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ARTICLE INFO ABSTRACT

Edited by Dr. Menghua Wang Exposure to fine particulate matter (PMys) is the leading environmental risk factor for mortality globally.

Satellite-derived estimates of surface PMj, 5 developed from a combination of satellites, simulations, and ground

Keywords: monitor data are relied upon for health impact studies. The ability to develop satellite-derived PMj 5 estimates
Remote sensing requires the continued availability of aerosol optical depth (AOD) sources. This work examines the impact of the
FAienr:S;:j:ticulate matter addition or loss of satellite AOD data sources on global PMj 5 estimation and the impact of continuing the long-
MODIS term record with AOD from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-National Polar
VIIRS orbiting Partnership (S-NPP) satellite after the loss of the MODIS (MODerate resolution Imaging Spectroradi-
MISR ometer) and MISR (Multi-angle Imaging Spectroradiometer) instruments on board the Terra and Aqua satellites.
MAIAG We find that the addition of VIIRS S-NPP AOD products to geophysical PMy 5 estimates from satellites and

Air pollution simulations causes regional differences that correspond to differences in the VIIRS and MODIS Deep Blue AOD
algorithms and sampling. Changes in long-term trends and timeseries due to the addition or loss of AOD data
sources are generally within their uncertainties. Statistical fusion with ground monitor data partially corrects for
changes due to sampling differences when introducing the VIIRS AOD products, but uncertainty remains over
desert regions where ground monitor coverage is sparse. This work provides promise for the sustained devel-

opment of global satellite-derived PMj 5 estimates, despite discontinuities in instruments and retrieval methods.

1. Introduction

Exposure to fine particulate matter (PMy 5) is the leading environ-
mental risk factor for the global burden of disease, with an estimated 4
million attributable deaths worldwide in 2019 (Murray et al., 2020).
Despite this importance for global health outcomes, ground monitoring
of surface PM; 5 concentrations remains sparse over much of the world,
with very few countries having >3 monitors per million inhabitants and
many countries having no regular monitoring at all (Martin et al., 2019).
Estimates of surface PM; 5 developed from a combination of satellites,
simulations, and ground monitor data using a geophysical-hybrid
approach have provided the critical high quality and spatially
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continuous long-term exposures necessary for health impact studies on
both regional (van Donkelaar et al., 2019) and global (van Donkelaar
et al., 2021; Hammer et al., 2020; van Donkelaar et al., 2016) scales.
These geophysical-hybrid estimates have been relied upon for global
health assessments (Murray et al., 2020) and numerous epidemiological
studies (Anenberg et al., 2018; Bai et al., 2019; Burnett et al., 2018; Odo
et al., 2022; Pappin et al., 2019; Southerland et al., 2022). The ability to
consistently extend these geophysical-hybrid PM; 5 estimates into the
future relies on the continued availability of the data products used as
inputs, and in particular the continued availability of reliable, accurate,
and consistent long-term satellite-retrieved aerosol information.
Several satellite instruments and algorithms provided long-term
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global aerosol optical depth (AOD) retrievals over recent decades that
have been used in the development of geophysical-hybrid PM; 5 esti-
mates. The SeaWiFS (Sea-viewing Wide Field-of-View Sensor) instru-
ment flew on the SeaStar satellite and offered high quality
measurements over its lifetime from 1997 to 2010 (Sayer et al., 2012).
Twin MODIS (MODerate resolution Imaging Spectroradiometer) in-
struments on the Earth Observing System (EOS) satellites Terra and
Aqua have provided AOD retrievals from several algorithms since 2000
and 2002 respectively, while the MISR (Multi-angle Imaging Spectror-
adiometer) instrument also on board Terra has provided retrievals since
2000. The Terra and Aqua satellites were designed to only have lifetimes
of 5 years and 6 years respectively, and both are now drifting from their
normal orbits and are scheduled to be fully shutdown by 2025 or 2026
(Sawyer et al., 2020). The continuation of the EOS-era satellite AOD
record, and hence geophysical-hybrid PM, 5 estimates, depends on
having a suitable replacement.

In late 2011, the Suomi National Polar-orbiting Partnership (S-NPP)
satellite was launched carrying the Visible Infrared Imaging Radiometer
Suite (VIIRS) instrument. The NOAA20 platform, carrying another VIIRS
instrument, was launched in late 2017 and more are planned to launch
and fly over the decades to come. VIIRS was designed to have similar
capabilities to MODIS. However, there are issues which cause differ-
ences between retrievals from the two instruments:

1) Calibration: Even two identical instruments will have differences in
calibration and changes in performance over time; for example, this
has historically caused offsets and differential trending in retrievals
from the two MODIS sensors (e.g. Lyapustin et al., 2014; Sawyer
et al., 2020; Sayer et al., 2019). At present, there is a considerable
calibration difference among MODIS Aqua, SNPP VIIRS, and NOAA-
20 VIIRS sensors (e.g Xiong et al., 2020).

Retrieval processes: There are a few key differences that complicate
obtaining a consistent retrieval between VIIRS and MODIS, including
differences in spectral bands and field-of-view (Hsu et al., 2019;
Sawyer et al., 2020; Sayer et al., 2019). Differences in individual
retrieval algorithms will also contribute. For example, the VIIRS
Deep Blue V1 algorithm includes updates to the aerosol and surface
models used in the retrieval that did not make it into the release of
MODIS C6.1 Deep Blue (Sayer et al., 2019), as NASA’s reprocessing
schedules for the missions are not synchronized. The differences in
spectral bands between VIIRS and MODIS results in a difference in
the cloud mask used in VIIRS Dark Target vs MODIS C6.1 Dark Target
(Sawyer et al., 2020).

Sampling: VIIRS has a larger swath width than MODIS, resulting in
no data gaps at equatorial regions and twice or more sampling per
day at middle to high latitudes (Hsu et al., 2019).
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Despite these challenges the MODIS Dark Target and Deep Blue AOD
retrieval algorithms have been successfully ported to process VIIRS S-
NPP measurements (Hsu et al., 2019; Sayer et al., 2019; Sawyer et al.,
2020), and processing of NOAA-20 data is in progress. Further, the
MODIS MAIAC (Multi-Angle Implementation of Atmospheric Correc-
tion) algorithm for VIIRS is at the stage of operational integration and
testing, with operational processing of both VIIRS SNPP and NOAA-20
records expected to start later in 2023. Although the VIIRS S-NPP and
MODIS timeseries for both Dark Target and Deep Blue show overall
consistent spatial and temporal patterns (Hsu et al., 2019; Sawyer et al.,
2020; Sayer et al., 2019), comparisons between the AOD retrievals
processed with Dark Target and Deep Blue for VIIRS and MODIS have
shown some inevitable differences, partly influenced by factors
mentioned above. Spatially the Dark Target VIIRS S-NPP AOD data
exhibit an overall small positive offset almost everywhere compared to
MODIS Aqua (average + 0.03 for 2015), however the offset is not
consistent and varies seasonally, regionally, and by wavelength (Sawyer
et al., 2020). Deep Blue AOD from VIIRS S-NPP compared to MODIS
shows the largest spatial differences as positive offsets over the Sahara,
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Arabian Peninsula, Central Africa, Indo-Gangetic Plain, and Taklamakan
Desert, due to the corresponding updates to aerosol and surface models
that were implemented in the VIIRS S-NPP Deep Blue algorithm but
have not yet made it into the MODIS Deep Blue algorithm (Sayer et al.,
2019). The offset between the Dark Target VIIRS S-NPP time-series and
MODIS Aqua is smaller than that between MODIS Terra and Aqua
(Sawyer et al., 2020). The effects of these AOD differences on the PM5 5
record warrants attention.

In this work we examine the impact of the addition or loss of satellite
AQOD data sources on global geophysical-hybrid PM, 5 estimation, and
how transitioning from MODIS to VIIRS S-NPP products will affect the
long-term record. We consider various scenarios where we add or
remove sources to assess their importance for overall consistency in the
long-term PMy 5 record. We examine both the geophysical (calculated
from satellite AOD and simulation) and hybrid (after calibration with
ground monitor data) PM; 5 estimates to examine how statistical fusion
with ground monitors may help overcome differences due to the addi-
tion and removal of satellite AOD sources.

2. Methods
2.1. Satellite AOD data sources

Table S1 provides a summary of all satellite AOD sources used in our
analysis. We use AOD retrieved from measurements of five satellite in-
struments: twin MODIS instruments, MISR, SeaWiFS, and VIIRS S-NPP.

The twin MODIS instruments have flown on the Terra and Aqua
satellites since 2000 and 2002 respectively. Terra has an equator
crossing time of 10:30 local time and Aqua has a crossing time of 13:30.
Both MODIS instruments have spectral ranges of 0.41 pm to 14.5 pm and
swath widths of 2330 km allowing for near-daily global coverage at the
Equator and overlap of consecutive orbits at mid- and high-latitudes. We
use AOD retrieved from three retrieval algorithms that process MODIS
measured radiances: the current Collection 6.1 (C6.1) Dark Target (DT)
and Deep Blue (DB) algorithms, and MAIAC.

The C6.1 DT retrieval algorithm (Gupta et al., 2016) performs a
simultaneous inversion of two visible (0.47 pm and 0.66 pm) and one
shortwave IR (2.12 pm) channel to retrieve AOD over dark surfaces (i.e.
vegetated land surfaces and dark soils). The C6.1 Dark Target algorithm
includes an improved surface reflectance scheme to improve biases over
urban areas, as city surfaces do not behave as a “dark” vegetated target
(Gupta et al., 2016). The C6.1 DB retrieval algorithm (Hsu et al., 2019)
uses blue wavelength measurements at 0.41 pm where the surface
reflectance over land tends to be much lower than at longer wavelengths
(typically desert surfaces). Like DT, DB also uses visible bands over
vegetation, allowing for the retrieval of aerosol properties over both
bright and dark surfaces. The MODIS C6.1 algorithm includes a new
smoke mask that was developed based on the spectral curvature of
measured reflectance to distinguish biomass burning smoke from
weakly absorbing urban/industrial aerosols (Hsu et al., 2019). MODIS
C6.1 DB and DT are both reported at a wavelength of 550 nm and a
spatial resolution of 10 km at nadir.

The MAIAC C6 algorithm (Lyapustin et al., 2018) retrieves aerosol
information at 470 nm over both bright and dark land surfaces simul-
taneously with surface bidirectional reflectance using time-series anal-
ysis of MODIS L1B data for up to 16 days. The prior knowledge of surface
properties helps to overcome the empirical assumptions in other stan-
dard algorithms. MAIAC C6 processes the MODIS Terra and Aqua sen-
sors jointly, which significantly increases the observation frequency
required for accurate surface characterization. MAIAC C6 includes
improved aerosol retrieval over bright deserts, improved cloud and
snow mask, added aerosol retrievals and atmospheric correction over
inland, coastal, and open ocean water, and has undergone considerable
changes for global application (Martins et al., 2017). MAIAC provides
AOD at a fine spatial resolution of 1 km globally over the land and
coastal ocean for the entire MODIS record. The MAIAC AOD from VIIRS
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will have spatial resolution of 750 m.

The MISR instrument is onboard the Terra satellite alongside MODIS.
MISR observes the earth at nine different viewing angles and four
spectral bands (446, 558, 672, and 866 nm) with a swath of 380 km that
provides global coverage about once per week, every nine days at the
equator and up to every two days near the poles (Diner et al., 1998). The
MISR v23 (Garay et al., 2017, 2020) retrieval algorithm uses same-scene
multi-angle views provided by the nine cameras to solve for surface and
top-of-atmosphere reflectance contributions, providing AOD retrievals
over bright and dark land surfaces without absolute surface reflectance
assumptions (Martonchik et al., 2009). MISR retrievals use multiple
aerosol models with different refractive index, particle size and shape
(nonsphericity), allowing for retrieval of aerosol size and type in many
conditions. MISRv23 reports AOD at 550 nm at a spatial resolution of
4.4 km.

The SeaWiFS instrument flew on the SeaStar satellite which had a
noon overpass time and was operational between 1997 and 2010. Sea-
WiFS maintained highly accurate and stable calibration over its lifetime
(Sayer et al., 2012). SeaWiFS provided measurements in eight spectral
bands between 412 and 885 nm and had a 1500 km swath width that
provided nearly daily global coverage. We use AOD retrieved from the
version 4 SeaWiFS Deep Blue (Sayer et al., 2012) dataset that offers AOD
at a wavelength of 550 nm and a spatial resolution of 13.5 km.

Two VIIRS instruments are currently in orbit, aboard the S-NPP since
2011 and the Joint Polar Satellite System-1 (JPSS-1: in operation as
NOAA-20) since 2017. VIIRS NOAA-20 AOD data were not accessible to
us at the time of this work, so we consider only the VIIRS S-NPP data.

The S-NPP satellite has an overpass time of ~13:30, similar to Aqua,
however the two satellites orbit at different altitudes (824 km for VIIRS
S-NPP, 750 km for MODIS Aqua). The VIIRS instrument was designed to
have similar capabilities as MODIS in terms of spectral channels and
spatial coverage; however, there are some key differences, such as
slightly different center wavelengths, the larger swath width (3040 km
vs 2330 km) of VIIRS, and the finer DT and DB product resolution at
nadir (6 km vs 10 km) of VIIRS. On-board detector aggregation of VIIRS
reduces the “bow-tie” distortion (pixels away from nadir views become
larger and consecutive scans begin to overlap) that exist in MODIS re-
trievals, despite the broader swath width of VIIRS (Wolfe et al., 2013).
We use AOD from two retrieval algorithms processing VIIRS measured
radiances: Dark Target and VIIRS Deep Blue V1. Both algorithms were
ported to process VIIRS radiances by the teams behind their MODIS
counterparts. As a result, both algorithms are conceptually the same as
the MODIS C6.1 versions. The differences in spectral bands between
VIIRS and MODIS leads to a slight difference in the bands used for both
the MODIS C6.1 Dark Target and C6.1 Deep Blue algorithms, and results
in a difference in the cloud mask used in VIIRS Dark Target vs MODIS
C6.1 Dark Target. The VIIRS Deep Blue V1 algorithm includes updates to
the aerosol and surface models used in the retrieval that did not make it
into the release of MODIS C6.1 Deep Blue (Sayer et al., 2019).

2.2. GEOS-Chem simulation

We use the GEOS-Chem chemical transport model originally
described by Bey et al. (2001), v11-01 as a data source for AOD and to
represent the relationship of surface PMys to total column AOD
(described in section 2.3). A detailed description of the simulation is
given in Hammer et al. (2020). The GEOS-Chem model solves for the
evolution of atmospheric aerosols and gases using a detailed oxidant-
aerosol chemical mechanism, emission inventories, and assimilated
meteorological data. The assimilated meteorological data are from the
Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) Reanalysis of the NASA Global Modeling and
Assimilation Office (Gelaro et al., 2017). We conduct our simulations for
1998-2019. We use the global spatial resolution of 2° x 2.5° and the
nested spatial resolution of 0.5° x 0.625° over North America, Europe,
and Asia with 47 vertical layers. The top of the lowest model layer is
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~100 m. Regional anthropogenic emission inventories of aerosols and
their precursors are used over the United States [EPA/NEI11 (Travis
et al., 2016)], Canada (CAC; http://www.ec.gc.ca/pdb/cac/), Mexico
[BRAVO (Kuhns et al., 2005)]1, Europe (EMEP; http://www.emep.int/),
China [MEIC (Li et al., 2017)], India (Lu et al., 2011), and elsewhere in
Asia [MIX (Li et al., 2017)].

2.3. Algorithm for estimating PM3 5 concentrations from satellites,
simulation, and ground monitors (V4.GL.03)

We follow the V4.GL.03 algorithm from Hammer et al. (2020) for
calculating the geophysical and geophysical-hybrid (denoted hybrid)
PM, 5 estimates and summarize the algorithm here. The resulting esti-
mates are produced for 1998 to 2019 at a spatial resolution of 5 km for
the geophysical PMj 5 estimates and 1 km for the hybrid estimates.

2.3.1. Geophysical PMy 5 estimates

We first combine the satellite AOD products, and for this work
consider several different scenarios where satellite AOD sources were
either included or excluded (described in Section 3). The various satel-
lite AOD sources are combined based on their relative uncertainties with
the global sun photometer network Aerosol Robotic NETwork (AERO-
NET) V3 (Giles et al., 2019), which provides AOD measurements with
high accuracy (uncertainty <0.02). Simulated AOD from GEOS-Chem is
also used as an additional AOD source; however, its contributions are
mostly over snow- and ice-covered northern regions where and when
satellite retrievals are sparse. Hammer et al. (2020) found that satellite
retrievals comprised 81% of the population-weighted AOD contribution
for 1998 to 2018. The different sources of error associated with satellite
and simulated AOD require care in accounting for their relative un-
certainties. Briefly, one of the main sources of uncertainty associated
with satellite retrieved AOD is the surface treatment used in the
retrieval, which we assess by comparison with AERONET as a function
of land type. For the simulated AOD, to account for errors due to species-
specific emissions and assumed aerosol microphysical properties, we
calculate the relative uncertainty based on the simulated fractional
aerosol composition applied to each daily AERONET observation
following van Donkelaar et al. (2016).

To estimate surface concentrations of PMj 5 (PMa 5 sat) from satellite
AOD (AODgart), we use the local, coincident ratio () of simulated sur-
face PMy 5 concentrations (PMy 5 smv) to simulated total column AOD
(AODgp\1):

PM, s = 1 x AODsar 1)
where
PMy s siv
_ : 2
= A0Dgy 2

n is a function of the factors that relate PMj 5 mass to satellite AOD (e.g.,
aerosol size, aerosol composition, diel variation, relative humidity, and
the vertical structure of aerosol extinction (van Donkelaar et al., 2006).
To account for differences in temporal sampling of the AOD data sour-
ces, we calculate daily values of | as the ratio of 24-h surface PMjy 5 at a
relative humidity of 35%, to total-column AOD at ambient relative hu-
midity sampled at satellite overpass time. We address the sampling
limitations of satellite AOD in the presence of snow or cloud cover by
using GEOS-Chem to scale the satellite AOD by the ratio of simulated
monthly mean AOD to simulated AOD coincident with satellite AOD as
described in Hammer et al. (2021).

2.3.2. Geophysical-hybrid (denoted “hybrid”) PM> s estimates

We use geographically weighted regression (GWR) (Brunsdon et al.,
1998; Fotheringham et al., 1998) to predict and account for the bias in
the annual mean geophysical PMy5 estimates as described by van
Donkelaar et al. (2016). GWR is an extension of least-squares regression
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that allows predictor coefficients to vary spatially by weighting the es-
timate- observation pairs at multiple geographic locations according to
their inverse squared distance from individual observation sites. The
GWR is conducted at a 1-km resolution to calibrate annual predictor
coefficients based on comparison with coincident ground monitor ob-
servations. We use monitor-specific ground-based measurements of
PM; 5 from an updated version of the WHO Global Ambient Air Quality
Database (World Health Organization, 2018). This database consoli-
dates observations provided by, and according to the standards of,
numerous national, regional and international agencies. These include
agencies and networks operating in countries around the world, as well
as data provided by the European Environment Agency, the Surface
Particulate Matter Network (SPARTAN) network, globally installed
embassy-based monitors operated by the United States Environmental
Protection Agency, Clean Air Asia, OpenAQ, among others. The pre-
dictors used in the GWR calculation are the log of the elevation differ-
ence between the local elevation and the mean elevation within the
simulation grid cell, the inverse distance to the nearest urban land sur-
face, and the simulated relative contributions of mineral dust and the
sum of sulfate, nitrate, ammonium, and organic carbon. The bias pre-
dicted by the GWR is used to adjust the geophysical PMj 5 estimates to
produce the hybrid PM; 5 estimates.

2.3.3. Analysis scenarios adding and removing satellite AOD sources from
geophysical-hybrid PM 5

Table 1 contains the scenarios where satellite AOD sources are added
or removed to analyze the impact on geophysical and hybrid PM5 5 es-
timates. Hammer et al. (2020) found that MODIS MAIAC made the
largest contribution overall to hybrid PMj 5 estimates, but as VIIRS S-
NPP MAIAC is not yet available, we do not include MODIS MAIAC in our
main analysis. A separate analysis including MODIS MAIAC is in the
Appendix. Table A1 describes the scenarios when including MAIAC.

Each scenario is calculated following the algorithm described in
Section 2.3. The “Base” scenario uses the Hammer et al. (2020) V4.GL.03
algorithm excluding MAIAC. The scenario denoted “wVIIRS” adds the
VIIRS S-NPP Dark Target and Deep Blue products to the Base scenario for
the VIIRS record (for 2012-onward). The other scenarios are designed to
examine the impact on geophysical and hybrid PM; 5 estimates as more
sources are removed until only the VIIRS and GEOS-Chem AOD remain.
The wVIIRS_noMODISDBDT scenario is based on wVIIRS, but MODIS
Deep Blue and Dark Target for both Terra and Aqua are removed from
2012-onward. The wVIIRS_noMODISTerra scenario is based on wVIIRS,
but all MODIS Terra products (Deep Blue and Dark Target from just
Terra) are removed from 2012-onward. The wVIIRS_noTerra scenario is
the same as wVIIRS, but MODIS Terra and MISR are removed from 2012-

Table 1
The geophysical-hybrid PM, s scenarios.
Scenario Description
Base Based on V4.GL.03 algorithm: includes MODIS Deep Blue
and Dark Target from Terra (2000 to 2019) and Aqua
(2002 to 2019), MISR (2000 to 2019), SeaWiFS (1997 to
2010) and GEOS-Chem simulated AOD
wVIIRS Base scenario with the addition of VIIRS Deep Blue and

Dark Target for the VIIRS record (2012 to 2019) (to
evaluate the impact of adding VIIRS to the Base Case)
WVIIRS scenario with the MODIS Deep Blue and Dark
Target products from both Terra and Aqua removed (to
evalulate the impact of the loss of retrieval algorithms)
WVIIRS scenario with all MODIS product from Terra
removed (MODIS Deep Blue and Dark Target) (to evaluate
the loss of an instrument)

WVIIRS scenario with all Terra products removed (MODIS
Deep Blue, Dark Target, and MISR) (to evaluate the loss of
a satellite)

Scenario including just VIIRS Deep Blue, Dark Target, and
GEOS-Chem simulated AOD (to evaluate the loss of all
Terra/Aqua products)

wVIIRS_noMODISDBDT

wVIIRS_noMODISTerra

wVIIRS noTerra

justVIIRS
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onward. The wVIIRS_noMODISDBDT, wVIIRS_ noMODISTerra, and
wVIIRS noTerra scenarios allow examining the relative impacts of loss
of an instrument, algorithm, or satellite. The justVIIRS scenario only
includes VIIRS S-NPP Dark Target and Deep Blue for 2012-onward.

3. Results and discussion

3.1. Impact of satellite AOD source addition and removal on geophysical
PM3 5

The top panel of Fig. 1 shows the Base scenario 2012 to 2019 mean
geophysical PMj 5, whereas the top panel of Fig. A1 shows the same but
when including MAIAC. Most of the world exhibits mean concentrations
between 5 and 30 pg/m?, but there are elevated concentrations between
50 and 90 pg/m® over parts of China, India, the Middle-East and
northern Africa. The geophysical 2012 to 2019 mean values are very
similar for the case when including MAIAC (Fig. A1l).

Fig. 2 shows the absolute differences between the 2012 to 2019 mean
geophysical PM 5 concentrations for each scenario in Table 1 and the
Base scenario (top panel of Fig. 1). Fig. S1 shows the same but in percent
difference, which exhibit similar spatial patterns as Fig. 2. Fig. S2 shows
the absolute differences for combined AOD. PM,s concentrations
exhibit increases between 5 and 20 pg/m® over most desert regions and
decreases between —20 and — 5 pg/m® over parts of China, India, and
Iran. For each scenario, the patterns of geophysical PMj; 5 change and of
combined AOD change with respect to the Base scenario are similar to
one another (Pearson’s correlation coefficient r = 0.77 to 0.86). Most
differences in AOD and PM; 5 occur in regions with sparse AERONET
coverage, which explains why the bias correction in our algorithm for
combining each separate AOD source (which is calculated based on the
uncertainty compared to AERONET) does not eliminate all differences
when sources are added or removed. Increases in annual PM; 5 between
10 and 20 pg/m® are apparent over Indonesia, despite decreases in
annual combined AOD (Fig. S2). Figs. S3 and S4 show the absolute
differences for geophysical PMy5s and combined AOD respectively
zoomed in for Indonesia. These conflicting differences reflect the
increased AOD, 7, and PM; 5 during months with biomass burning that
drive the annual mean PM; 5 in the region. Peat fires in Indonesia occur
later in the year, and the strength of the fires is influenced by years with
particularly strong El Nino (Sayer et al., 2019).

The magnitude of differences in PMy 5 in Fig. 2 is smallest for
wVIIRS-Base and largest for justVIIRS-Base. The wVIIRS_noMODISTerra
and wVIIRS noTerra differences are very similar (global r = 0.95, RMSD
= 1.03 pg/m3). The wVIIRS_noMODISDBDT-Base and justVIIRS-Base
are similar (global r = 0.88, RMSD = 1.03 pg/m®). The larger differ-
ences for the latter case (two-sample Kolmogorov-Smirnov test, p <
0.05) indicate that the loss of MODIS products in general has a larger
impact than the loss of a single satellite or algorithm.

Fig. A2 shows the same as Fig. 2 but for the analysis when including
MAIAC AOD in the scenarios. The spatial pattern of differences is similar
to the no MAIAC scenarios (global r = 0.80 to 0.89, RMSD = 1.5 to 1.7
pg/ms), however the decreases in PM5 5 over China and India are further
emphasized by changes whether MAIAC is included or excluded.

Fig. S5 shows the mean contribution of each AOD data source to the
wVIIRS scenario for 2012 to 2019 to aid in the interpretation of Fig. 2.
The increases over desert regions correspond to regions where VIIRS
Deep Blue and MODIS Deep Blue have the highest weightings of all
sources. The decreases over China, India, and Iran correspond to regions
where VIIRS Deep Blue has the highest weightings. Simulated weight-
ings are higher in Fig. S5 than in Hammer et al. (2020) due to the
exclusion of MAIAC from Fig. S5.

The differences between satellite AOD products before they are
incorporated into our algorithm also offer insight into the differences in
Fig. 2. Fig. 3 shows the absolute differences between the 2012 to 2019
mean of the VIIRS S-NPP AOD products (SatVIIRS; includes VIIRS Deep
Blue and Dark Target) and the 2012 to 2019 mean of the AOD products
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Fig. 1. The Base scenario mean PM, 5 concentrations for 2012 to 2019. The top panel shows the geophysical values while the bottom panel shows the hybrid values.

Grey indicates missing data or water.

used in our Base scenario (SatM; includes MODIS Terra/Aqua Deep Blue
and Dark Target, and MISR). Fig. S6 shows the same but for percent
differences, which exhibit similar spatial patterns as Fig. 3 albeit with
some larger ratios in regions with low AOD such as in Australia. The top
panel of Fig. 3 shows the differences when all valid pixels are included
(All valid pixels) and the bottom panel shows the differences when only
pixels that are coincidently sampled between all sources are included
(Coincidently sampled). The most notable features are increases in
SatVIIRS AOD compared to SatM AOD of ~0.2 over desert regions (i.e.
the Sahara, parts of the Middle-East, parts of Australia, Taklamakan),
similar to the increases in geophysical PMs 5 seen in Fig. 2. These in-
creases are similar irrespective of whether sampling is considered. Sayer
et al. (2019) evaluated the differences between VIIRS S-NPP Deep Blue
and the MODIS Deep Blue products and found similar increases which
were explained by aerosol model and surface treatment updates that
were included in the VIIRS Deep Blue algorithm but not in the MODIS
C6.1 Deep Blue algorithm (as the VIIRS algorithm was more recent than
the C6.1 MODIS reprocessing). Specifically, new nonspherical dust op-
tical models (Lee et al., 2017) were introduced in the V1 VIIRS Deep
Blue to improve AOD retrievals over deserts including the Sahara,
Arabian Peninsula, and Taklamakan desert. The dust models generally
resulted in higher AOD, as depicted in Fig. 3. The increases over the Thar
desert and part of Australia were found to be partly due to slight dif-
ferences in surface treatment as well. As the increases in AOD were more
than intended, the Deep Blue team has made further improvements in

both dust optical models and surface reflectances in the V2 algorithm,
which will decrease the gap between MODIS and VIIRS, while main-
taining better observation geometry dependence of dust AOD resulting
from more realistic representation of nonspherical dust. These algo-
rithmic differences correspond to the increases observed over desert
regions in Fig. 2.

In the “All valid pixels” case of Fig. 3 there are decreases between
—0.1 and — 0.05 over parts of China, the Indo-Gangetic Plain, Indonesia,
Iran, and central Africa that are not apparent in the coincidently
sampled case indicating the role of sampling differences between the
instruments and algorithms in contributing to differences in Fig. 2. The
decrease in AOD over Indonesia in the “All valid pixels case” demon-
strates that the decrease in combined AOD over the region in Fig. S2 is at
least partially due to sampling. There are small increases (<0.05) over
Canada and northern Brazil that are smaller in magnitude for the coin-
cidently sampled case, that are not apparent in the geophysical PMs 5
differences in Fig. 2. Sampling plays a larger role in areas affected by
pronounced temporal differences (such as Canada, Brazil, and
Indonesia). Fig. A3 shows the same as Fig. 3 but includes MAIAC AOD in
SatM. The spatial pattern of differences is similar; however, including
MAIAC causes sampling differences that partially mask the increases
between VIIRS Deep Blue and MODIS C6.1 Deep Blue AOD over deserts
and causes decreases between —0.15 and — 0.05 over many parts of the
world.

Fig. 4 shows scatterplots of geophysical PM 5 for each scenario from
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Fig. 2. The difference in the 2012 to 2019 mean geophysical PMj s concentrations (ug/m>) between each scenario from Table 1 and the Base scenario. Grey indicates

missing data or water.

Table 1 vs ground monitor data. All scenarios have similar coefficients of
determination (R*> = 0.79 to 0.81). Introducing the VIIRS products
slightly improves correlation compared to the Base scenario, but also
decreases the slope, with the slope further decreasing as sources are
removed. The decreases in slope reflect the decreases over China
apparent in Fig. 2, driven by sampling differences of valid retrievals
using current algorithms as evident in Fig. 3. Fig. S7 shows a comparison
of the combined AOD for each scenario and AERONET AOD, giving
similar agreement as Fig. 4 (R? = 0.76 to 0.80). Fig. A4 shows similar
comparisons to Fig. 4 but including MAIAC AOD in the scenarios.
Including MAIAC increases the slopes for the scenarios that include
MAIAC indicating the value of MAIAC AOD for PM, 5 estimates at high
concentrations.

3.2. Impacts of source addition and removal on trends in geophysical
PMy 5

We examine how the addition or removal of satellite sources affects
trends or discontinuities. Fig. 5 shows the 1998-2019 trends in
geophysical PMj; 5 for the Base scenario, the wVIIRS scenario, and the
justVIIRS scenario. We show trends over the 1998 to 2019 period to
demonstrate the impacts of source addition and removal on the entire
record of our PMy 5 datasets. The spatial pattern of trends is broadly
similar between scenarios, with the most noticeable difference being
statistically significant (p-value <0.05) positive trends (1.0 to 1.5 pg
m~3 yr1) that appear over the Sahara in the wVIIRS and justVIIRS
scenarios. There are also statistically significant positive trends (<0.25
pg m~2 yr~1) that appear over Australia most noticeably in the justVIIRS
scenario. All three scenarios show statistically significant negative
trends over the eastern United States (—0.5 to —0.25 pg m > yr~ 1), Brazil
(0.1 to —0.25 pg m3 yr’l), Europe (—0.5 to —0.25 pg m3 yr’l), and

central China (< —1.5 pg m ™~ yr™ 1), and statistically significant positive
trends over Saudi Arabia, Yemen, and Oman (1 to 1.5 pg m~3 yr’l),
India (0.5 to 1.5 pg m > yr™1), and the Taklamakan Desert (1.0 to 1.5 g
m 3 yrh.

Fig. 6 shows the 1998 to 2019 population-weighted timeseries for
each scenario from Table 1 for each of the six regions outlined with black
boxes in the top panel of Fig. 5. Population estimates are from the
Gridded Population of the World (GPW v4) database (CIESIN (Center for
International Earth Science Information Network), 2017). Population-
weighted mean PM, s values are calculated as a weighted average
weighted by the population estimates for the same year. The timeseries
generally maintain consistency between scenarios in all regions. The
largest variations are in the timeseries for the SAH (Sahara and Middle
East) region. The larger within-region variability in Fig. 5 than in the
timeseries of Fig. 6 reflects that Fig. 6 represents population-weighted
averages over the domain. Table 2 shows the mean offset between the
2012 to 2019 regional timeseries for each scenario and the Base sce-
nario. Overall the variation in magnitude of offsets between scenarios is
small, ranging between —10.28% and 1.86% of local 2012 to 2019 mean
Base scenario values, with differences related to algorithmic changes as
described above.

Table 3 shows the population-weighted 1998 to 2019 trend slopes
with standard error for each scenario and region. The trends across
scenarios show mostly small variations that are within the standard
error values for most regions.

3.3. Impact of satellite AOD source addition and removal on hybrid PM> 5

The bottom panel of Fig. 1 shows the Base scenario 2012 to 2019
mean hybrid PM; 5, while the bottom panel of Fig. A1 shows the same
but when including MAIAC. The mean hybrid PM; 5 concentrations are
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Fig. 3. Difference between the mean SatVIIRS AOD
and the mean SatM AOD for 2012 to 2019. The Sat-
VIIRS AOD includes VIIRS S-NPP Dark Target and
Deep Blue, while SatM AOD includes MODIS Deep
Blue and Dark Target from both Terra and Aqua, and
MISR. For the top panel the means were calculated for
all valid pixels and for the bottom panel the means
only include coincidently sampled pixels between all
products. Grey indicates missing data or water. (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)

E:
Coincidently sampled

-
-0.2 -0.1 0 0.1 0.2

SatVIIRS AOD — SatM AOD (unitless)

similar to the geophysical, with further enhancements of concentrations
over parts of China, India, and the Sahara, that are very similar when
including MAIAC (Fig. Al). The particularly high enhancements over
northern Africa and India are due mainly to predicted increases in
mineral dust (Hammer et al., 2020).

Fig. 7 shows the absolute differences between the 2012 to 2019 mean
hybrid PM; 5 concentrations for each scenario in Table 1 and the Base
scenario. Fig. S8 shows corresponding percent differences. The inclusion
of the bias predicted by GWR eliminates the decreases over China and
India apparent for the geophysical PM; 5 (Fig. 2), although it introduces
some increases between 5 and 20 pg/m? over central China. The hybrid
estimates also exhibit further increases over most desert regions and
further decreases over Iran. These results suggest the GWR correction
helps to overcome some of the biases due to sampling differences when
adding and removing satellite sources, however the exacerbated dif-
ferences over desert regions reflect uncertainty in the GWR correction in
regions with sparse monitoring. Improving the accuracy of the GWR
correction in areas with sparse monitoring is an ongoing effort in our
development of satellite-derived PMys algorithms. The effects of
different scenarios resemble Fig. 2 in that the smallest changes are for
wVIIRS-Base and largest for justVIIRS-Base.

Fig. 8 shows scatterplots of hybrid PMa s for each scenario from
Table 1 and ground monitor data. The scatterplots show 10-fold out-of-
sample 10% cross validation at sites that were not used in the GWR
regression. The coefficients of determination are high for all scenarios
(R2 =0.91 to 0.92) and all scenarios exhibit similar slopes (ranging from
1.00 to 1.02) and similar levels of scatter, indicating the combination of
geophysical estimates and statistical fusion with ground monitors leads
to overall accuracy and precision that is robust to AOD source addition
and removal.

4. Conclusions

The ability to sustain accurate global satellite-derived PMy 5 esti-
mates requires assessment of how the estimates respond to discontinu-
ities in the input satellite AOD sources. This work examines the impact of
the addition or loss of satellite AOD sources on geophysical-hybrid PM; 5
estimation and the impact of continuing the long-term record with AOD
from VIIRS after the loss of the MODIS and MISR instruments on board
the Terra and Aqua satellites, which is expected in the next few years.

We find that the addition of VIIRS S-NPP Dark Target and Deep Blue
AOD products causes an overall increase between 5 and 20 pg/m? in
geophysical PMj 5 over desert regions, an increase between 10 and 20
pg/m°> over Indonesia, and a decrease between —20 and — 5 pg/m°> over
parts of China, India, and Iran. The increases in PMj 5 over desert regions
correspond to differences in the VIIRS and MODIS Deep Blue AOD al-
gorithms noted in earlier work while the decreases over China, India,
and Iran reflect sampling differences. The loss of the MODIS products in
general has a larger impact than the loss of a single satellite or algorithm.

We find overall consistency in the spatial distribution of long-term
trends between scenarios, and no obvious discontinuities or in-
consistencies in the regional timeseries. The variation in magnitude of
offsets between scenarios is small and within a small percentage of local
mean Base scenario values.

Statistical fusion with ground monitor data helps to overcome some
of the biases due to sampling differences when adding and removing
satellite sources, particularly over China and India. However, differ-
ences over desert regions are exacerbated, reflecting the uncertainty in
the GWR correction for regions with sparse monitoring. Improving our
understanding and resolving some of the discrepancies between satellite
retrievals in such regions is important due to the lack of ground monitor
coverage. Overall the slopes (1.00 to 1.02) and coefficients of determi-
nation (R = 0.91 to 0.92) of the hybrid estimates versus ground-based
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Fig. 4. Annual mean geophysical PM, s concentrations for each scenario from Table 1 for 2015 versus collocated annual mean in situ values for 2015. Included on
the plots are the coefficient of determination (R?), the normal distribution of uncertainty (N(bias, variance)), the line of best fit (y) using reduced major axis linear
regression, and the number of comparison points (N). The color scale indicates the number density of observations at each point.
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Fig. 5. Trends in geophysical PM, s concentrations for 1998 to 2019 calculated from the generalized least-squares regression of monthly time series, for the Base
scenario, the wVIIRS scenario, and the justVIIRS scenario. Warm colors indicate positive trends, cool colors indicate negative trends, and the opacity of the colors
provides a measure of the statistical significance of the trends. Grey denotes water. Boxes indicate areas featured for regional analysis in Fig. 6.

monitors remain consistent across all scenarios indicating that the
overall accuracy and precision of the hybrid estimates is robust to
changes in satellite AOD sources.

In support of the upcoming MODIS Collection 7 reprocessing, the
effort of backporting VIIRS DB algorithm to MODIS is already underway.
This will significantly improve the DB AOD consistency between MODIS
and VIIRS over desert regions. The forthcoming VIIRS V2 Deep Blue
dataset as well as the VIIRS MAIAC dataset have the potential to further
reduce differences in geophysical-hybrid estimates compared to using
AOD products from Terra and Aqua, provided the AOD algorithms
applied to VIIRS are also applied to MODIS. This work offers promise for
the continued development of a consistent, long-term geophysical-
hybrid PMj 5 dataset into the future using AOD products from VIIRS.
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Fig. 6. Regional mean population-weighted PM, s concentration (ug m~>) 1998 to 2019 timeseries for each scenario from Table 1 for the eastern United States (US),
China (CH), Europe (EU), India (IND), Sahara + Middle East (SAH), and northern South America (SA).

Table 2
The regional population-weighted mean offset (ug m~>) between the 2012 to 2019 timeseries for each scenario from Table 1 and the Base scenario timeseries. The
variation in offsets between scenarios for each region is given as the percentage of the 2012 to 2019 mean Base scenario values (% of local mean).

Scenario us CH EU IND SAH SA
WVIIRS ~0.05 ~1.32 ~0.02 1.30 0.32 0.54
WVIIRS_NoMODISDBDT ~0.70 —9.13 ~0.35 ~3.89 ~0.30 0.35
WVIIRS NoMODISTerra —0.81 —7.78 —0.46 —453 0.14 0.08
WVIIRS NoTerra ~0.87 ~7.59 ~0.38 —471 0.90 0.09
JustVIIRS ~0.72 -7.79 ~0.17 -3.87 1.40 0.48
% local mean ~6.34% ~10.28% ~2.49% —4.76% 1.68% 1.86%
Table 3
The regional population-weighted 1998 to 2019 trend slope + standard error (ug m > yr™?!) for each scenario from Table 1.
Scenario us CH EU IND SAH SA
Base —0.43 £ 0.03 —0.17 £ 0.63 —0.29 + 0.03 0.98 £+ 0.23 0.05 £+ 0.04 —0.19 + 0.06
wVIIRS —0.44 £+ 0.02 —0.32 + 0.65 —0.31 +£ 0.05 1.03 + 0.25 0.08 + 0.04 —0.17 £ 0.06
wVIIRS_NoMODISDBDT —0.48 + 0.03 —0.70 + 0.74 —0.32 £ 0.03 0.75 £ 0.27 0.05 £ 0.04 —0.19 + 0.07
wVIIRS_NoMODISTerra —0.49 + 0.04 —-0.61 £ 0.71 —0.32 £ 0.03 0.72 £ 0.25 0.07 £ 0.04 —0.20 + 0.06
wVIIRS NoTerra —0.49 £+ 0.04 —0.60 + 0.71 —0.32 + 0.03 0.71 £ 0.25 0.11 £+ 0.05 —0.20 + 0.06
JustVIIRS —0.48 £+ 0.03 —0.68 + 0.75 —0.32 £ 0.05 0.74 £ 0.28 0.14 £ 0.06 —0.20 £+ 0.07
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Fig. 7. The difference between the 2012 to 2019 mean hybrid PM, 5 concentrations (ug/m?) for each scenario from Table 1 and the Base scenario. Grey indicates
missing data or water.
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Data availability

Data will be made available on request.

Appendix A. Appendix

Table Al
The geophysical-hybrid PM; 5 scenarios when including MAIAC.

Scenario Description

Basep, V4.GL.03 algorithm: includes MODIS Deep Blue and Dark Target from Terra (2000 to 2019) and Aqua (2002 to 2019), MODIS MAIAC (2000 to 2019),
MISR (2000 to 2019), Sea WiFS (1997 to 2010) and GEOS-Chem simulated AOD (1998 to 2019).

WVIIRS, Base scenario with the addition of VIIRS Deep Blue and Dark Target for the VIIRS record (2012 to 2019)

WVIIRS;, noMODISDBDT  wVIIRS scenario with the MODIS Deep Blue and Dark Target products from both Terra and Aqua removed
wVIIRS_noMODISTerra WVIIRS scenario with all MODIS product from Terra removed (MODIS Deep, Dark Target, and MAIAC)
WVIIRS noTerra WVIIRS scenario with all Terra products removed (MODIS Deep Blue, Dark Target, MAIAC, and MISR)
justVIIRS Scenario including just VIIRS Deep Blue, Dark Target, and GEOS-Chem simulated AOD

11
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Fig. Al. The Base scenario (including MAIAC) mean PMj; 5 concentrations for 2012 to 2019. The top panel shows the geophysical values while the bottom panel
shows the hybrid values. Grey indicates missing data or water.
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Fig. A2. The difference between the 2012 to 2019 mean geophysical PMs 5 concentrations (ug/m>) for each scenario from Table S2 and the Base scenario. Grey
indicates missing data or water.
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Fig. A3. Difference between the mean SatVIIRS AOD and the mean SatMwMAIAC AOD for 2012 to 2019. The SatVIIRS AOD includes VIIRS S-NPP Dark Target and
Deep Blue, while SatMwMAIAC AOD includes MODIS Deep Blue and Dark Target from both Terra and Aqua, MISR, and MODIS MAIAC. For the top plot the means
were calculated for all valid pixels and for the bottom plot the means only include coincidently sampled pixels between all products. Grey indicates missing data or
water. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. A4. Annual mean geophysical PMj; 5 concentrations for each scenario from Table S2 for 2015 versus collocated annual mean in situ values for 2015. Included on
the plots are the coefficient of determination (Rz), the normal distribution of uncertainty (N(bias, variance)), the line of best fit (y) using reduced major axis linear
regression, and the number of comparison points (N). The color scale indicates the number density of observations at each point.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113624.
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