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A B S T R A C T   

Exposure to fine particulate matter (PM2.5) is the leading environmental risk factor for mortality globally. 
Satellite-derived estimates of surface PM2.5 developed from a combination of satellites, simulations, and ground 
monitor data are relied upon for health impact studies. The ability to develop satellite-derived PM2.5 estimates 
requires the continued availability of aerosol optical depth (AOD) sources. This work examines the impact of the 
addition or loss of satellite AOD data sources on global PM2.5 estimation and the impact of continuing the long- 
term record with AOD from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-National Polar 
orbiting Partnership (S-NPP) satellite after the loss of the MODIS (MODerate resolution Imaging Spectroradi
ometer) and MISR (Multi-angle Imaging Spectroradiometer) instruments on board the Terra and Aqua satellites. 
We find that the addition of VIIRS S-NPP AOD products to geophysical PM2.5 estimates from satellites and 
simulations causes regional differences that correspond to differences in the VIIRS and MODIS Deep Blue AOD 
algorithms and sampling. Changes in long-term trends and timeseries due to the addition or loss of AOD data 
sources are generally within their uncertainties. Statistical fusion with ground monitor data partially corrects for 
changes due to sampling differences when introducing the VIIRS AOD products, but uncertainty remains over 
desert regions where ground monitor coverage is sparse. This work provides promise for the sustained devel
opment of global satellite-derived PM2.5 estimates, despite discontinuities in instruments and retrieval methods.   

1. Introduction 

Exposure to fine particulate matter (PM2.5) is the leading environ
mental risk factor for the global burden of disease, with an estimated 4 
million attributable deaths worldwide in 2019 (Murray et al., 2020). 
Despite this importance for global health outcomes, ground monitoring 
of surface PM2.5 concentrations remains sparse over much of the world, 
with very few countries having >3 monitors per million inhabitants and 
many countries having no regular monitoring at all (Martin et al., 2019). 
Estimates of surface PM2.5 developed from a combination of satellites, 
simulations, and ground monitor data using a geophysical-hybrid 
approach have provided the critical high quality and spatially 

continuous long-term exposures necessary for health impact studies on 
both regional (van Donkelaar et al., 2019) and global (van Donkelaar 
et al., 2021; Hammer et al., 2020; van Donkelaar et al., 2016) scales. 
These geophysical-hybrid estimates have been relied upon for global 
health assessments (Murray et al., 2020) and numerous epidemiological 
studies (Anenberg et al., 2018; Bai et al., 2019; Burnett et al., 2018; Odo 
et al., 2022; Pappin et al., 2019; Southerland et al., 2022). The ability to 
consistently extend these geophysical-hybrid PM2.5 estimates into the 
future relies on the continued availability of the data products used as 
inputs, and in particular the continued availability of reliable, accurate, 
and consistent long-term satellite-retrieved aerosol information. 

Several satellite instruments and algorithms provided long-term 
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global aerosol optical depth (AOD) retrievals over recent decades that 
have been used in the development of geophysical-hybrid PM2.5 esti
mates. The SeaWiFS (Sea-viewing Wide Field-of-View Sensor) instru
ment flew on the SeaStar satellite and offered high quality 
measurements over its lifetime from 1997 to 2010 (Sayer et al., 2012). 
Twin MODIS (MODerate resolution Imaging Spectroradiometer) in
struments on the Earth Observing System (EOS) satellites Terra and 
Aqua have provided AOD retrievals from several algorithms since 2000 
and 2002 respectively, while the MISR (Multi-angle Imaging Spectror
adiometer) instrument also on board Terra has provided retrievals since 
2000. The Terra and Aqua satellites were designed to only have lifetimes 
of 5 years and 6 years respectively, and both are now drifting from their 
normal orbits and are scheduled to be fully shutdown by 2025 or 2026 
(Sawyer et al., 2020). The continuation of the EOS-era satellite AOD 
record, and hence geophysical-hybrid PM2.5 estimates, depends on 
having a suitable replacement. 

In late 2011, the Suomi National Polar-orbiting Partnership (S-NPP) 
satellite was launched carrying the Visible Infrared Imaging Radiometer 
Suite (VIIRS) instrument. The NOAA20 platform, carrying another VIIRS 
instrument, was launched in late 2017 and more are planned to launch 
and fly over the decades to come. VIIRS was designed to have similar 
capabilities to MODIS. However, there are issues which cause differ
ences between retrievals from the two instruments:  

1) Calibration: Even two identical instruments will have differences in 
calibration and changes in performance over time; for example, this 
has historically caused offsets and differential trending in retrievals 
from the two MODIS sensors (e.g. Lyapustin et al., 2014; Sawyer 
et al., 2020; Sayer et al., 2019). At present, there is a considerable 
calibration difference among MODIS Aqua, SNPP VIIRS, and NOAA- 
20 VIIRS sensors (e.g Xiong et al., 2020).  

2) Retrieval processes: There are a few key differences that complicate 
obtaining a consistent retrieval between VIIRS and MODIS, including 
differences in spectral bands and field-of-view (Hsu et al., 2019; 
Sawyer et al., 2020; Sayer et al., 2019). Differences in individual 
retrieval algorithms will also contribute. For example, the VIIRS 
Deep Blue V1 algorithm includes updates to the aerosol and surface 
models used in the retrieval that did not make it into the release of 
MODIS C6.1 Deep Blue (Sayer et al., 2019), as NASA’s reprocessing 
schedules for the missions are not synchronized. The differences in 
spectral bands between VIIRS and MODIS results in a difference in 
the cloud mask used in VIIRS Dark Target vs MODIS C6.1 Dark Target 
(Sawyer et al., 2020).  

3) Sampling: VIIRS has a larger swath width than MODIS, resulting in 
no data gaps at equatorial regions and twice or more sampling per 
day at middle to high latitudes (Hsu et al., 2019). 

Despite these challenges the MODIS Dark Target and Deep Blue AOD 
retrieval algorithms have been successfully ported to process VIIRS S- 
NPP measurements (Hsu et al., 2019; Sayer et al., 2019; Sawyer et al., 
2020), and processing of NOAA-20 data is in progress. Further, the 
MODIS MAIAC (Multi-Angle Implementation of Atmospheric Correc
tion) algorithm for VIIRS is at the stage of operational integration and 
testing, with operational processing of both VIIRS SNPP and NOAA-20 
records expected to start later in 2023. Although the VIIRS S-NPP and 
MODIS timeseries for both Dark Target and Deep Blue show overall 
consistent spatial and temporal patterns (Hsu et al., 2019; Sawyer et al., 
2020; Sayer et al., 2019), comparisons between the AOD retrievals 
processed with Dark Target and Deep Blue for VIIRS and MODIS have 
shown some inevitable differences, partly influenced by factors 
mentioned above. Spatially the Dark Target VIIRS S-NPP AOD data 
exhibit an overall small positive offset almost everywhere compared to 
MODIS Aqua (average + 0.03 for 2015), however the offset is not 
consistent and varies seasonally, regionally, and by wavelength (Sawyer 
et al., 2020). Deep Blue AOD from VIIRS S-NPP compared to MODIS 
shows the largest spatial differences as positive offsets over the Sahara, 

Arabian Peninsula, Central Africa, Indo-Gangetic Plain, and Taklamakan 
Desert, due to the corresponding updates to aerosol and surface models 
that were implemented in the VIIRS S-NPP Deep Blue algorithm but 
have not yet made it into the MODIS Deep Blue algorithm (Sayer et al., 
2019). The offset between the Dark Target VIIRS S-NPP time-series and 
MODIS Aqua is smaller than that between MODIS Terra and Aqua 
(Sawyer et al., 2020). The effects of these AOD differences on the PM2.5 
record warrants attention. 

In this work we examine the impact of the addition or loss of satellite 
AOD data sources on global geophysical-hybrid PM2.5 estimation, and 
how transitioning from MODIS to VIIRS S-NPP products will affect the 
long-term record. We consider various scenarios where we add or 
remove sources to assess their importance for overall consistency in the 
long-term PM2.5 record. We examine both the geophysical (calculated 
from satellite AOD and simulation) and hybrid (after calibration with 
ground monitor data) PM2.5 estimates to examine how statistical fusion 
with ground monitors may help overcome differences due to the addi
tion and removal of satellite AOD sources. 

2. Methods 

2.1. Satellite AOD data sources 

Table S1 provides a summary of all satellite AOD sources used in our 
analysis. We use AOD retrieved from measurements of five satellite in
struments: twin MODIS instruments, MISR, SeaWiFS, and VIIRS S-NPP. 

The twin MODIS instruments have flown on the Terra and Aqua 
satellites since 2000 and 2002 respectively. Terra has an equator 
crossing time of 10:30 local time and Aqua has a crossing time of 13:30. 
Both MODIS instruments have spectral ranges of 0.41 μm to 14.5 μm and 
swath widths of 2330 km allowing for near-daily global coverage at the 
Equator and overlap of consecutive orbits at mid- and high-latitudes. We 
use AOD retrieved from three retrieval algorithms that process MODIS 
measured radiances: the current Collection 6.1 (C6.1) Dark Target (DT) 
and Deep Blue (DB) algorithms, and MAIAC. 

The C6.1 DT retrieval algorithm (Gupta et al., 2016) performs a 
simultaneous inversion of two visible (0.47 μm and 0.66 μm) and one 
shortwave IR (2.12 μm) channel to retrieve AOD over dark surfaces (i.e. 
vegetated land surfaces and dark soils). The C6.1 Dark Target algorithm 
includes an improved surface reflectance scheme to improve biases over 
urban areas, as city surfaces do not behave as a “dark” vegetated target 
(Gupta et al., 2016). The C6.1 DB retrieval algorithm (Hsu et al., 2019) 
uses blue wavelength measurements at 0.41 μm where the surface 
reflectance over land tends to be much lower than at longer wavelengths 
(typically desert surfaces). Like DT, DB also uses visible bands over 
vegetation, allowing for the retrieval of aerosol properties over both 
bright and dark surfaces. The MODIS C6.1 algorithm includes a new 
smoke mask that was developed based on the spectral curvature of 
measured reflectance to distinguish biomass burning smoke from 
weakly absorbing urban/industrial aerosols (Hsu et al., 2019). MODIS 
C6.1 DB and DT are both reported at a wavelength of 550 nm and a 
spatial resolution of 10 km at nadir. 

The MAIAC C6 algorithm (Lyapustin et al., 2018) retrieves aerosol 
information at 470 nm over both bright and dark land surfaces simul
taneously with surface bidirectional reflectance using time-series anal
ysis of MODIS L1B data for up to 16 days. The prior knowledge of surface 
properties helps to overcome the empirical assumptions in other stan
dard algorithms. MAIAC C6 processes the MODIS Terra and Aqua sen
sors jointly, which significantly increases the observation frequency 
required for accurate surface characterization. MAIAC C6 includes 
improved aerosol retrieval over bright deserts, improved cloud and 
snow mask, added aerosol retrievals and atmospheric correction over 
inland, coastal, and open ocean water, and has undergone considerable 
changes for global application (Martins et al., 2017). MAIAC provides 
AOD at a fine spatial resolution of 1 km globally over the land and 
coastal ocean for the entire MODIS record. The MAIAC AOD from VIIRS 
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will have spatial resolution of 750 m. 
The MISR instrument is onboard the Terra satellite alongside MODIS. 

MISR observes the earth at nine different viewing angles and four 
spectral bands (446, 558, 672, and 866 nm) with a swath of 380 km that 
provides global coverage about once per week, every nine days at the 
equator and up to every two days near the poles (Diner et al., 1998). The 
MISR v23 (Garay et al., 2017, 2020) retrieval algorithm uses same-scene 
multi-angle views provided by the nine cameras to solve for surface and 
top-of-atmosphere reflectance contributions, providing AOD retrievals 
over bright and dark land surfaces without absolute surface reflectance 
assumptions (Martonchik et al., 2009). MISR retrievals use multiple 
aerosol models with different refractive index, particle size and shape 
(nonsphericity), allowing for retrieval of aerosol size and type in many 
conditions. MISRv23 reports AOD at 550 nm at a spatial resolution of 
4.4 km. 

The SeaWiFS instrument flew on the SeaStar satellite which had a 
noon overpass time and was operational between 1997 and 2010. Sea
WiFS maintained highly accurate and stable calibration over its lifetime 
(Sayer et al., 2012). SeaWiFS provided measurements in eight spectral 
bands between 412 and 885 nm and had a 1500 km swath width that 
provided nearly daily global coverage. We use AOD retrieved from the 
version 4 SeaWiFS Deep Blue (Sayer et al., 2012) dataset that offers AOD 
at a wavelength of 550 nm and a spatial resolution of 13.5 km. 

Two VIIRS instruments are currently in orbit, aboard the S-NPP since 
2011 and the Joint Polar Satellite System-1 (JPSS-1: in operation as 
NOAA-20) since 2017. VIIRS NOAA-20 AOD data were not accessible to 
us at the time of this work, so we consider only the VIIRS S-NPP data. 

The S-NPP satellite has an overpass time of ~13:30, similar to Aqua, 
however the two satellites orbit at different altitudes (824 km for VIIRS 
S-NPP, 750 km for MODIS Aqua). The VIIRS instrument was designed to 
have similar capabilities as MODIS in terms of spectral channels and 
spatial coverage; however, there are some key differences, such as 
slightly different center wavelengths, the larger swath width (3040 km 
vs 2330 km) of VIIRS, and the finer DT and DB product resolution at 
nadir (6 km vs 10 km) of VIIRS. On-board detector aggregation of VIIRS 
reduces the “bow-tie” distortion (pixels away from nadir views become 
larger and consecutive scans begin to overlap) that exist in MODIS re
trievals, despite the broader swath width of VIIRS (Wolfe et al., 2013). 
We use AOD from two retrieval algorithms processing VIIRS measured 
radiances: Dark Target and VIIRS Deep Blue V1. Both algorithms were 
ported to process VIIRS radiances by the teams behind their MODIS 
counterparts. As a result, both algorithms are conceptually the same as 
the MODIS C6.1 versions. The differences in spectral bands between 
VIIRS and MODIS leads to a slight difference in the bands used for both 
the MODIS C6.1 Dark Target and C6.1 Deep Blue algorithms, and results 
in a difference in the cloud mask used in VIIRS Dark Target vs MODIS 
C6.1 Dark Target. The VIIRS Deep Blue V1 algorithm includes updates to 
the aerosol and surface models used in the retrieval that did not make it 
into the release of MODIS C6.1 Deep Blue (Sayer et al., 2019). 

2.2. GEOS-Chem simulation 

We use the GEOS-Chem chemical transport model originally 
described by Bey et al. (2001), v11–01 as a data source for AOD and to 
represent the relationship of surface PM2.5 to total column AOD 
(described in section 2.3). A detailed description of the simulation is 
given in Hammer et al. (2020). The GEOS-Chem model solves for the 
evolution of atmospheric aerosols and gases using a detailed oxidant- 
aerosol chemical mechanism, emission inventories, and assimilated 
meteorological data. The assimilated meteorological data are from the 
Modern-Era Retrospective analysis for Research and Applications, 
Version 2 (MERRA-2) Reanalysis of the NASA Global Modeling and 
Assimilation Office (Gelaro et al., 2017). We conduct our simulations for 
1998–2019. We use the global spatial resolution of 2◦ × 2.5◦ and the 
nested spatial resolution of 0.5◦ × 0.625◦ over North America, Europe, 
and Asia with 47 vertical layers. The top of the lowest model layer is 

~100 m. Regional anthropogenic emission inventories of aerosols and 
their precursors are used over the United States [EPA/NEI11 (Travis 
et al., 2016)], Canada (CAC; http://www.ec.gc.ca/pdb/cac/), Mexico 
[BRAVO (Kuhns et al., 2005)], Europe (EMEP; http://www.emep.int/), 
China [MEIC (Li et al., 2017)], India (Lu et al., 2011), and elsewhere in 
Asia [MIX (Li et al., 2017)]. 

2.3. Algorithm for estimating PM2.5 concentrations from satellites, 
simulation, and ground monitors (V4.GL.03) 

We follow the V4.GL.03 algorithm from Hammer et al. (2020) for 
calculating the geophysical and geophysical-hybrid (denoted hybrid) 
PM2.5 estimates and summarize the algorithm here. The resulting esti
mates are produced for 1998 to 2019 at a spatial resolution of 5 km for 
the geophysical PM2.5 estimates and 1 km for the hybrid estimates. 

2.3.1. Geophysical PM2.5 estimates 
We first combine the satellite AOD products, and for this work 

consider several different scenarios where satellite AOD sources were 
either included or excluded (described in Section 3). The various satel
lite AOD sources are combined based on their relative uncertainties with 
the global sun photometer network Aerosol Robotic NETwork (AERO
NET) V3 (Giles et al., 2019), which provides AOD measurements with 
high accuracy (uncertainty <0.02). Simulated AOD from GEOS-Chem is 
also used as an additional AOD source; however, its contributions are 
mostly over snow- and ice-covered northern regions where and when 
satellite retrievals are sparse. Hammer et al. (2020) found that satellite 
retrievals comprised 81% of the population-weighted AOD contribution 
for 1998 to 2018. The different sources of error associated with satellite 
and simulated AOD require care in accounting for their relative un
certainties. Briefly, one of the main sources of uncertainty associated 
with satellite retrieved AOD is the surface treatment used in the 
retrieval, which we assess by comparison with AERONET as a function 
of land type. For the simulated AOD, to account for errors due to species- 
specific emissions and assumed aerosol microphysical properties, we 
calculate the relative uncertainty based on the simulated fractional 
aerosol composition applied to each daily AERONET observation 
following van Donkelaar et al. (2016). 

To estimate surface concentrations of PM2.5 (PM2.5,SAT) from satellite 
AOD (AODSAT), we use the local, coincident ratio (η) of simulated sur
face PM2.5 concentrations (PM2.5,SIM) to simulated total column AOD 
(AODSIM): 

PM2.5 = η x AODSAT (1)  

where 

η =
PM2.5,SIM

AODSIM
(2)  

η is a function of the factors that relate PM2.5 mass to satellite AOD (e.g., 
aerosol size, aerosol composition, diel variation, relative humidity, and 
the vertical structure of aerosol extinction (van Donkelaar et al., 2006). 
To account for differences in temporal sampling of the AOD data sour
ces, we calculate daily values of η as the ratio of 24-h surface PM2.5 at a 
relative humidity of 35%, to total-column AOD at ambient relative hu
midity sampled at satellite overpass time. We address the sampling 
limitations of satellite AOD in the presence of snow or cloud cover by 
using GEOS-Chem to scale the satellite AOD by the ratio of simulated 
monthly mean AOD to simulated AOD coincident with satellite AOD as 
described in Hammer et al. (2021). 

2.3.2. Geophysical-hybrid (denoted “hybrid”) PM2.5 estimates 
We use geographically weighted regression (GWR) (Brunsdon et al., 

1998; Fotheringham et al., 1998) to predict and account for the bias in 
the annual mean geophysical PM2.5 estimates as described by van 
Donkelaar et al. (2016). GWR is an extension of least-squares regression 
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that allows predictor coefficients to vary spatially by weighting the es
timate- observation pairs at multiple geographic locations according to 
their inverse squared distance from individual observation sites. The 
GWR is conducted at a 1-km resolution to calibrate annual predictor 
coefficients based on comparison with coincident ground monitor ob
servations. We use monitor-specific ground-based measurements of 
PM2.5 from an updated version of the WHO Global Ambient Air Quality 
Database (World Health Organization, 2018). This database consoli
dates observations provided by, and according to the standards of, 
numerous national, regional and international agencies. These include 
agencies and networks operating in countries around the world, as well 
as data provided by the European Environment Agency, the Surface 
Particulate Matter Network (SPARTAN) network, globally installed 
embassy-based monitors operated by the United States Environmental 
Protection Agency, Clean Air Asia, OpenAQ, among others. The pre
dictors used in the GWR calculation are the log of the elevation differ
ence between the local elevation and the mean elevation within the 
simulation grid cell, the inverse distance to the nearest urban land sur
face, and the simulated relative contributions of mineral dust and the 
sum of sulfate, nitrate, ammonium, and organic carbon. The bias pre
dicted by the GWR is used to adjust the geophysical PM2.5 estimates to 
produce the hybrid PM2.5 estimates. 

2.3.3. Analysis scenarios adding and removing satellite AOD sources from 
geophysical-hybrid PM2.5 

Table 1 contains the scenarios where satellite AOD sources are added 
or removed to analyze the impact on geophysical and hybrid PM2.5 es
timates. Hammer et al. (2020) found that MODIS MAIAC made the 
largest contribution overall to hybrid PM2.5 estimates, but as VIIRS S- 
NPP MAIAC is not yet available, we do not include MODIS MAIAC in our 
main analysis. A separate analysis including MODIS MAIAC is in the 
Appendix. Table A1 describes the scenarios when including MAIAC. 

Each scenario is calculated following the algorithm described in 
Section 2.3. The “Base” scenario uses the Hammer et al. (2020) V4.GL.03 
algorithm excluding MAIAC. The scenario denoted “wVIIRS” adds the 
VIIRS S-NPP Dark Target and Deep Blue products to the Base scenario for 
the VIIRS record (for 2012-onward). The other scenarios are designed to 
examine the impact on geophysical and hybrid PM2.5 estimates as more 
sources are removed until only the VIIRS and GEOS-Chem AOD remain. 
The wVIIRS_noMODISDBDT scenario is based on wVIIRS, but MODIS 
Deep Blue and Dark Target for both Terra and Aqua are removed from 
2012-onward. The wVIIRS_noMODISTerra scenario is based on wVIIRS, 
but all MODIS Terra products (Deep Blue and Dark Target from just 
Terra) are removed from 2012-onward. The wVIIRS_noTerra scenario is 
the same as wVIIRS, but MODIS Terra and MISR are removed from 2012- 

onward. The wVIIRS_noMODISDBDT, wVIIRS_noMODISTerra, and 
wVIIRS_noTerra scenarios allow examining the relative impacts of loss 
of an instrument, algorithm, or satellite. The justVIIRS scenario only 
includes VIIRS S-NPP Dark Target and Deep Blue for 2012-onward. 

3. Results and discussion 

3.1. Impact of satellite AOD source addition and removal on geophysical 
PM2.5 

The top panel of Fig. 1 shows the Base scenario 2012 to 2019 mean 
geophysical PM2.5, whereas the top panel of Fig. A1 shows the same but 
when including MAIAC. Most of the world exhibits mean concentrations 
between 5 and 30 μg/m3, but there are elevated concentrations between 
50 and 90 μg/m3 over parts of China, India, the Middle-East and 
northern Africa. The geophysical 2012 to 2019 mean values are very 
similar for the case when including MAIAC (Fig. A1). 

Fig. 2 shows the absolute differences between the 2012 to 2019 mean 
geophysical PM2.5 concentrations for each scenario in Table 1 and the 
Base scenario (top panel of Fig. 1). Fig. S1 shows the same but in percent 
difference, which exhibit similar spatial patterns as Fig. 2. Fig. S2 shows 
the absolute differences for combined AOD. PM2.5 concentrations 
exhibit increases between 5 and 20 μg/m3 over most desert regions and 
decreases between − 20 and − 5 μg/m3 over parts of China, India, and 
Iran. For each scenario, the patterns of geophysical PM2.5 change and of 
combined AOD change with respect to the Base scenario are similar to 
one another (Pearson’s correlation coefficient r = 0.77 to 0.86). Most 
differences in AOD and PM2.5 occur in regions with sparse AERONET 
coverage, which explains why the bias correction in our algorithm for 
combining each separate AOD source (which is calculated based on the 
uncertainty compared to AERONET) does not eliminate all differences 
when sources are added or removed. Increases in annual PM2.5 between 
10 and 20 μg/m3 are apparent over Indonesia, despite decreases in 
annual combined AOD (Fig. S2). Figs. S3 and S4 show the absolute 
differences for geophysical PM2.5 and combined AOD respectively 
zoomed in for Indonesia. These conflicting differences reflect the 
increased AOD, η, and PM2.5 during months with biomass burning that 
drive the annual mean PM2.5 in the region. Peat fires in Indonesia occur 
later in the year, and the strength of the fires is influenced by years with 
particularly strong El Niño (Sayer et al., 2019). 

The magnitude of differences in PM2.5 in Fig. 2 is smallest for 
wVIIRS-Base and largest for justVIIRS-Base. The wVIIRS_noMODISTerra 
and wVIIRS_noTerra differences are very similar (global r = 0.95, RMSD 
= 1.03 μg/m3). The wVIIRS_noMODISDBDT-Base and justVIIRS-Base 
are similar (global r = 0.88, RMSD = 1.03 μg/m3). The larger differ
ences for the latter case (two-sample Kolmogorov-Smirnov test, p <
0.05) indicate that the loss of MODIS products in general has a larger 
impact than the loss of a single satellite or algorithm. 

Fig. A2 shows the same as Fig. 2 but for the analysis when including 
MAIAC AOD in the scenarios. The spatial pattern of differences is similar 
to the no MAIAC scenarios (global r = 0.80 to 0.89, RMSD = 1.5 to 1.7 
μg/m3), however the decreases in PM2.5 over China and India are further 
emphasized by changes whether MAIAC is included or excluded. 

Fig. S5 shows the mean contribution of each AOD data source to the 
wVIIRS scenario for 2012 to 2019 to aid in the interpretation of Fig. 2. 
The increases over desert regions correspond to regions where VIIRS 
Deep Blue and MODIS Deep Blue have the highest weightings of all 
sources. The decreases over China, India, and Iran correspond to regions 
where VIIRS Deep Blue has the highest weightings. Simulated weight
ings are higher in Fig. S5 than in Hammer et al. (2020) due to the 
exclusion of MAIAC from Fig. S5. 

The differences between satellite AOD products before they are 
incorporated into our algorithm also offer insight into the differences in 
Fig. 2. Fig. 3 shows the absolute differences between the 2012 to 2019 
mean of the VIIRS S-NPP AOD products (SatVIIRS; includes VIIRS Deep 
Blue and Dark Target) and the 2012 to 2019 mean of the AOD products 

Table 1 
The geophysical-hybrid PM2.5 scenarios.  

Scenario Description 

Base Based on V4.GL.03 algorithm: includes MODIS Deep Blue 
and Dark Target from Terra (2000 to 2019) and Aqua 
(2002 to 2019), MISR (2000 to 2019), SeaWiFS (1997 to 
2010) and GEOS-Chem simulated AOD 

wVIIRS Base scenario with the addition of VIIRS Deep Blue and 
Dark Target for the VIIRS record (2012 to 2019) (to 
evaluate the impact of adding VIIRS to the Base Case) 

wVIIRS_noMODISDBDT wVIIRS scenario with the MODIS Deep Blue and Dark 
Target products from both Terra and Aqua removed (to 
evalulate the impact of the loss of retrieval algorithms) 

wVIIRS_noMODISTerra wVIIRS scenario with all MODIS product from Terra 
removed (MODIS Deep Blue and Dark Target) (to evaluate 
the loss of an instrument) 

wVIIRS_noTerra wVIIRS scenario with all Terra products removed (MODIS 
Deep Blue, Dark Target, and MISR) (to evaluate the loss of 
a satellite) 

justVIIRS Scenario including just VIIRS Deep Blue, Dark Target, and 
GEOS-Chem simulated AOD (to evaluate the loss of all 
Terra/Aqua products)  
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used in our Base scenario (SatM; includes MODIS Terra/Aqua Deep Blue 
and Dark Target, and MISR). Fig. S6 shows the same but for percent 
differences, which exhibit similar spatial patterns as Fig. 3 albeit with 
some larger ratios in regions with low AOD such as in Australia. The top 
panel of Fig. 3 shows the differences when all valid pixels are included 
(All valid pixels) and the bottom panel shows the differences when only 
pixels that are coincidently sampled between all sources are included 
(Coincidently sampled). The most notable features are increases in 
SatVIIRS AOD compared to SatM AOD of ~0.2 over desert regions (i.e. 
the Sahara, parts of the Middle-East, parts of Australia, Taklamakan), 
similar to the increases in geophysical PM2.5 seen in Fig. 2. These in
creases are similar irrespective of whether sampling is considered. Sayer 
et al. (2019) evaluated the differences between VIIRS S-NPP Deep Blue 
and the MODIS Deep Blue products and found similar increases which 
were explained by aerosol model and surface treatment updates that 
were included in the VIIRS Deep Blue algorithm but not in the MODIS 
C6.1 Deep Blue algorithm (as the VIIRS algorithm was more recent than 
the C6.1 MODIS reprocessing). Specifically, new nonspherical dust op
tical models (Lee et al., 2017) were introduced in the V1 VIIRS Deep 
Blue to improve AOD retrievals over deserts including the Sahara, 
Arabian Peninsula, and Taklamakan desert. The dust models generally 
resulted in higher AOD, as depicted in Fig. 3. The increases over the Thar 
desert and part of Australia were found to be partly due to slight dif
ferences in surface treatment as well. As the increases in AOD were more 
than intended, the Deep Blue team has made further improvements in 

both dust optical models and surface reflectances in the V2 algorithm, 
which will decrease the gap between MODIS and VIIRS, while main
taining better observation geometry dependence of dust AOD resulting 
from more realistic representation of nonspherical dust. These algo
rithmic differences correspond to the increases observed over desert 
regions in Fig. 2. 

In the “All valid pixels” case of Fig. 3 there are decreases between 
− 0.1 and − 0.05 over parts of China, the Indo-Gangetic Plain, Indonesia, 
Iran, and central Africa that are not apparent in the coincidently 
sampled case indicating the role of sampling differences between the 
instruments and algorithms in contributing to differences in Fig. 2. The 
decrease in AOD over Indonesia in the “All valid pixels case” demon
strates that the decrease in combined AOD over the region in Fig. S2 is at 
least partially due to sampling. There are small increases (<0.05) over 
Canada and northern Brazil that are smaller in magnitude for the coin
cidently sampled case, that are not apparent in the geophysical PM2.5 
differences in Fig. 2. Sampling plays a larger role in areas affected by 
pronounced temporal differences (such as Canada, Brazil, and 
Indonesia). Fig. A3 shows the same as Fig. 3 but includes MAIAC AOD in 
SatM. The spatial pattern of differences is similar; however, including 
MAIAC causes sampling differences that partially mask the increases 
between VIIRS Deep Blue and MODIS C6.1 Deep Blue AOD over deserts 
and causes decreases between − 0.15 and − 0.05 over many parts of the 
world. 

Fig. 4 shows scatterplots of geophysical PM2.5 for each scenario from 

Fig. 1. The Base scenario mean PM2.5 concentrations for 2012 to 2019. The top panel shows the geophysical values while the bottom panel shows the hybrid values. 
Grey indicates missing data or water. 
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Table 1 vs ground monitor data. All scenarios have similar coefficients of 
determination (R2 = 0.79 to 0.81). Introducing the VIIRS products 
slightly improves correlation compared to the Base scenario, but also 
decreases the slope, with the slope further decreasing as sources are 
removed. The decreases in slope reflect the decreases over China 
apparent in Fig. 2, driven by sampling differences of valid retrievals 
using current algorithms as evident in Fig. 3. Fig. S7 shows a comparison 
of the combined AOD for each scenario and AERONET AOD, giving 
similar agreement as Fig. 4 (R2 = 0.76 to 0.80). Fig. A4 shows similar 
comparisons to Fig. 4 but including MAIAC AOD in the scenarios. 
Including MAIAC increases the slopes for the scenarios that include 
MAIAC indicating the value of MAIAC AOD for PM2.5 estimates at high 
concentrations. 

3.2. Impacts of source addition and removal on trends in geophysical 
PM2.5 

We examine how the addition or removal of satellite sources affects 
trends or discontinuities. Fig. 5 shows the 1998–2019 trends in 
geophysical PM2.5 for the Base scenario, the wVIIRS scenario, and the 
justVIIRS scenario. We show trends over the 1998 to 2019 period to 
demonstrate the impacts of source addition and removal on the entire 
record of our PM2.5 datasets. The spatial pattern of trends is broadly 
similar between scenarios, with the most noticeable difference being 
statistically significant (p-value <0.05) positive trends (1.0 to 1.5 μg 
m− 3 yr− 1) that appear over the Sahara in the wVIIRS and justVIIRS 
scenarios. There are also statistically significant positive trends (<0.25 
μg m− 3 yr− 1) that appear over Australia most noticeably in the justVIIRS 
scenario. All three scenarios show statistically significant negative 
trends over the eastern United States (− 0.5 to − 0.25 μg m− 3 yr− 1), Brazil 
(− 0.1 to − 0.25 μg m− 3 yr− 1), Europe (− 0.5 to − 0.25 μg m− 3 yr− 1), and 

central China (< − 1.5 μg m− 3 yr− 1), and statistically significant positive 
trends over Saudi Arabia, Yemen, and Oman (1 to 1.5 μg m− 3 yr− 1), 
India (0.5 to 1.5 μg m− 3 yr− 1), and the Taklamakan Desert (1.0 to 1.5 μg 
m− 3 yr− 1). 

Fig. 6 shows the 1998 to 2019 population-weighted timeseries for 
each scenario from Table 1 for each of the six regions outlined with black 
boxes in the top panel of Fig. 5. Population estimates are from the 
Gridded Population of the World (GPW v4) database (CIESIN (Center for 
International Earth Science Information Network), 2017). Population- 
weighted mean PM2.5 values are calculated as a weighted average 
weighted by the population estimates for the same year. The timeseries 
generally maintain consistency between scenarios in all regions. The 
largest variations are in the timeseries for the SAH (Sahara and Middle 
East) region. The larger within-region variability in Fig. 5 than in the 
timeseries of Fig. 6 reflects that Fig. 6 represents population-weighted 
averages over the domain. Table 2 shows the mean offset between the 
2012 to 2019 regional timeseries for each scenario and the Base sce
nario. Overall the variation in magnitude of offsets between scenarios is 
small, ranging between − 10.28% and 1.86% of local 2012 to 2019 mean 
Base scenario values, with differences related to algorithmic changes as 
described above. 

Table 3 shows the population-weighted 1998 to 2019 trend slopes 
with standard error for each scenario and region. The trends across 
scenarios show mostly small variations that are within the standard 
error values for most regions. 

3.3. Impact of satellite AOD source addition and removal on hybrid PM2.5 

The bottom panel of Fig. 1 shows the Base scenario 2012 to 2019 
mean hybrid PM2.5, while the bottom panel of Fig. A1 shows the same 
but when including MAIAC. The mean hybrid PM2.5 concentrations are 

Fig. 2. The difference in the 2012 to 2019 mean geophysical PM2.5 concentrations (μg/m3) between each scenario from Table 1 and the Base scenario. Grey indicates 
missing data or water. 
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similar to the geophysical, with further enhancements of concentrations 
over parts of China, India, and the Sahara, that are very similar when 
including MAIAC (Fig. A1). The particularly high enhancements over 
northern Africa and India are due mainly to predicted increases in 
mineral dust (Hammer et al., 2020). 

Fig. 7 shows the absolute differences between the 2012 to 2019 mean 
hybrid PM2.5 concentrations for each scenario in Table 1 and the Base 
scenario. Fig. S8 shows corresponding percent differences. The inclusion 
of the bias predicted by GWR eliminates the decreases over China and 
India apparent for the geophysical PM2.5 (Fig. 2), although it introduces 
some increases between 5 and 20 μg/m3 over central China. The hybrid 
estimates also exhibit further increases over most desert regions and 
further decreases over Iran. These results suggest the GWR correction 
helps to overcome some of the biases due to sampling differences when 
adding and removing satellite sources, however the exacerbated dif
ferences over desert regions reflect uncertainty in the GWR correction in 
regions with sparse monitoring. Improving the accuracy of the GWR 
correction in areas with sparse monitoring is an ongoing effort in our 
development of satellite-derived PM2.5 algorithms. The effects of 
different scenarios resemble Fig. 2 in that the smallest changes are for 
wVIIRS-Base and largest for justVIIRS-Base. 

Fig. 8 shows scatterplots of hybrid PM2.5 for each scenario from 
Table 1 and ground monitor data. The scatterplots show 10-fold out-of- 
sample 10% cross validation at sites that were not used in the GWR 
regression. The coefficients of determination are high for all scenarios 
(R2 = 0.91 to 0.92) and all scenarios exhibit similar slopes (ranging from 
1.00 to 1.02) and similar levels of scatter, indicating the combination of 
geophysical estimates and statistical fusion with ground monitors leads 
to overall accuracy and precision that is robust to AOD source addition 
and removal. 

4. Conclusions 

The ability to sustain accurate global satellite-derived PM2.5 esti
mates requires assessment of how the estimates respond to discontinu
ities in the input satellite AOD sources. This work examines the impact of 
the addition or loss of satellite AOD sources on geophysical-hybrid PM2.5 
estimation and the impact of continuing the long-term record with AOD 
from VIIRS after the loss of the MODIS and MISR instruments on board 
the Terra and Aqua satellites, which is expected in the next few years. 

We find that the addition of VIIRS S-NPP Dark Target and Deep Blue 
AOD products causes an overall increase between 5 and 20 μg/m3 in 
geophysical PM2.5 over desert regions, an increase between 10 and 20 
μg/m3 over Indonesia, and a decrease between − 20 and − 5 μg/m3 over 
parts of China, India, and Iran. The increases in PM2.5 over desert regions 
correspond to differences in the VIIRS and MODIS Deep Blue AOD al
gorithms noted in earlier work while the decreases over China, India, 
and Iran reflect sampling differences. The loss of the MODIS products in 
general has a larger impact than the loss of a single satellite or algorithm. 

We find overall consistency in the spatial distribution of long-term 
trends between scenarios, and no obvious discontinuities or in
consistencies in the regional timeseries. The variation in magnitude of 
offsets between scenarios is small and within a small percentage of local 
mean Base scenario values. 

Statistical fusion with ground monitor data helps to overcome some 
of the biases due to sampling differences when adding and removing 
satellite sources, particularly over China and India. However, differ
ences over desert regions are exacerbated, reflecting the uncertainty in 
the GWR correction for regions with sparse monitoring. Improving our 
understanding and resolving some of the discrepancies between satellite 
retrievals in such regions is important due to the lack of ground monitor 
coverage. Overall the slopes (1.00 to 1.02) and coefficients of determi
nation (R2 = 0.91 to 0.92) of the hybrid estimates versus ground-based 

Fig. 3. Difference between the mean SatVIIRS AOD 
and the mean SatM AOD for 2012 to 2019. The Sat
VIIRS AOD includes VIIRS S-NPP Dark Target and 
Deep Blue, while SatM AOD includes MODIS Deep 
Blue and Dark Target from both Terra and Aqua, and 
MISR. For the top panel the means were calculated for 
all valid pixels and for the bottom panel the means 
only include coincidently sampled pixels between all 
products. Grey indicates missing data or water. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the web version of 
this article.)   
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Fig. 4. Annual mean geophysical PM2.5 concentrations for each scenario from Table 1 for 2015 versus collocated annual mean in situ values for 2015. Included on 
the plots are the coefficient of determination (R2), the normal distribution of uncertainty (N(bias, variance)), the line of best fit (y) using reduced major axis linear 
regression, and the number of comparison points (N). The color scale indicates the number density of observations at each point. 
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monitors remain consistent across all scenarios indicating that the 
overall accuracy and precision of the hybrid estimates is robust to 
changes in satellite AOD sources. 

In support of the upcoming MODIS Collection 7 reprocessing, the 
effort of backporting VIIRS DB algorithm to MODIS is already underway. 
This will significantly improve the DB AOD consistency between MODIS 
and VIIRS over desert regions. The forthcoming VIIRS V2 Deep Blue 
dataset as well as the VIIRS MAIAC dataset have the potential to further 
reduce differences in geophysical-hybrid estimates compared to using 
AOD products from Terra and Aqua, provided the AOD algorithms 
applied to VIIRS are also applied to MODIS. This work offers promise for 
the continued development of a consistent, long-term geophysical- 
hybrid PM2.5 dataset into the future using AOD products from VIIRS. 
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Fig. 5. Trends in geophysical PM2.5 concentrations for 1998 to 2019 calculated from the generalized least-squares regression of monthly time series, for the Base 
scenario, the wVIIRS scenario, and the justVIIRS scenario. Warm colors indicate positive trends, cool colors indicate negative trends, and the opacity of the colors 
provides a measure of the statistical significance of the trends. Grey denotes water. Boxes indicate areas featured for regional analysis in Fig. 6. 
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Fig. 6. Regional mean population-weighted PM2.5 concentration (μg m− 3) 1998 to 2019 timeseries for each scenario from Table 1 for the eastern United States (US), 
China (CH), Europe (EU), India (IND), Sahara + Middle East (SAH), and northern South America (SA). 

Table 2 
The regional population-weighted mean offset (μg m− 3) between the 2012 to 2019 timeseries for each scenario from Table 1 and the Base scenario timeseries. The 
variation in offsets between scenarios for each region is given as the percentage of the 2012 to 2019 mean Base scenario values (% of local mean).  

Scenario US CH EU IND SAH SA 

wVIIRS − 0.05 − 1.32 − 0.02 1.30 0.32 0.54 
wVIIRS_NoMODISDBDT − 0.70 − 9.13 − 0.35 − 3.89 − 0.30 0.35 
wVIIRS_NoMODISTerra − 0.81 − 7.78 − 0.46 − 4.53 0.14 0.08 
wVIIRS_NoTerra − 0.87 − 7.59 − 0.38 − 4.71 0.90 0.09 
JustVIIRS − 0.72 − 7.79 − 0.17 − 3.87 1.40 0.48 
% local mean − 6.34% − 10.28% − 2.49% − 4.76% 1.68% 1.86%  

Table 3 
The regional population-weighted 1998 to 2019 trend slope ± standard error (μg m− 3 yr− 1) for each scenario from Table 1.  

Scenario US CH EU IND SAH SA 

Base − 0.43 ± 0.03 − 0.17 ± 0.63 − 0.29 ± 0.03 0.98 ± 0.23 0.05 ± 0.04 − 0.19 ± 0.06 
wVIIRS − 0.44 ± 0.02 − 0.32 ± 0.65 − 0.31 ± 0.05 1.03 ± 0.25 0.08 ± 0.04 − 0.17 ± 0.06 
wVIIRS_NoMODISDBDT − 0.48 ± 0.03 − 0.70 ± 0.74 − 0.32 ± 0.03 0.75 ± 0.27 0.05 ± 0.04 − 0.19 ± 0.07 
wVIIRS_NoMODISTerra − 0.49 ± 0.04 − 0.61 ± 0.71 − 0.32 ± 0.03 0.72 ± 0.25 0.07 ± 0.04 − 0.20 ± 0.06 
wVIIRS_NoTerra − 0.49 ± 0.04 − 0.60 ± 0.71 − 0.32 ± 0.03 0.71 ± 0.25 0.11 ± 0.05 − 0.20 ± 0.06 
JustVIIRS − 0.48 ± 0.03 − 0.68 ± 0.75 − 0.32 ± 0.05 0.74 ± 0.28 0.14 ± 0.06 − 0.20 ± 0.07  
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Data availability 

Data will be made available on request.  

Appendix A. Appendix  

Table A1 
The geophysical-hybrid PM2.5 scenarios when including MAIAC.  

Scenario Description 

Basem V4.GL.03 algorithm: includes MODIS Deep Blue and Dark Target from Terra (2000 to 2019) and Aqua (2002 to 2019), MODIS MAIAC (2000 to 2019), 
MISR (2000 to 2019), Sea WiFS (1997 to 2010) and GEOS-Chem simulated AOD (1998 to 2019). 

wVIIRSm Base scenario with the addition of VIIRS Deep Blue and Dark Target for the VIIRS record (2012 to 2019) 
wVIIRSm_noMODISDBDT wVIIRS scenario with the MODIS Deep Blue and Dark Target products from both Terra and Aqua removed 
wVIIRS_noMODISTerra wVIIRS scenario with all MODIS product from Terra removed (MODIS Deep, Dark Target, and MAIAC) 
wVIIRS_noTerra wVIIRS scenario with all Terra products removed (MODIS Deep Blue, Dark Target, MAIAC, and MISR) 
justVIIRS Scenario including just VIIRS Deep Blue, Dark Target, and GEOS-Chem simulated AOD   

Fig. 7. The difference between the 2012 to 2019 mean hybrid PM2.5 concentrations (μg/m3) for each scenario from Table 1 and the Base scenario. Grey indicates 
missing data or water. 
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Fig. 8. Annual mean hybrid PM2.5 concentrations for 
each scenario from Table 1 for 2015 versus collocated 
annual mean in situ values for 2015. The comparison 
was conducted using 10-fold out-of-sample 10% cross 
validation at sites that were not used in the GWR 
regression. Included on the plots are the coefficient of 
determination (R2), the normal distribution of un
certainty (N(bias, variance)), the line of best fit (y) 
using reduced major axis linear regression, and the 
number of comparison points (N). The color scale 
indicates the number density of observations at each 
point.   
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Fig. A1. The Base scenario (including MAIAC) mean PM2.5 concentrations for 2012 to 2019. The top panel shows the geophysical values while the bottom panel 
shows the hybrid values. Grey indicates missing data or water.    
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Fig. A2. The difference between the 2012 to 2019 mean geophysical PM2.5 concentrations (μg/m3) for each scenario from Table S2 and the Base scenario. Grey 
indicates missing data or water.  
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Fig. A3. Difference between the mean SatVIIRS AOD and the mean SatMwMAIAC AOD for 2012 to 2019. The SatVIIRS AOD includes VIIRS S-NPP Dark Target and 
Deep Blue, while SatMwMAIAC AOD includes MODIS Deep Blue and Dark Target from both Terra and Aqua, MISR, and MODIS MAIAC. For the top plot the means 
were calculated for all valid pixels and for the bottom plot the means only include coincidently sampled pixels between all products. Grey indicates missing data or 
water. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A4. Annual mean geophysical PM2.5 concentrations for each scenario from Table S2 for 2015 versus collocated annual mean in situ values for 2015. Included on 
the plots are the coefficient of determination (R2), the normal distribution of uncertainty (N(bias, variance)), the line of best fit (y) using reduced major axis linear 
regression, and the number of comparison points (N). The color scale indicates the number density of observations at each point. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2023.113624. 
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Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., 
Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., 
Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.-K., 
Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., 
Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B., Gelaro, R., 
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