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Executive Summary 

 

This paper documents recent dose-response modeling work comparing the results of a Bayesian 

multilevel logistic regression (MLR) model with a fixed slope to one with a random slope using 

data acquired during the Waveforms and Sonic Boom Perception and Response (WSPR) and Quiet 

Supersonic Flights 2018 (QSF18) tests. Previously reported dose-response modeling efforts of 

WSPR and QSF18 data have used a MLR model with a fixed slope term. A random slope may 

more accurately depict the dose-response relationship of individuals in the efforts to produce a 

population summary dose-response curve. Results described here for the WSPR and QSF18 data 

indicate minimal difference between the modeling methods. The simpler fixed slope model is 

preferable for these data, but these results do not preclude consideration of a random slope term in 

modeling efforts of future X-59 community test data.  
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I. INTRODUCTION AND BACKGROUND 

Multilevel models are presently recommended to model dose-response data for upcoming X-59 

community tests. Given the longitudinal data to be collected, accounting for within-subject 

correlation with a multilevel model is a natural choice as the model contains participant-specific 

parameters. Within the framework of a multilevel model, there are additional options to consider, 

such as using ordinal responses versus dichotomizing for binary responses or setting the slope 

parameter to be fixed versus random. A fixed slope assumes each participant has the same rate of 

annoyance while a random slope allows each individual’s curve to reflect a unique rate of 

annoyance (Cruze et al., 2022; Fitzmaurice et al., 2012). While the end product in the dose-response 

modeling efforts is a population summary curve, a random slope may provide more realistic 

individual curves and aid in the development of the population summary curve. 

Community response data from previous NASA field studies provide an opportunity to 

prepare analysis methods for future X-59 community response data. Waveforms and Sonic Boom 

Perception and Response (WSPR) was conducted in 2011 near Edwards Air Force Base in 

California with 50 recruited participants. Quiet Supersonic Flights 2018 (QSF18) was conducted 

in 2018 in Galveston, Texas with 500 recruited participants. Both studies consisted of an F-18 

performing a low-boom dive maneuver to generate quiet supersonic noise signatures to which 

participants provided their annoyance responses to each flyover event.   

In the present context of dose-response modeling of community response to quiet 

supersonic noise signatures, a Bayesian multilevel logistic regression (MLR) with a fixed slope 

was introduced in Lee et al. (2019) where they investigated MLR among seven candidate models 

using WSPR single-event dose-response data. The top two performing models in terms of posterior 

predictive checking and deviance information criterion (DIC) were the MLR and multilevel 

ordinal regression (MOR). The idea behind posterior predictive checking is to check whether data 

replicated using the model are similar to observed data, and DIC compares the relative fit of models 

with preference given to lower DIC values. The MLR and MOR models were then applied by Lee 

et al. (2020) to QSF18 single-event dose-response data. Lee et al. (2020) used a fixed slope model, 

though “[Lee et al. (2019)] considered a random intercept and random slope model for [WSPR 

data]. Based on the DIC (Spiegelhalter et al., 2002), [Lee et al. (2019)] selected the simpler model, 

and [Lee et al. (2020)] used this to inform [their] model for the QSF18 data.” 

Building upon this work, Vaughn et al. (2022) compared MLR with generalized estimating 

equations (GEE) for single-event and cumulative dose-response modeling of WSPR and QSF18 

data. Random slope was  considered but not included based on conclusions from  the work of Lee 

et al. (2019): “A participant-specific slope term could be used; however, minimal differences are 

observed relative to the fixed slope formulation, as noted by Lee et al. (2019) [(WSPR data)]. A 

possible reason for this is the relatively few observations per participant relative to the total number 

of participants. Regardless, for both model and computational simplicity, a single slope term is 

estimated while the intercepts vary.” 

The purpose of this paper is to document recent dose-response modeling efforts that 

compares the results of a Bayesian MLR model with a fixed slope to one with a random slope 

using WSPR and QSF18 single-event dose-response data. These data serve to demonstrate 

methodology and develop rationale for the inclusion or rejection of a random slope term in future 

X-59 dose-response modeling efforts. 
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II. DOSE-RESPONSE DATA 

The present analysis only considers single-event dose-response data from WSPR and QSF18. The 

WSPR data are from the Wyle dataset with 1992 dose-response pairs from 49 participants, as 

reported in Lee et al. (2019) and Vaughn et al. (2022). Annoyance responses for WSPR were 

collected using an 11-point numerical scale ranging from 0 to 10.  The responses are dichotomized 

where responses greater than or equal to 8 are considered to be “highly annoyed” (HA) and the 

remainder “not highly annoyed” as prescribed by Fields et al. (2001) and ISO/TS 15666 (2021). 

This WSPR single-event dose-response dataset is available with the Lee et al. (2019) publication 

at https://ntrs.nasa.gov/citations/20190002702. 

 The QSF18 data contain 4998 dose-response pairs from 371 participants, as reported in 

Lee et al. (2020) and Vaughn et al. (2022). A 5-point verbal response scale was used where very 

annoyed and extremely annoyed are considered to be HA as prescribed by Fields et al. (2001) and 

ISO/TS 15666 (2021). These QSF18 single-event dose-response data are available with the Lee et 

al. (2020) publication at https://doi.org/10.1121/10.0001021.  

 

III. METHODOLOGY 

The present analysis only considers Bayesian MLR models. The first model is the random intercept 

and fixed slope model, referred to hereafter as the fixed slope model.  This model is implemented 

as described  in Section 2.3.2 of Lee et al. (2019), Section D.1 of Lee et al. (2020), and Section 

3.A of Vaughn et al. (2022). More details regarding this model are available at the aforementioned 

references. The model uses the following nomenclature:  

• 𝐻 is the binary response 

• 𝑝 is the probability of high annoyance 

• 𝑖 ∈ 1,… , 𝑆 is the set of participant indices 

• 𝑗 ∈ 1,… , 𝑛𝑖 is the set of observation indices for participant 𝑖, where 𝑛𝑖 indicates the toal 

number of responses from subject 𝑖 
The fixed slope model is given in Equation 1 as follows: 

 

 𝐻𝑖𝑗|𝑝𝑖𝑗~Bernoulli(𝑝𝑖𝑗) 

𝑝𝑖𝑗|𝛽0𝑖, 𝛽1 = logit−1(𝛽0𝑖 + 𝛽1𝑃𝐿𝑖𝑗) 

𝛽0𝑖|𝛽0, 𝜎0
2~𝑁(𝛽0, 𝜎0

2) 
𝛽0~𝑁(0,100) 
𝛽1~𝑁(0,100) 
𝜎0
2~InverseGamma(0.01,0.01)  

(1) 

 

The first three lines of Equation 1 are the fixed slope MLR model, and the last three are the 

noninformative prior distributions for model parameters 𝛽0, 𝛽1, and 𝜎0
2. 

 The second model is the random intercept and random slope model, referred to hereafter 

as the random slope model. The model is given in Equation 2, which resembles Equation 1 with 

new or redefined variables noted in red as follows: 

 

 𝐻𝑖𝑗|𝑝𝑖𝑗~Bernoulli(𝑝𝑖𝑗)  

𝑝𝑖𝑗|𝛽0𝑖, 𝛽1𝑖 = logit−1(𝛽0𝑖 + 𝛽1𝑖𝑃𝐿𝑖𝑗) 

𝛽0𝑖|𝛽0, 𝜎0
2~𝑁(𝛽0, 𝜎0

2) 
𝛽1𝑖|𝛽1, 𝜎1

2~𝑁(𝛽1, 𝜎1
2) 

(2) 

https://ntrs.nasa.gov/citations/20190002702
https://doi.org/10.1121/10.0001021
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𝛽0~𝑁(0,100) 
𝛽1~𝑁(0,100) 
𝜎0
2~InverseGamma(0.01,0.01) 

𝜎1
2~InverseGamma(0.01,0.01) 

 

The first four lines of Equation 2 constitute the random slope MLR model, and the last four are 

the noninformative prior distributions for model parameters 𝛽0, 𝛽1, 𝜎0
2, and 𝜎1

2.  

Both models are implemented in the R statistical programming language with model 

parameters estimated using Markov chain Monte Carlo (MCMC) sampling with the software Just 

Another Gibbs Sampler (JAGS) Version 4.3.0 (Plummer, 2003). Two chains are used for modeling 

each dataset. Following Lee et al. (2019) for the WSPR data, 80,000 posterior draws are used after 

deleting the first 1,000 burn-in samples. Following Lee et al. (2020) for the QSF18 data, 400,000 

posterior draws are used after deleting the first 4,000 samples. No thinning is used in either case 

and the number of posterior draws is deemed sufficient for convergence diagnostics. Additional 

information regarding the computational runtime is included in Appendix A. 

In order to marginalize the MLR results into a population summary curve, a pointwise 

averaging is performed of the posterior participant-level curves as was done in Lee et al. (2019), 

Lee et al. (2020), and Vaughn et al. (2022). This is not a pointwise averaging of the curve 

probabilities but rather an average across the distribution of posterior draws for each participant. 

From these distributions, 95% credible intervals are computed using the 0.025 and 0.975 quantiles. 

This is an in-sample approach. Implementing an out-of-sample approach of marginalizing by 

integrating over random effects as described by Pavlou et al. (2015) would require further 

considerations to account for the additional random effect, perhaps along the lines of what is 

proposed in Hedeker et al. (2018). 

 

IV. RESULTS 

Results of this comparison study consist of figures depicting the population summary dose-

response curves and tables noting the parameter estimates and deviance information criterion 

(DIC) values. Population summary dose-response curves are plotted with pseudodata that depict 

the average annoyance across observations and are plotted in 1-dB bins. 

 

A. WSPR  

Comparisons between the fixed slope and random slope MLR models with WSPR data are 

shown in Figure 1. The two models produce nearly identical population summary curves at PL 

values greater than 80 dB. Below 80 dB, the random slope model deviates with higher %HA 

values. Estimated parameter values for the fixed slope model are given in Table 1 and for the 

random slope model in  

Table 2. There are no significant differences between the estimated parameter values. The DIC 

values in Table 3 slightly favor the fixed slope model but are not significantly different. The 𝜎1
2 

estimate is essentially zero, which may be evidence of attempting to fit a model that is too 

complex to be properly supported by the data (see related discussion in Bates et al., 2018).  
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Figure 1. Dose-response population summary curves from MLR for WSPR showing the (a) full 

dose-response range and (b) zooming in on the lower dose-response range. Pseudodata are 

depicted as dots with shading noting the number of observations 

Table 1. Parameter estimates for the fixed slope MLR model with single-event WSPR data. 

Values for 𝛽0 and 𝛽1 match those from Table 2.3 of Lee et al. (2019). 

 Mean SD 0.025 quant. 0.25 quant. Median 0.75 quant. 0.975 quant. 

𝛽0 -19.6 1.8 -23.2 -20.8 -19.6 -18.4 -16.4 

𝛽1 0.156 0.015 0.127 0.145 0.155 0.166 0.186 

𝜎0
2 13.7 6.2 5.8 9.4 12.3 16.4 29.4 

 

Table 2. Parameter estimates for the random slope MLR model with single-event WSPR data. 

 Mean SD 0.025 quant. 0.25 quant. Median 0.75 quant. 0.975 quant. 

𝛽0 -19.6 1.9 -23.4 -20.9 -19.6 -18.3 -15.9 

𝛽1 0.156 0.017 0.123 0.146 0.153 0.169 0.186 

𝜎0
2 13.7 6.4 5.7 9.3 12.3 16.3 29.8 

𝜎1
2 0.0001 0.00053 5.3E-20 1.2E-12 5.8E-10 3.2E-07 0.00121 

 

Table 3. DIC values for MLR models with single-event WSPR data. 

 Fixed Slope Random Slope 

DIC 440 444 

Mean Deviance 405 399 

Mean PD 35 45 

 

B. QSF18  

Comparisons between the fixed slope and random slope MLR models with QSF18 data are shown 

in Figure 2. The two models produce essentially identical population summary curves and credible 

intervals. Estimated parameter values for the fixed slope model are given in Table 4 and for the 

random slope model in Table 5. There are no significant differences between the estimated 

parameter values. The 𝜎1
2 median estimate is again essentially zero, though the mean is larger. The 
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DIC values in Table 6 are minimally different, though interestingly the random slope model has a 

slightly lower value, though not significant enough to differentiate the two models. Again, as 

observed in the WSPR data, the near zero 𝜎1
2 estimate may suggest an overparameterization of the 

dose-response model.  

 

 
Figure 2. Dose-response population summary curves from MLR for QSF18 showing the (a) full 

dose-response range and (b) zooming in on the lower response range. Pseudodata are depicted as 

dots with shading noting the number of observations with points at (56,33.3) and (90, 16.7) not 

included to focus visualization on the summary curves. 

Table 4. Parameter estimates for the fixed slope MLR model with single-event QSF18 data. 

Values for 𝛽0 and 𝛽1 match those from Table 1 of Lee et al. (2020). 

 Mean SD 0.025 quant. 0.25 quant. Median 0.75 quant. 0.975 quant. 

𝛽0 -19.0 2.4 -24.1 -20.6 -19.0 -17.3 -14.5 

𝛽1 0.153 0.029 0.098 0.133 0.152 0.172 0.211 

𝜎0
2 7.1 3.0 3.0 5.0 6.6 8.6 14.6 

 

Table 5. Parameter estimates for the random slope MLR model with single-event QSF18 data. 

 Mean SD 0.025 quant. 0.25 quant. Median 0.75 quant. 0.975 quant. 

𝛽0 -18.8 2.4 -23.7 -20.6 -18.4 -17.1 -15.2 

𝛽1 0.150 0.028 0.112 0.124 0.144 0.168 0.201 

𝜎0
2 7.3 3.1 3.1 5.1 6.7 8.8 14.9 

𝜎1
2 0.0011 0.00329 2.4E-18 1.1E-12 1.2E-08 8.5E-05 0.0112 

 

Table 6. DIC values for MLR models with single-event QSF18 data. 

 Fixed Slope Random Slope 

DIC 353 351 

Mean Deviance 283 270 

Mean PD 70 81 
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V. CONCLUDING REMARKS 

This paper compared results of a Bayesian MLR model with a fixed slope to one with a random 

slope using single-event dose-response data from WSPR and QSF18. The key takeaway is that 

there is minimal difference in the dose-response curves between the two models for both datasets. 

These results are in line with the justification for using the MLR model with a fixed slope in 

previous studies of WSPR and QSF18 data. Rationale supporting this choice include the DIC that 

generally favors the simpler fixed slope model and the near-zero estimates for the variance 

component associated with random slopes in both datasets. This preference for a fixed slope model 

with WSPR or QSF18 data does not preclude the use of a random slope in modeling efforts of 

future X-59 community test data. The suitability of random slope models for X-59 data is discussed 

in the next section.  

While not pursued here, maximum likelihood methods for fitting random slope and random 

intercept models are available in popular statistical software packages and libraries (e.g., glmer 

in the lme4 package (Bates et al. 2015) or glmmPQL in the MASS library (Ripley et al., 2022) in 

R statistical software).  Cruze et al. noted a potential limitation of the glmer function (Cruze et 

al., 2022, pg. 13) for fitting models with multiple random effects, as the methods available in the 

function offer only a coarse approximation of the likelihood function.  In short, depending on the 

data set in question, fitting the more complex random slope model may necessitate accepting an 

inappropriately coarse approximation, or else adopting other software in order to apply maximum 

likelihood methods for more complicated multilevel models like the random slope model. 

 

A. Future Work 

Community tests with the X-59 will consist of more supersonic flyover events than WSPR or 

QSF18 and include an incentive structure to retain participants, so the data may be better suited 

for a random slope model. Potential future work to assess the value of the random slope model or 

more complicated models for the X-59 community response data includes:  

1) Further investigation of structures that permit nonzero estimates for variance 

components in models with multiple random effects.  Given the type and quantities of data 

collected during WSPR and QSF18, the multilevel ordinal regression and the second stage of the 

2-stage logistic regression outlined in the X-59 Community Response Testing Survey Analysis 

Plan (SM-02) may have sufficient structure to support dose-response models with multiple random 

effects. 

2) Development of strategies to marginalize over multiple random effects and assess the 

sensitivities of the population average dose-response curve to estimates of multiple variance 

components. 

These steps can help provide insights into the benefits of more complicated model structures and 

further develop the rationale for analysis of X-59 data once community testing is initiated. 
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Appendix A: Computational Timing 

Bayesian methods can be computationally intensive, conceivably leading to long runtimes. 

Appendix A of Vaughn et al. (2022) describes computational efficiencies that can be gained by 

running R code using runjags with parallel chains and utilizing binomial distributions. This builds 

upon the work of Lee et al. (2020) in which the R code ran using rjags with successive chains and 

Bernoulli distributions. The binomial distribution only gains efficiency if participants provide 

multiple responses at the same dose bin. For single events, if there are on the order of 17 1-dB 

dose bins and 86 single events, there may be modest computational speed to be achieved. On the 

other hand, parallel chains are generally a straightforward implementation to gain faster runtimes, 

regardless of dose binning. 

Relative runtimes are given in Table 7 for the fixed and random slope models to 

demonstrate the potential additional runtime that a random slope model can incur. These tests were 

run in the following computing environment: Microsoft Windows 10 operating system with an 

Intel® CoreTM i9-9880H CPU @ 2.30GHz, 2304 Mhz, 8 Cores, 16 Logical Processors, and 32 

GB of RAM. In Table 7, the previous fixed slope runtime refers to the runtime of the code used in 

Lee et al. (2019) or Lee et al. (2020), and the current fixed and random slope runtimes are the code 

used in the present analysis. The current fixed slope timing is about 2 to 3 times faster than the 

previous, primarily due to the parallel running of chains. When a random slope term is introduced, 

the runtime nearly reverts back to that of the previous fixed slope model. For future X-59 

community test data, code efficiencies should be considered to ensure relatively quick turnaround 

for data processing when running a model with a random slope term or potentially any additional 

covariates. 

 

Table 7. Relative runtimes for the previous and current MLR models for single-event dose-

response data with a fixed and a random slope term. 

Dataset 
Previous Fixed 

Slope Runtime 

Current Fixed 

Slope Runtime 

 Current Random 

Slope Runtime 

WSPR 7.6 min 2.6 min 7.2 min 

QSF18 1.6 hr 0.75 hr 1.2 hr 

 


