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Structure of Aero-Engines AI App



Objectives/ Motivation

• To develop an engine conceptual design tool that would:

➢ enable expeditious assessment (with reasonably good accuracy)

➢ enable data-driven/data-informed decision making
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• Engine data collection, preparation, and augmentation

• Machine learning (ML) models training and cross validation

• ML models testing

• App design for ML models deployment

• Monitoring and updating

Outlines

Tong, M. T., “Using Machine Learning to Predict Core Sizes of High-Efficiency 

Turbofan Engines,” GTP-19-1338, ASME Journal of Engineering for Gas 

Turbines and Power, Volume 141, Issue 11, November 2019.

Tong, M. T., “Machine Learning-Based Predictive Analytics for Aircraft Engine 

Conceptual Design,” NASA TM-20205007448, October 2020.
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ML Model Training Requires Big Data

GE CFM P&W Rolls Royce IAE

CF6-6D 56-2C1 JT8D-7 RB211-22B V2500-A1

CF6-80C2A1 56-3B1 JT9D-3A RB211-524B V2522-A5

CF6-80C2B1 56-3C1 JT9D-7 RB211-535C V2524-A5

CF34-10A 56-5A1 2037 Trent 768 V2525-D5

CF34-3A 56-5B1 4052 Trent 553-61 V2527-A5

● ● ● ● V2528-D5

● ● ● ● V2530-A5

● ● ● ● V2533-A5

90-94B LEAP-1A35 6122A Trent 970-84

90-115B LEAP-1B25 4168-1D Trent XWB-84

Genx-1B54 LEAP-1B27 1519G Trent XWB-97

Genx-1B70 LEAP-1B28 1527G Trent 7000-72

Open-source data (ICAO, Jane’s, Company websites…)
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(minimizes ML model uncertainty)



NASA Looks To The Future

Subsonic Fixed Wing

Project (SFW)

Environmentally

Responsible Aviation 

Project (ERA)

Advanced Air Transport

Technology Project (AATT)

SA-FPR1.3-GR-HW-2E
Large-DD-2014 N+3

SA-FPR1.4-GR-HW-2E Large-DD-2015 N3CC-2016

SA-FPR1.5-DD-2D Large-DD-2015-HWB N3CC-2017

SA-FPR1.6-DD-2D Large-Geared-2015 N3CC-2018

SA-FPR1.7-DD-2D Large-Geared-2015-HWB Small-Core-Geared

● ●

● ●

● ●

SA-FPR1.3-GR-HW-2D Medium-Geared-2014

SA-FPR1.4-GR-HW-2D Medium-Geared-2015

SA-FPR1.5-GR-HW-2D Small-DD-2015

SA-FPR1.6-GR-HW-2D Small-Geared-2015
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Combined Database with Data Augmentation 

Engine No. of engines

Commercial

NASA

Data augmentation - example

290

122



ML Models Development Approach

• Data Science

- Dataset preparation

- Training, cross-validation, and testing datasets

• ML algorithms:

- Deep Learning Network (DNN) – TSFC, weight, fan diameter

- Support Vector Machine (SVM) – core size  

- K-nearest neighbors (KNN) – turbomachinery stage counts

• Implementation:

Python and Google AI libraries

– Keras provides building blocks for DNN

– TensorFlow backend (computes tensors, derivatives,

optimization)
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Keras – Python Neural Network API TensorFlow – Google AI library
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ML Models Development - Data Science

• Dataset preparation

- shuffled (randomized), normalized, and stratified the data

- splitted into training and testing dataset

Training dataset Testing dataset
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• Preliminary training and 7-fold cross-validation of the classifiers

- adjusting/tuning hyperparameters

Training

Cross-validation

Important to quantify uncertainty

ML Models Development - Data Science
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Deep Learning Neural Network

ai
(k) = activation of unit i in layer k= g(         wij

(k)xi )

w(k) = matrix of weights controlling function from layer k to k+1

g = activation function (a scaled exponential linear unit function)
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Training and Cross-Validation Results

Metrics
Accuracy

(mean)

Uncertainty

2 standard deviations

(95% confidence interval)

TSFC

Weight

Fan dia.

Core size

LPC stg. count

HPC stg. count

HPT stg. Count

LPT stg. Count

IPT stg. count

98%

95%

98%

98%

98%

98%

96%

98%

90%

4%

5%

4%

5%

14% (or 1 stage)

8% (or 1 stage)

39% (or 1 stage)

18% (or 1 stage)

44% (or 1 stage)
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Cruise TSFC ML Model

Predicted Results vs. Testing Dataset

Average accuracy = 98.3%

Lowest accuracy = 94.8%
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App Design for ML Models Deployment

• Created using Tkinter, a Python GUI.

• Converted to a MS Windows executable using pyinstaller (Python library)

➢ reduce complexity 

➢easy access (without the need of Python installed)

• Focused on user experience 

➢simple, intuitive, ease of use (hard work done behind the scene)

➢effective & efficient usability (instruction manual not required)

A demo of the App
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Monitoring and Updating

• Keep track of and update engine database as needed:

➢ Commercial engines – add data to the database if new engine 

data become available (e.g., Rolls Royce UltraFan, EIS 2030?)

➢ NASA’s engine data are R&D in nature and could change over 

time

To ensure optimal performance of ML models



Summary

• First version Aero-Engines AI app developed for turbofan conceptual 

assessment

• The app enables expeditious turbofan conceptual assessment

• The app enables data-driven/data-informed decision making

• Need more data to improve accuracy/reduce uncertainties

• Limited availability of open-source data is a challenge to overcome
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What’s next?

• Develop ML models for electric machines:

➢ to enable hybrid-electric turbofan assessment

• Develop detailed ML models at the engine component level:

➢ to characterize impacts of T4, efficiencies, turbine/compressor 

loadings, turbine cooling, ………

• Develop ML models for turboshaft engine

• Develop ML models at the aircraft level (tube-and-wing, BWB, rotocraft, …

➢ fuel burn, emissions, takeoff field length, ……

17

One common challenge – limited availability of open-source data
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Data are digital gold!
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Backup Slides
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Features for Engine Weight ML Model development

BPR

OPR

SLS thrust

Fan diameter

Drive system (direct-drive or geared)

System configuration (2-shaft or 3-shaft)

Engine timeframe (a technology indicator)



21

Cruise TSFC Prediction

Input parameters Data available

Thrust

OPR

FPR

Cruise Mach

Cruise altitude

Fan, LPC, HPC effs.

LPT, HPT effs.

Turbine cooling flow

T4

• Highly dependent on engine technologies

• “Engine Certified Year” – a good indicator of engine tech. level

Thrust @ SLS

OPR @ SLS

BPR @ SLS

Cruise Mach

Cruise altitude

?

?

?

?



2222

Algorithm

ML Models for Engine Core Sizes  

Ref: : Geron, A., “Hands-On Machine Learning with Scikit-Learn and 

TensorFlow,” first edition, March 2017. Published by O’Reilly Media, Inc.

Support Vector Machine (SVM)

• Identifies an optimal hyperplane that maximizes the 

separation margin between the two classes

• Uses kernel function for nonlinearly-separated

classes

• Training involves minimization of the 

cost (error) function

• Training involves adjusting/tuning hyperparameters

- penalty parameter

- parameter that controls the tradeoff between

error and separation margin
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Algorithm

ML Models for Turbomachinery Stage Counts  

K-Nearest Neighbors (KNN)

X

K = 3

X

Ref: : Geron, A., “Hands-On Machine Learning with Scikit-Learn and 

TensorFlow,” first edition, March 2017. Published by O’Reilly Media, Inc.


