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Motivation: verification

Formal verification

Difficult due to system size and complexity
Often requires making strong assumptions about system dynamics
Produces mathematical guarantees

Sample-based approach

One-sided “proof” (falsifiability)
Requires simulation
Contingencies are explored in proportion to their likelihood
Expensive at scale
Often requires domain knowledge to inform exploration
Scenario “engineering” can violate principles of IV&V
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System formulation

System under test (SUT) embedded in a simulation, where it
responds to a semi-stochastic environment

State space: s ∈ S
Environment: set of stochastic disturbances X ∼ p(x)
Failure criterion: s ∈ F ⊂ S

For particular state trajectory {s0, s1, . . . , sT},

p(s0, . . . , sT ) = p(s0)
T∏
t=1

p(st | s0 . . . st−1) = p(s0)
T∏
t=1

p(st | st−1)

= p(s0)
T−1∏
t=0

p(xt)
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Failure probability

Failure indicator function:

f (x) = 1F (s(x))

Let X = [X1,X2, . . .XT ] ∼ p(x) be the random trace corresponding
to a T -step “rollout” of the environment

Failure probability is given by

µ = P(f (X ) = 1) = E[f (X )]
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Monte Carlo estimation

Estimated failure probability:

µ̂MC =
1

n

n∑
i=1

f (x(i))

where x(i) ∼ p(x).

When failures are rare, direct Monte Carlo is

Inefficient
Inaccurate

If process is accelerated, probabilities may be misleading
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Importance sampling estimation

Estimated failure probability:

µ̂IS =
1

n

n∑
i=1

f (x(i))
p(x(i))

q(x(i))
,

where x(i) ∼ q(x).

Surrogate distribution q(x) skews the environment towards learned
failure modes
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Surrogate distribution

A desirable surrogate environment

Reproduces learned failures
Preserves variance of original distribution

Variance of the estimate is minimized when

q(x) ∝ f (x)p(x)

Consider failure-conditioned distribution

pF (x) = P(X = x | f (X ) = 1)

= P(f (X ) = 1 | X = x)
P(X = x)

P(f (X ) = 1)

= f (x)p(x)/µ

Lipkis & Agogino (NASA Ames) Adversarial RL-Informed Sampling May 29, 2023 7 / 23



Adaptive stress testing (AST)

Accelerated validation framework

Requires little knowledge of system under test

Generates adversarial environments to find likeliest failures

Better performance at scale

Flexible and general
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AST overview

Simulated system under test

Stochastic system environment (set of disturbances)

Formulates stress-testing problem as MDP or POMDP

Agent chooses actions to optimize overall marginal likelihood with the
constraint of eventual system failure

Solutions correspond to the mode of pF (x)

Simulator S

System
Under Test M Environment Einteraction

Reinforcement
Learner A

Reward
Function

disturbance x

reward
r

state s

transition probability p,
event e, distance metric d
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AST formulation

Optimization:

max
x0,...,xT−1

T−1∑
t=0

log p(xt)

subject to sT ∈ F

State and environment spaces are continuous and high-dimensional

Environment selection is parameterized as a policy
Probabilistic decision tree
Q-table
(Deep) neural network

Failure constraint is enforced via penalty

Reward is given by

r(st , xt) = log p(xt)−∆dF + RF · {st ∈ F}
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Policy sampling

AST produces optimal failure policy π∗(s)

Multiple modes are latently represented in policy

Candidate surrogate is given by

q(xt) = ϵp(xt) + (1− ϵ)p (xt + E[Xt ]− π∗(s))

Failure probability:

µ̂PS =
1

n

n∑
i=1

f
(
x(i)

)p(x(i))
q
(
x(i)

) ,
where x(i) ∼ q(xt) .
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Example: runway (random rollout)

µ = 2

(
1− Φ

(
b/

√
σ2
i + ⌈a/v⌉σ2

t

))
≈ 4.023× 10−13 (1)
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Example: runway (failure policy)

Ntrain = 2.5× 104 Nsample = 107

µ̂ ≈ 3.253× 10−13 σ̂µ ≈ 1.378× 10−13
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Later work

For any initial state, rolling out the policy produces trajectories
around the mode of the conditional probability distribution

pF (x) = p(x0, . . . , xT−1 | sT ∈ F) ∝ f (x)p(x)

We can use this policy as the “kernel” of a MCMC process

Distribution is resampled in its region of highest probability mass
Strongly accelerates convergence / mitigates “burn-in”
Allows immediate generation of independent failure traces

Added benefits:

Estimates are formed directly in log-space
Importance sampling instability is circumvented
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Example: sampling without disturbances

Natural system behavior moves state to right at constant rate
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Example: sampling with disturbances (Monte Carlo)

State experiences stochastic perturbations
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Example: sampling failure policy

AST finds failures corresponding to a set likelihood threshold
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Example: MCMC sampling failure policy

Learned policy becomes basis of statistical model
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Example: multimodal capture

Information about failure modes is stored implicitly in policy
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Case study: validation of ACAS sXu

Airborne Collision Avoidance System (ACAS X)

Replaces Traffic Alert and Collision Avoidance System (TCAS)
Models aircraft encounters as POMDPs
Stores precomputed solution as large lookup table
Detects potential collisions between individual aircraft
Issues directive guidance in the form of resolution advisories (RAs)

Variants:

Xa (commercial aircraft)
Xo (specialized missions)
Xu (unmanned aircraft)
sXu (small unmanned aircraft)

Research goal

Provide ACAS sXu development team with stress-testing tools and
infrastructure to inform their ongoing work
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Testing setup

System under test: ACAS sXu binary

Disturbances: pilot commands
Turning rate
Vertical rate
Forward acceleration

Aircraft dynamics: simple multirotor with limited acceleration (g/2)

Response to CAS: pilot compliance with 1-second delay
Turning rate of 3◦/s complying with advised horizontal maneuvers
Acceleration of g/4 to g/3 complying with advised vertical maneuvers

Failure criterion: small near mid-air collision (sNMAC)
50 ft. horizontal separation
15 ft. vertical separation

Result

Failure policy achieved 97% failure elicitation rate
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Example: freeze failure
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Figure 1: Encounter=7, md=183.08 ft, hmd=182.9, vmd=2.45, tca=18.
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Figure 1: Gantt diagram of aircraft advisories.
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