implementation of DTCP not only reduces the
computational burden required by nodes to find paths within
a contact graphed network, but it also enables DTN networks
to have a reliable solution for scalable network management.
DTCP’s ability to determine cluster heads within a DTN helps
solve the controller placement problem in software defined
delay tolerant networks (SDDTN). SDDTN controllers would
not only manage the membership of clusters with DTCP, but
could be used to monitor network traffic and make network
policy changes.

An essential mechanism for DTCP that HDTN currently
lacks is a multicast capability. The DTCP protocol requires

a multicast method to allow cluster heads to disseminate
the CLUSTER INFO packet. New nodes joining the network
will also require this capability in order to send CLUSTER
QUERY packets. Interplanetary Multicast (IMC) [20] is a
promising approach to multicast for delay tolerant networks
and is planned for implementation in HDTN.

In addition to multicast, a standardized neighbor discovery
method may be required or may provide part of the function-
ality of the CLUSTER QUERY packet. There are a proposed
solutions for neighbor discovery, such as DTN IP Neighbor
Discovery (IPND) [21], however it is still an open research
area. Future work for this project is planned to evaluate
similarities between the proposed cluster messaging packets
discussed in this work and other discovery methods. Both
IMC and neighbor discovery are planned for future versions
of HDTN, which will facilitate the development of the DTCP
implementation.

VIII. CONCLUSION

Space networking has come a long way in recent decades.
However, to achieve the goal of a robust Solar Space Internet
new tools are needed to build upon existing methods. In this
work we propose a clustering protocol for Contact Graph
Routing which can allow for greater scalability and better
performance on large scale networks. We explore various
clustering algorithms and adapt them to the context of Contact
Graph and Contact Multigraph routing. We hope this will lead
to further work into improving the performance of CGR for
Delay Tolerant Networking and its scalability in particular.
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