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Electrified Aircraft Propulsion (EAP)
• EAP relies on the use of electrical power for aircraft propulsion

• Enables aircraft designs that apply advanced propulsion concepts such as distributed electric 
propulsion and boundary layer ingestion fans

• Benefits: a reduction in emissions and fuel burn

• Controls Challenge: Integrated nature of EAP system architectures requires system-level control 
solutions to ensure transient operability 
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Example NASA EAP Concept Vehicles
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X-57 Maxwell

All Electric

Quadrotor

All Electric

Side-by-Side Helicopter

Hybrid Electric

Tiltwing

Turboelectric

STARC-ABL

Partial Turboelectric

NASA Aeronautics Strategic 
Implementation Plan
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Partially Turboelectric Propulsion Concept Overview

• Single aisle Turboelectric AiRCraft with Aft Boundary Layer propulsor (STARC-ABL)

• Partially turboelectric propulsion aircraft concept proposed by NASA
▪ Two wing-mounted geared turbofan engines
▪ Electric motor-driven boundary layer ingestion tailfan propulsor
▪ Generators attached to turbofan low-pressure shafts supply electric power to tailfan motor over a high-voltage 

DC power bus

• Under nominal state-state conditions the system operates in a state of “balanced” equilibrium
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STARC-ABL EAP Concept STARC-ABL Propulsion Architecture

A system-level control strategy is required to enable transients and off-design operation!
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STARC-ABL Integrated Control Design

• Control design setup:
▪ Tailfan and turbofans operate under closed-

loop speed control
▪ Tailfan motor consumes power from DC bus
▪ Turbofan generators operate to hold a target 

constant DC bus voltage

• Issue –uncoordinated turbofan and tailfan 
operation poses operability concerns
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STARC-ABL Control Architecture

Throttle

Throttle

Throttle

Notional illustration of tailfan leading turbofan on rapid 
deceleration, which can result in turbofan compressor stall
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Turbofan State Space Model & Open-Loop Transfer Function
Turbofan State Space Model & Open-Loop Transfer Function

Turbofan Linear State Space Model & Open-Loop Transfer Function

States:
𝑁2𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐿𝑃 𝑠ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑
𝑁3𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐻𝑃 𝑠ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑

Input:
𝑊𝑓 = 𝑓𝑢𝑒𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

Output:
𝑁1𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑛 𝑠𝑝𝑒𝑒𝑑

Transfer function:
𝐾𝑒 = 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛
𝑧1= zero
𝑟1 , 𝑟2 = 𝑟𝑜𝑜𝑡𝑠

State Space Model:
ሶ𝑁2𝑐
ሶ𝑁3𝑐
ሶ𝑥

=
𝐴11 𝐴12
𝐴21 𝐴22

𝐴

𝑁2𝑐
𝑁3𝑐
𝑥

+
𝐵11
𝐵21
𝐵

ถ𝑊𝑓

𝑢

𝑁1𝑐
𝑦

= 𝐶11 0
𝐶

𝑁2𝑐
𝑁3𝑐
𝑥

Open-Loop Transfer Function
N1c s

𝑊𝑓 𝑠
=

𝐾𝑒 𝑠 + 𝑧1
𝑠 + 𝑟1 𝑠 + 𝑟2

STARC-ABL Linear State Space Model

State Space Model:
ሶ𝑁2𝑐
ሶ𝑁3𝑐
ሶ𝑁𝑡𝑐
ሶ𝑥

=
𝐴11 𝐴12 0
𝐴21 𝐴22 0
0 0 𝐴33

𝐴

𝑁2𝑐
𝑁3𝑐
𝑁𝑡𝑐
𝑥

+
𝐵11 𝐵12
𝐵21 0
0 𝐵32

𝐵

𝑊𝑓

𝑄𝑚
𝑢

𝑁1𝑐
𝑁𝑡𝑐
𝑦

=
𝐶11 0 0
0 0 1

𝐶

𝑁2𝑐
𝑁3𝑐
𝑁𝑡𝑐
𝑥

States:
𝑁2𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐿𝑃 𝑠ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑
𝑁3𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝐻𝑃 𝑠ℎ𝑎𝑓𝑡 𝑠𝑝𝑒𝑒𝑑
𝑁𝑡𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑖𝑙𝑓𝑎𝑛 𝑠𝑝𝑒𝑒𝑑

Inputs:
𝑊𝑓 = 𝑓𝑢𝑒𝑙 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑄𝑚 = 𝑡𝑎𝑖𝑙𝑓𝑎𝑛 𝑚𝑜𝑡𝑜𝑟 𝑡𝑜𝑟𝑞𝑢𝑒

Outputs:
𝑁1𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑛 𝑠𝑝𝑒𝑒𝑑
𝑁𝑡𝑐 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑖𝑙𝑓𝑎𝑛 𝑠𝑝𝑒𝑒𝑑

Derivation of STARC-ABL Linear Transfer Functions

ሶ𝑁2𝑐
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𝐾𝑚,𝑝𝐾𝑡 𝑠 +
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𝐶𝐿𝑇𝐹𝑡𝑎𝑖𝑙 =

𝐾𝑚,𝑝𝐾𝑡 𝑠 +
𝐾𝑚,𝑖

𝐾𝑚,𝑝

𝑠 𝑠 + 𝑟𝑡 + 𝐾𝑚,𝑝𝐾𝑡 𝑠 +
𝐾𝑚,𝑖
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𝑇 𝑠 =
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N1c s

𝑊𝑓 𝑠
=

𝐾𝑒 𝑠 + 𝑧1
𝑠 + 𝑟1 𝑠 + 𝑟2 − 𝐶11𝛾𝑇 𝑠 𝐵12 𝑠 − 𝐴22

𝑂𝐿𝑇𝐹𝑡𝑢𝑟𝑏𝑜𝑓𝑎𝑛 =
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𝐾𝑖
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𝐶𝐿𝑇𝐹𝑡𝑢𝑟𝑏𝑜𝑓𝑎𝑛 =
𝑂𝐿𝑇𝐹𝑡𝑢𝑟𝑏𝑜𝑓𝑎𝑛

𝐼 + 𝑂𝐿𝑇𝐹𝑡𝑢𝑟𝑏𝑜𝑓𝑎𝑛

Derivation of STARC-ABL Open-Loop Linear Transfer Function

N1c s

𝑊𝑓 𝑠
=

𝐾𝑒 𝑠 + 𝑧1
𝑠 + 𝑟1 𝑠 + 𝑟2

Turbofan Closed-Loop Control Architecture

STARC-ABL Integrated Control Design
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Implemented a single throttle input control strategy 
• Both turbofans receive the same throttle 

command
• Tailfan receives a “synthesized” throttle input 

calculated as a function of average turbofan speed

Input
Output

• Simplifies turbofan control design to a single-input single-
output (SISO) control problem

STARC-ABL Closed-Loop Control Architecture
Derivation of STARC-ABL Open-Loop Linear Transfer Function

N1c s

𝑊𝑓 𝑠
=

𝐾𝑒 𝑠 + 𝑧1
𝑠 + 𝑟1 𝑠 + 𝑟2 − 𝐶11𝛾𝑇 𝑠 𝐵12 𝑠 − 𝐴22

𝑇 𝑠 =

𝐾𝑚,𝑝 𝑠 +
𝐾𝑚,𝑖

𝐾𝑚,𝑝
𝑠 + 𝑟𝑡

𝑠 𝑠 + 𝑟𝑡 + 𝐾𝑚,𝑝𝐾𝑡 𝑠 +
𝐾𝑚,𝑖

𝐾𝑚,𝑝

𝛾 = Δ𝑁𝑡𝑐: Δ𝑁1𝑐 𝑟𝑎𝑡𝑖𝑜
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STARC-ABL Integrated Control Design Benefits

• Promotes coordinated turbofan and tailfan 
operation during transients

• Simplifies turbofan fuel control design to a 
single-input single-output (SISO) control 
problem enabling the application of classical 
linear control design techniques
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Notional Illustration of Turbofan and 
Tailfan Transient Operation

Integrated System Step Responses, 
Bode Diagrams, and Pole Zero Maps



www.nasa.gov

STARC-ABL Integrated Control Design – Setpoint 
Control, Limit Logic, and Control Integration

• Control design features
▪ Tailfan and turbofan proportional plus 

integral (PI) setpoint controllers
▪ Turbofan PI corrected fan speed 

derivative, ሶ𝑁1𝑐, acceleration and 
deceleration schedules

▪ Turbofan PI minimum high-pressure 
compressor exit pressure, 𝑃𝑠3, limiter

▪ Tailfan maximum motor horsepower 
(hp) limit

• Control integration and mode 
selection logic
▪ Conventional maximum-minimum 

mode selection logic with integrator 
windup protection applied to select 
active control regulator
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Turbofan controller mode selection logic
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NASA Electric Aircraft Testbed (NEAT) Facility
Test Configuration

• NEAT enables the testing of megawatt-level 
electric aircraft power systems 

• NEAT STARC-ABL Controls Test configured as 
a partially-simulated partially-hardware-in-
the-loop experiment.

▪ Turbomachinery simulation and control 
software implemented in real-time computer

▪ Subscale version of electrical system and 
turbomachinery shaft dynamics implemented in 
hardware using eight 250kW electric machines

• Configuration details:
▪ Efficiency mismatches between NEAT electrical 

hardware and the STARC-ABL accounted for by 
“power calculation” block implemented in 
software

▪ Sliding Mode Impedance Controller with Scaling 
(SMICS) algorithm applied to emulate a subscale 
version of STARC-ABL electrical system and 
turbomachinery rotating shafts
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NEAT Facility, Electrical Hardware, and Control Room

NEAT STARC-ABL Controls Test Configuration
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Sliding Mode Impedance Controller with Scaling 
(SMICS) Concept
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Tailfan

Turbofan 1

DC bus

Turbofan 2

Generator
1

Generator
2

Motor
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Control

Software Hardware Full-Scale System 
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Emulation
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Model
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Subscale
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Without
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For additional details on the SMICS algorithm see:
Bianco, S. J., Simon, D. L., (2023), “Control and Scaling Approach for the Emulation of Scaled Dynamic Torque Loads,” 

AIAA Aviation/Electrified Aircraft Technology Symposium (EATS), San Diego, CA, 
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NEAT STARC-ABL Controls Test Results:
Throttle Profile Test Cards

• Purpose: Subjects the integrated 
control design to a range of 
throttle input manipulations

• Completed at 57 different flight 
conditions spanning the STARC-
ABL’s operating envelope

▪ Test cards ran under nominal 
turbomachinery health 
conditions and repeated under 
(simulated) degraded health 
conditions

• Findings: 
▪ No issues encountered
▪ Control design, real-time 

simulation, and electrical system 
hardware operated as expected
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Sea Level Static – Throttle Profile Test Card Results

Legend NEAT experimental Pre-test simulation
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NEAT STARC-ABL Controls Test Results:
Mission Profile Test Cards

• Purpose: Subjects the 
integrated control design to 
realistic variations in flight 
conditions and throttle inputs

• Mission profiles
▪ Test cards completed under 

nominal turbomachinery 
health conditions and repeated 
under (simulated) degraded 
health conditions

• Findings:
▪ No issues encountered
▪ Control design, real-time 

simulation, and electrical 
system hardware operated as 
expected
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Actual Mission Profile Test Card Results

Legend NEAT experimental Pre-test simulation
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Conclusions

• Successfully demonstrated an integrated control design for a 
partially turboelectric propulsion system
▪ Integrated control design exhibited robust performance when subjected to a 

range of flight conditions, throttle inputs, and simulated turbomachinery 
degradation

▪ No operability issues encountered in turbomachinery simulation or facility 
electrical system hardware

• Integrated control design strategy
▪ Holds promise for the development of integrated control solutions for other 

electrified gas turbine architectures that exhibit coupling between 
subsystems
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