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Abstract—NASA currently provides communication support
to over 100 satellite missions, and the agency is driving devel-
opments in Ka-band communications and network management
automation to support additional future missions. At Ka-band
frequencies, rain can degrade a communication link by more than
10 dB, which may be mitigated by agile scheduling and data rate
control. We present a weather forecasting module for Ka-band
communications that is intended to be used in an autonomous
network management service that employs machine-to-machine
scheduling systems for dynamic user access opportunities. Our
forecasting module (NIMBUS) runs on AWS Cloud, consumes
the freely and publicly available NOAA MRMS precipitation
rate dataset (1km x 1km x 2-min), produces 30-minute Now-
casts using the pySTEPS algorithm, and publishes high-level
ground station specific link quality predictions. We evaluate
two potential NIMBUS outputs, a binary classifier that predicts
rain attenuation greater than 3 dB and a rain attenuation
estimator, and we backtest these outputs using one year of
power measurement data collected from observations of the
geostationary ANIK F2 satellite’s Ka-band beacon. We report,
with a 30-minute lead time, a binary classifier accuracy of 84%
and an estimator RMSE of 1.67 dB. Additionally, we discuss
how the NIMBUS module could be incorporated into a user-
initiated service framework to enable weather-aware scheduling
and reconfiguration. Integrating NIMBUS into a user-initiated
service framework provides an alternative to static link budget
padding based on a statistical long-term rain exceedance rate
attenuation, and leverages advances in software defined radio,
autonomous machine-to-machine scheduling, and precipitation
Nowcasting.

Index Terms—Satellite communication, scheduling, automa-
tion, precipitation nowcasting

I. INTRODUCTION

NASA provides communication support to many satellite
missions, from planning to operations. Generally, the space-
craft needs to transmit science data from on-board sensors
back to Earth. Ground stations often employ large high gain

antenna that point to and track spacecraft as they arc across
the sky. These highly directional systems help increase the
signal to noise ratio and thus increase the potential data rate
that can be achieved over that link, while minimizing the
size, weight, and power of the spacecraft’s terminal. Therefor,
ground stations generally communicate with only one satellite
at a time and assets must be scheduled in advance. Scheduling
can be a complex non-linear optimization problem, which is
why human operators are often involved. Similarly, when a
schedule fails to satisfy the service needs of a satellite, humans
are tasked with identifying a remedy, which can backlog net-
work operators if it happens too frequently. To circumvent this,
communication services are generously padded with excess
capacity.

Ka-band communication systems are becoming more com-
mon due to spectral congestion in the lower frequency bands
and the higher data rates that can be achieved. However,
Ka-band communication systems are also susceptible to rain
attenuation, which can exceed 10 dB. To mitigate this, ground
station site selection involves measuring, or modeling, the
long-term weather statistics of prospective ground sites. For
an established ground site, rain is generally accounted for
by applying a static rain attenuation to a communication link
budget. Setting a low exceedance rate reduces the number of
rescheduling events that will be required during a year, but it
also results in a reduced data rate. To meet science data volume
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Fig. 1. (A) A user spacecraft requests service while at orbit position “A”. When the spacecraft reaches position “B”, the autonomous network controller
retrieves high-level link quality predictions from the NIMBUS module and uses the expected link quality to reconfigure the data rate of the upcoming contact
and schedules additional services as required. (B) A sequence diagram showing the control plane messages that are passed prior to the ground station contact.
(C) A system diagram of an autonomous network controller that is subscribed to the NIMBUS module, which runs independently on AWS Cloud.

requirements, the mission may need to resize the satellite’s
communication terminal, or schedule additional ground station
time.

An alternative method, in a perfect world, would be to
communicate at the highest possible data rate during good
weather, and then reduce the communication data rate only
when the link is degraded. Additionally, an ideal system would
only schedule as much time as is needed on the ground
station, thus maximizing the efficiency of the ground asset.
However, such a system would need to accurately predict
the future channel capacity, assuming a constant coding and
modulation scheme is used duration a ground station pass.
Underestimating channel capacity is similar to setting a low
exceedance rate and overestimating channel capacity creates
rescheduling tasks.

There are several factors that make weather-aware schedul-
ing and reconfiguration relevant today.

• Ka-band communications is becoming increasingly
prominent [1], and it is prone to rain attenuation [2].

• Advances in Ka-band software defined radios provide
spacecraft with an ability to rapidly alter their communi-
cation protocols and configurations [3], [4].

• NASA’s user-initiated services (UIS) concept of opera-
tions [5]–[7] would support autonomous scheduling and
reconfiguration and UIS has been included in NASA’s
LunaNet Specification [8].

• Weather related datasets are widely available [9] and pre-
cipitation Nowcasting has improved significantly [10]–
[12].

In the following sections, we describe a weather mitigation
system for Ka-band communications that predicts future rain
rates and estimates rain attenuation. We provide an analysis
of our algorithm by backtesting against historical precipitation
data that is paired with Ka-band received power measurements
over the same time period. In our discussions section, we
use an example scenario to describe a concept of operations
for integrating our algorithm into an autonomous scheduling
agent.

II. METHODOLOGY

The NOAA-Informed Meteorological Broadcast Updater for
Satellites (NIMBUS) module (see Fig. 1) was designed to
provide high-level link quality predictions to an autonomous
network scheduling agent that could rapidly update sched-
ules and radio configurations without the need for human
intervention. In this section, we describe the systems used
to collect radar-based precipitation rate data, which would be
used operationally, and the Ka-band power measurement data
that was used to validate the algorithm. Following this, we
describe the NIMBUS algorithm and our vision for an AWS
Cloud-based implementation.

A. Data Acquisition
1) NOAA’s MRMS: National Oceanic and Atmospheric

Administration (NOAA)’s Multi-Radar Multi-Sensor System
(MRMS) system integrates the data streams of multiple
sources, including radars, satellites, and numerical weather
prediction models. In this work, we use the radar-only pre-
cipitation rate [mm/hr] estimate. The precipitation rate values
represent a surface area of 1km x 1km, and are updated
every two minutes. In the operational tables [13], this is
labeled “PrecipRate”, which is category 6, parameter 1. These
estimates are provided by stitching together the outputs of
more than 158 WSR-88D radars, which are positioned across
the continental United States. In future work, we expect to use
the precipitation flag as well, which describes the precipitation
type, i.e. convective, stratiform, tropical, hail, snow. The output
files are packaged in the GRIB2 file format, with each file
containing more than 24 million coordinate points.

2) Power Measurement and Attenuation: In 2009, NASA
installed an interferometer near White Sands New Mexico
to study the site’s Ka-band tropospheric phase stability and
rain attenuation [14]. The interferometer was designed to
observe an unmodulated beacon signal broadcast from the
geostationary ANIK F2 satellite. In this work, we used the
complex I/Q data that was captured during 2015 to produce a
received power time series. In Table I we provide the relevant
link information.

Our received power time series contains a periodic variation
of approximately 0.35 dB, with a 24-hour period. We expect



TABLE I
KA-BAND LINK MEASUREMENT PARAMETERS

Satellite Name ANIK F2
Beacon Freq. 20.2 GHz
Polarization Linear
Orbital Lon. 111.1◦W

Elevation 51.8◦
Azmuth 188.3◦

Ground Site Latitude 32.5423◦N
Longitude 106.6139◦W
Altitude 1.469 km

that this is due to the day/night cycle and variations in pointing
error as the satellite has a small inclination angle and eccentric-
ity. At Ka-band frequencies, rain attenuation is the dominant
source of atmospheric attenuation. Therefore, we approximate
rain attenuation by subtracting the received power level from a
reference power level. The reference level was computed using
a rolling median filter with a window length of seven days,
which smoothed out day/night variation. The seven day period
and the median operation allowed the reference to remain
stable during periods of rain. This method of approximating
rain attenuation ignores other potential contributions, such as
polarization offset–which should be constant in this case, and
other atmospheric attenuation sources, such as clouds and gas.

B. Data Sanitization and Alignment

In Fig. 2, we show the rain attenuation, after removing miss-
ing and/or erroneous data. For example, in October of 2015,
severe rain caused damage to the ground station receiver’s
low-noise amplifier, this caused the digital receiver (DRX) to
recorded abnormally low power measurements. The issue was
resolved by the 2nd week of November. Additionally, there
were brief periods of outage throughout the year, which needed
to be removed from the dataset. A largely manual inspection
of the data was used to isolate and remove outage periods.

The MRMS dataset from 2015 was collected from the Iowa
State University repository. The grid coordinate points are
defined using latitude and longitude. The definitions were
shifted starting Jan 21 2015, and due to this, we only used the
data from January 21st to the end of the year. Additionally,
there are a number of missing files for this year (with each
file representing a 2-min dataset). There were also several
instances of -1 “missing” and -3 “no coverage”. In our
evaluation, we rejected all time steps that were invalid due
to corrupt power measurements in the DRX or invalid due
to issues with the MRMS data. The DRX data is collected
at 1-sec intervals, while the MRMS data is collected at 2-
min intervals. We resolved this by taking the mean power
measurement value over 120 seconds.

C. NIMBUS

NIMBUS is fed the precipitation rate “PrecipRate” values
from the MRMS GRIB2 dataset. Each pixel in this data
represents a 1km x 1km area. Initial testing and evaluation
was done using the historical data archived by Iowa State

Fig. 2. (A) Link attenuation (rain gain) [dB] is overlaid on the same x-axis
as the precipitation rate [mm/hr] to highlight the correlation between the two
signals. The precipitation rate shown is the average taken over a 21km x 21km
grid and the attenuation data was averaged over a 2-min period. Periods with
missing and/or erroneous data have been removed. The data is for all of 2015.
(B) This figure focuses on data between July 20 and August 20, 2015, which
is a particularly rainy season at White Sands. (C) This figure focuses on four
days worth of data at the end of July, 2015.

Fig. 3. This is an output from the pySTEPS Nowcast algorithm. Here, we
have computed a motion field using the Lucas-Kanade optical flow algorithm.
The field is visualized as black vectors over a 300km square area. The motion
field is used to produce an advection-based Nowcast of the precipitation rate
data.



Fig. 4. The top row shows the actual 10-min evolution of precipitation
(starting from Fig. 3), and the 10-min Nowcast output by the pySTEPS
algorithm. The bottom row compares the 30-min evolution of precipitation
with the 30-min Nowcast.

University at https://mtarchive.geol.iastate.edu/. We produce a
Nowcast using pySTEPS [11], we compute a motion field via
the Lucas-Kanade optical flow algorithm (see Fig. 3), and then
extrapolate the most recent observation using a Lagrangian
persistence method. This assumes that air parcels are constant
and that change is due to advection. In Fig. 4, we visualize
a Nowcast at two different lead times (10-min, and 30-min),
projecting forward from May 22, 2015 00:30:00 UTC. For
our single ground station example, we used a 300km square
grid around our site of interest. The Nowcast area must be
large enough to capture relevant precipitation data and motion
vectors. In the future, we assume that we will be interested
in sites across Continental United States (CONUS), and thus
would run a single Nowcast on the entire CONUS dataset,
before subsetting to select out small (21km square) grids for
each individual ground station location. After computing a
Nowcast of precipitation rates, we subset a 21km square grid
(21x21 pixels) around each ground station site of interest–
shown in Fig. 5. We then collapse the 2D matrix of Nowcast
precipitation rates into a single scalar using the mean of
the values. In our NIMBUS results section, we also analyze
using a max function on this data. Finally, we use this value
to generate two outputs 1) we use a binary classifier to
predict whether or not the link will experience >3dB rain
attenuation and 2) we convert the average rain rate to a scalar
approximation of rain attenuation.

Our binary classifier is a supervised learning algorithm that
categorizes the precipitate rate data as belonging to the class
“0: the precipitation rate will not disturb the link by more than
3 dB” or “1: the precipitation rate will disturb the link by more
than 3 dB”. We provide an analysis in the results section based
on the 2015 data. To estimate rain attenuation directly from

Fig. 5. After Nowcasting, a 21km square grid of precipitation rate values are
extracted at each ground site of interest. This figure visualizes the subsetting
operation of a Nowcast and overlays the grid on a map for scale. The 21x21km
grid of rain data is updated every two minutes.

the precipitation rate, we use ITU-R P.530-18 Section 2.4.1
“Long Term Statistics of Rain Attenuation”, where we choose
R0.01 to be equal to the instantaneous precipitation rate.

D. AWS Cloud

NOAA’s MRMS data products are now available on the
Registry of Open Data on AWS and on AWS Data Exchange.
Conveniently, the data architecture has leveraged SNS noti-
fications, which provide subscribers with information about
new objects when they are placed in an S3 bucket. In the case
of MRMS, this occurs every two minutes. Hosting processes
and data storage in the cloud provides scalability and transfers
the burden of server management to the commercial entity. In
this case, because NOAA’s MRMS data products are already
placed in an S3 bucket, they are automatically reachable
from AWS compute options, including Elastic Cloud Compute
(EC2), Lambda, and Elastic Kubernetes Service (EKS). If a
weather prediction system, such as NIMBUS, is eventually
scaled up to support a large fraction of NASA’s mission port-
folio, then leveraging a serverless cloud compute architecture
may be practical. In this section, we describe the process of
deploying NIMBUS in an AWS Cloud environment.

In Fig. 6, we provide a diagram of the NIMBUS module
implemented in AWS Cloud. There are largely three main
processes that take place. 1) NOAA deposits a set of MRMS
data into an S3 bucket. The MRMS data contains many
categories that are not used in this algorithm, but the action
of filling the S3 bucket triggers an SNS topic notification that
is passed to our Virtual Private Cloud (VPC), with allows us
to act on the new data. 2) Our first Lambda compute process,
which exists in our own VPC, is subscribed to the MRMS topic
and thus can take action on the new precipitation rate data. As
described in a previous section, we used the latest precipitation
rate frames to compute a precipitation Nowcast for CONUS
and we then place the predicted rain data into an S3 bucket.
Fortunately, AWS Cloud also provides a documented path to



Fig. 6. A diagram of the NIMBUS MRMS data handling process in AWS
Cloud. 1) Every two minutes, NOAA deposits a GRIB2 file containing the
precipitation rate for CONUS into an S3 bucket, which triggers an SNS
topic notification. 2) The four most recent precipitation rate GRIB2 files are
processed by pySTEPS to produce a 30-min Nowcast. The Nowcast is placed
in an S3 bucket, which triggers an SNS notification. 3) For each ground
station, a 21km grid is subset from the precipitation rate Nowcast. The average
of the 21km grid used as input by the binary classifier and the attenuation
estimation function. The results for each ground site are transmitted to the
automated scheduler via an SNS topic notification.

enhance the base Lambda image with the GRIB2 processor
program wgrib2[15] and the pywgrib2_s.py[16] Python
interface. 3) The Link Quality Prediction Lambda is triggered
by an SNS topic notification. This function is provided with
a list of relevant ground station locations, so that it can
subset out the 21km square areas that are used to provide
localized link predictions. For each of these sites, an SNS
topic notification is used to send the results to a subscriber,
with each result containing a site identifier, the prediction time,
and the prediction results.

III. RESULTS

We evaluate the NIMBUS algorithm using power measure-
ments collected during 2015 and the corresponding NOAA
MRMS precipitation rate data for the same year. The DRX
was located near White Sands NM, where it observed the 20.2
GHz continuous wave (CW) beacon transmitted by the Anik
F2 satellite. We analyze the precipitation Nowcasts and the
link quality predictions independently, and then analyze the
end-to-end performance by predicting link quality based on
Nowcast data.

A. Data Correlation

In Fig. 7, we visualize the correlation coefficient, for the
rain attenuation and the rain rate data, for each pixel in a
21km square grid around the ground site near White Sands.
The highest correlation coefficient is 0.238. This correlation
was computed without any Nowcasting, or lead time. Given
a mean rain height of 4.74km above mean sea level for this
location, the peak correlation is further south and west than
expected. However, this does highlight the spacial dependency
of the rain data and future systems may want to consider the
satellite trajectory during a pass.

Fig. 7. The rain attenuation time series for 2015 was correlated with the
MRMS precipitation rate of each pixel in a 21km square grid near the ground
station at White Sands, which is denoted by the red “X”.

B. Precipitation Nowcasting

To analyze quality of the Nowcast predictions, we use the
Fractions Skill Score (FSS). This score measures the number
of grid points that exceed a threshold error, which was set to
be 1 mm/hr. Here, we use a grid size of 21km, to match the
subset grids sizes that were used during the prediction step.
In Fig. 8 we report the FSS scores for every two minute time
step over a 24 hour period, for three different lead times. There
are approximately 720 sample results for each lead time. In
this work, we computed Nowcasts over a 300km square area
around White Sands.

C. Link Quality Prediction

Our first prediction method was a binary classifier that
predicted class labels based on the average rain rate over a
21km square grid at the ground site. The labels were designed
to predict whether or not the link would be degraded by
more than 3 dB, based on the 2015 data previously described.
The integrated area under the receiver operating characteristic
curve was 92%. For a false positive rate less than 5%, we
choose a 0.414 mm/hr threshold on rain rate, which results
in a true positive rate of 82.5%. The recall at this level is
76% and the precision was 31%. The total accuracy over one
full year was 97%. 7.85% of the 2-min frames, over one year,
contained some amount of rain in the 21km subset. Our second
prediction method was an attenuation estimator. We generate
instantaneous point estimates of attenuation from rain rate
measurements using the long-term statistical attenuation meth-
ods in the ITU recommendations, by replacing the R0.01 rain
rate with the instantaneous measurement. These methods use
the specific attenuation power-law model γR = kRα described
in ITU-R P.838-3. We compute the path length d = 4.17km
using the mean annual rain height method described in ITU-
R P.839-4. We evaluate γRd as well as γRdeff , where deff
is computed using ITU-R P.530-18. Additionally, we compute



Fig. 8. The Fractions Skill Score was measured for Nowcast lead times of
10-min, 20-min, and 30-min. The FSS was computed based on a 21km grid.
Nowcasts used the most recent four frames and were computed every two
minutes for a 24-hour period.

the attenuation in a similar manner, but with the equations in
ITU-R P.618-13 Section 2.2.1.1.

Both the binary classification and the attenuation estimation
methods use a single scalar rain rate value to produce a predic-
tion. We collapse the 21km square grid of values into a single
scalar by averaging. Alternatively, we investigated taking the
maximum rain rate, but this produced poorer performance in
all cases. Additionally, we experimented with only using rain
rates from grid coordinates with a high a correlation coefficient
(see Fig. 7), but this also generally degraded the results.

The three different methods used to estimate rain attenuation
produced similar results, with the method described in ITU-R
P.530-18 being slightly better performing. The other methods
were generally within one tenth of a dB in both mean absolute
error (MAE) and root mean squared error (RMSE) error.

Using γRdeff , we compute an MAE of 0.919 dB and an
RMSE of 1.517 dB. This calculation was performed using
one full year of data, but only for frames that contained some
amount of rain. As previously stated, there was some amount
of rain in 7.85% of the 2-min frames. If we included all frames,
the MAE and RMSE would be significantly lower. There were
several frames with abnormally large errors (> 30 dB), which
could have been due to equipment error. To mitigate this, we
computed the MAE and RMSE over frames with errors that
were in the 99% quantile, thus rejecting 1% as outliers.

D. Nowcasting + Prediction

Here, we analyze the end-to-end results for a particularly
rainy day, July 20, 2015 (see Fig. 2C). First, we computed
30-min Nowcasts for every 2-min interval over the 24-hour
period. Then, we used the Nowcast frames to produce a binary
classification that predicts link degradation and an estimate of
rain attenuation, as previously described. The binary classifier
achieved an overall accuracy of 84%, a 91% recall, and 56%
precision. The rain attenuation estimates over the 24-hour
period had an MAE of 1.17 dB and an RMSE of 1.67 dB.

IV. DISCUSSION

In this section we illustrate a possible system architec-
ture with NIMBUS integrated into an operational system.
As shown in Fig. 1, NIMBUS output is used to select a
radio configuration which maximizes performance as well as
schedule additional services as needed.

A. Basic Concept of Operations

We imagine a scenario in which a network management cen-
ter performs the function of allocating Ka-band ground station
passes to several Earth-orbiting spacecraft. We assume each
spacecraft is compatible with several commercial providers
of ground station service. While providers are capable of
accepting requests for service with minimal lead time (15
minutes or less) based on availability, we assume nominal
ground station contacts are planned out in a forecast schedule
days to weeks in advance. At this time horizon, no real-time
weather information is taken into account during scheduling
and rain attenuation is expected to be minimal. Spacecraft
radios and the corresponding modems at ground station sites
can operate at several data rate modes (e.g. low, medium,
and high rate) but maintain a constant rate during a pass.
Typical of near-Earth missions, spacecraft transmitters remain
off between passes but their receivers are always listening for
commands.

An automated monitoring process at the network manage-
ment center uses NIMBUS to evaluate each scheduled pass as
it comes within the 30-minute Nowcast window. Contacts for
which the classifier predicts negligible (< 3dB) disturbance
due to weather are left to execute as-is. If significant (≥ 3dB)
link disruption due to weather is predicted the monitoring
process can take several actions. First, commands are sent to
the spacecraft and ground station modem to lower data rate.
Increased link margin at lower rate will increase likelihood
some data is successfully transferred over the pass, as opposed
to the link failing entirely. This will result in less data
transferred over the pass than originally anticipated. Second,
for high-priority data transfers a backup pass is immediately
scheduled in the near future with another ground station. The
duration of the backup pass is calculated to account for the
expected remaining data volume after the original pass is
completed at the lower rate. Using automation this backup can
be scheduled without incurring the delay of a human mission
operator reacting to data loss during a degraded pass. Given
sufficient ground station availability, this backup pass can take
place even during the same orbit.

B. Enhanced Operations

Additional options exist if the spacecraft is capable of vary-
ing its link rate during a contact such as the adaptive coding
and modulation feature of the 2nd Generation Digital Video
Broadcasting - Satellite (DVB-S2). Given a fixed symbol rate,
spacecraft radios using this standard vary their data rate by
adjusting modulation and coding on a frame-by-frame basis
[17]. Link margin requirements at the lowest versus highest
rates allow an 18.4 dB adjustment to handle weather, fading,



and path loss differences. However, operation at a middle
rate within this range is more typical giving less adjustment
downwards to handle weather. We also see in Fig. 2 that rain
attenuation can exceed even 18.4 dB. In this case, the monitor
system could use NIMBUS predictions to adjust symbol rate
in advance of the pass to maintain connectivity.

A reasonable question to consider is whether or not the mon-
itor system should cancel existing contacts if they are predicted
to be heavily impaired. In a per-minute cost model, this would
potentially save money. However, a service provider may seek
to discourage last-minute cancellations since it would have dif-
ficulty finding a replacement customer. They may implement a
mechanism to prevent near-term cancellations or discount the
refund provided (if any) back to the customer if cancellations
are made with too little notice. Instead we assume the monitor
system will seek to keep existing contacts and use them to
transfer the maximum amount of data possible, scheduling
additional passes when necessary to make up the difference.

Future refinement of NIMBUS could produce impairment
predictions more granular than the current binary classifier.
Predictions of exact level of link degradation would help fine-
tune the monitoring system’s reaction. In this work, we do
not explore changing transmit powers, but optimizing over
both power and data rate may have benefits in certain power
constrained platforms. Finally, other sources of forecasting
information in addition to NIMBUS could provide a future
monitor system with more comprehensive information for
decision making.

V. CONCLUSION

We presented the results of our NIMBUS algorithm, which
predicts rain impairment in satellite communication links, and
rain attenuation estimates. We used power measurement data
collected by a digital receiver, that was observing the Ka-
band CW beacon transmitted from the geostationary ANIK
F2 satellite, to backtest our algorithm. When operating on a
30-min lead time, our binary classifier achieved an overall
accuracy of 84% and the attenuation estimation RMSE was
1.67 dB. In our discussion section, we described a concept
of operations for satellite communications that would use
NIMBUS to respond dynamically to rain events, as opposed
to adding a flat margin to a static link budget.
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