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CMCs Are Next Generation Aerospace Materials
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Kiser JD, Grady J, Bhatt RT, Wiesner V, Zhu D. Overview of CMC (Ceramic Matrix
Composite) Research at the NASA Glenn Research Center. Proc. Ceram. Expo, 2016.
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CMCs Exhibit High Damage Tolerance

Mechanical properties in extreme
environments:

 Damage tolerant
* High strength
* Thermal stability

* Low density

Safety-critical applications require
trustworthy health monitoring

Health monitoring of CMCs



Damage Mechanism Identification is Critical to Health Monitoring
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Anatomy of the Spectral Model
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Waveforms are Encoded in Frequency Domain
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SiC/SiC composites. Npj Computational Materials, 7(1), 1-10.
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Spectral Clustering Sorts Signals Based on Mechanism
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Muir, C., et al.(2021b). A machine learning framework for damage
mechanism identification from acoustic emissions in unidirectional
SiC/SiC composites. Npj Computational Materials, 7(1), 1-10.
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Need to Ensure Spectral Model is Trustworthy
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3. Establish Extensibility

* Find the space where the model a capable predictor
* Establish procedures for generalization

Brodnik, N. R., Muir, C., Tulshibagwale, N., et al. (2023).
Perspective: Machine learning in experimental solid mechanics.
Journal of the Mechanics and Physics of Solids, 173, 105231.

Kiser JD, Grady J, Bhatt RT, Wiesner V, Zhu D. Overview of
CMC (Ceramic Matrix Composite) Research at the NASA
Glenn Research Center. Proc. Ceram. Expo, 2016.
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Models Are Evaluated With the Adjusted Rand Index
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Pencil Lead Breaks Allow Precise Control of Dissimilarity
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Benchmarking Used to Identify Trustworthy Models
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Model Extensibility Characterized with XCT

* Need to identify limitations of
mechanism identification model
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e X-ray computed tomography (XCT) allows
bulk microstructural observations

e Allows us to correlate specific damage
mechanisms to load-states

Limitations




Sample Loaded Ex-Situ and Transferred to XCT Load Stage
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Sample Loaded Ex-Situ and Transferred to XCT Load Stage
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ML Segmentation Allows Damage ldentification

* Minicomposite is imaged
over 2.5mm length
* Voxel size of 1.16 um

* Matrix and fiber damage is identified

assisted by ML segmentation
* Allows high throughput identification

* Minimum expected crack opening at the

image stress is 1.5-2 um

» Sufficient resolution for identifying
existence/location of damage

Limitations




Fiber Breaks are Limited Below 560 MPa
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Fiber Break Activity Increases Above 560 MPa

Omax = 730 MPa
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Model Must be Calibrated to Each Environment

XCT coupling

* Model must be calibrated before use
in new experimental settings
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* Thick (>1-2mm) couplings attenuate
high frequency components

* High frequency information is lost

e Spectral model must be adjusted
to prioritize low frequencies

Standard coupling
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* Post-calibration, the spectral model
correctly correlates acoustic signals
to damage mechanisms
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Conclusions

Have created a trustworthy
model to identify damage
mechanisms from AE

Benchmarking datasets were
used to identify trustworthy
models

Models must be re-calibrated
before use in new experimental
or environmental conditions
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Questions




