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Electrified Aircraft Propulsion (EAP)

e EAP relies on the use of electrical power for aircraft propulsion

* Enables aircraft designs that apply advanced propulsion concepts such as distributed electric
propulsion and boundary layer ingestion fans

* Benefits: a reduction in emissions and fuel burn

* Controls Challenge: Integrated nature of EAP system architectures requires system-level control
solutions to ensure transient operability
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Partially Turboelectric Propulsion Concept Overview®

 Single aisle Turboelectric AiRCraft with Aft Boundary Layer propulsor (STARC-ABL)

» Partially turboelectric propulsion aircraft concept proposed by NASA
= Two wing-mounted geared turbofan engines
= Electric motor-driven boundary layer ingestion tailfan propulsor
= Generators attached to turbofan low-pressure shafts supply electric power to tailfan motor over a high-voltage
DC power bus

* Under nominal state-state conditions the system operates in a state of “balanced” equilibrium

A system-level control strategy is required to enable transients and off-design operation!
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STARC-ABL Integrated Control Design

e Control design setup:

= Tailfan and turbofans operate under closed-
loop speed control

= Tailfan motor consumes power from DC bus _ STARC-ABL
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STARC-ABL Integrated Control Design @

Implemented a single throttle input control strategy
* Both turbofans receive the same throttle

command
* Tailfan receives a “synthesized” throttle input « Simplifies turbofan control design to a single-input single-
calculated as a function of average turbofan speed output (SISO) control problem
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Derivation of STARC-ABL Open-Loop Linear Transfer Function

STARC-ABL Closed-Loop Control Architecture
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STARC-ABL Integrated Control Design Benefits

e Promotes coordinated turbofan and tailfan
operation during transients

» Simplifies turbofan fuel control design to a
single-input single-output (SISO) control
|oro lem enabling the application of classical
inear control design techniques
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STARC-ABL Integrated Control Design — Setpoint @
Control, Limit Logic, and Control Integration

* Control design features N, _
. ] c,cemd e Setpoint

* Tailfan and turbofan proportional plus A2 controller [ ,f"rlr‘;“a”de"'
integral (PI) setpoint controllers =l na B D
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NASA Electric Aircraft Testbed (NEAT) Facility
Test Configuration

* NEAT enables the testing of megawatt-level
electric aircraft power systems

* NEAT STARC-ABL Controls Test configured as
a partially-simulated partially-hardware-in-

Hardware, and Control Room
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Sliding Mode Impedance Controller with Scaling @
(SMICS) Concept
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For additional details on the SMICS algorithm see:
Bianco, S. J., Simon, D. L., (2023), “Control and Scaling Approach for the Emulation of Scaled Dynamic Torque Loads,”
AIAA Aviation/Electrified Aircraft Technology Symposium (EATS), San Diego, CA,




NEAT STARC-ABL Controls Test Results:
Throttle Profile Test Cards

Legend NEAT experimental —— Pre-test simulation

«10% Altitude Mach Turbofan Throttle

4 0.8 80 I

* Purpose: Subjects the integrated - 206 S0
control design to a range of k g o4 S 60
throttle input manipulations o

0 0 50 —

. . 0 100 200 300 0 100 200 300 0 100 200 300
 Completed at 57 different flight Time (3) Time (3)
oy . Turbofan LP Shaft Speed Turbofan LPC SM «10Turbofan Net Thrust Turbofan Fuel Flow
conditions spanning the STARC- o 12000 S0 2
’ : £ 10000 s = = 1
ABL’s operating envelope £ o0 g”’m 5 B
* Test cards ran under nominal g oo = £ 200
turbomaChlnery health 40000 100 200 300 ? 00 100 200 300 00 100 200 300 00 100 200 300
conditions and repeated under Time (5) Time (5) Time (s) Time (5)
(S' mu |ated) degraded health 04 «1(Furbofan Core Speed . Turbofan HPC SM 10000 Tailfan Net Thrust Turbofan Generator Torque
conditions £ S —\W « 2 0
* Findings: Eé S 2 2 e g 500
= No issues encountered “ 16 & o 0 S
. . 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
= Control design, real-time Time (s) Time (s) Time (s) Time (s)
simulation, and electrical system Tailfan Speed = Tailfan FAN SM . Teftal Vehicle Net Thrust Tailfan Motor Torque
hardware operated as expected £ 3000 £ - £ 8000
P P £2500 g, 10 §4 &= 6000
2000 = 5 _jm 52 $ 4000
c% 1500 ..‘=E LS E 2000
0 100 200 300 @ OD 100 200 300 00 100 200 300 00 100 200 300
Time (s) Time (s) Time (s) Time (s)

Sea Level Static — Throttle Profile Test Card Results

WWW.Nasa.gov NASA Glenn Research Center 11



NEA

S

ARC-ABL Contro
Mission Profile Test Carc

S
S

* Purpose: Subjects the
integrated control design to
realistic variations in flight
conditions and throttle inputs

* Mission profiles

= Test cards completed under
nominal turbomachinery
health conditions and repeated
under (simulated) degraded
health conditions

* Findings:
= No issues encountered

= Control design, real-time
simulation, and electrical
system hardware operated as
expected
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Legend NEAT experimental —— Pre-test simulation
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Conclusions

 Successfully demonstrated an integrated control design for a
partially turboelectric propulsion system

" Integrated control design exhibited robust performance when subjected to a
range of flight conditions, throttle inputs, and simulated turbomachinery
degradation

=" No operability issues encountered in turbomachinery simulation or facility
electrical system hardware

* Integrated control design strategy

* Holds promise for the development of integrated control solutions for other
electrified gas turbine architectures that exhibit coupling between
subsystems
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