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• TID – total ionizing dose
• RHA – radiation hardness assurance
• RDM – radiation design margin
• COTS – commercial off-the-shelf
• CDF – cumulative distribution function
• PDF – probability density function
• CL – confidence level
• MC – Monte Carlo

Acronyms
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• RHA has evolved to use probabilistic environment dose models ([1] and [2]) 
• Prior military guidelines used worst-case constants for environment dose and 

part failure dose to calculate RDM and categorize device hardness [3]
- Does not account for the variability of the environment or device performance
- Incorporating all aspects of failure variability allows for more flexibility in 

determining the suitability of the part for a mission
• A new method for RHA was developed in [4] and [5] to calculate a failure 

probability and establish a confidence level for a part – requires failure data
• This work expands on [5] to incorporate datasets containing survivors or a 

mixture of failures and survivors

Motivation
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Probabilistic Framework

Device TID-induced 
failure PDF (lognormal 

fit of ground testing data) 
– multiple possible fits, 
uncertainty from small 

samples

Mission 
failure 

probability

Failure doses
39.1, 70, 

47.98, 55.18 
krad(Si)

(Xapsos et al., 2017)

• Integration with 
environment and 
device 
distributions -> 
encompass all 
failure variability

• Small sample 
sizes create 
uncertainty in 
device behavior 
distribution fit –
what are the true 
fit parameters µg
and σg?

Environment dose CDF (AP9/AE9/ESP, 
transported through shielding)
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On-Orbit Failure Probability over Parameter Space

𝜇𝜇𝑔𝑔 = 3.95,𝜎𝜎𝑔𝑔 = 0.21
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1.1%

𝜇𝜇𝑔𝑔 = 4.53,𝜎𝜎𝑔𝑔 = 1.02
𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3.1%

• Because of the 
uncertainty from 
small samples, it 
is desirable to 
examine the 
failure probability 
across the device 
behavior 
parameter space
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• To constrain parameter space and attach 
confidence to the failure probabilities, 
use the likelihood of the device behavior 
distributions

• Likelihood ratios = confidence gradients 
[5],[6]
- Bind parameter space to most likely fits
- Dashed line = 90% CL contour
- Max. Pfail generated with parameters in 

area of interest = 90% CL WC Pfail

Likelihood-based Confidence 

Area of 
Interest

90% CL WC 
params: 
(0.52, 3.72)
Pfail = 2.76%

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿 = 𝐶𝐶�𝑓𝑓(𝑡𝑡𝑓𝑓 ,𝜇𝜇,𝜎𝜎)

(Ladbury et al., 2021)
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Probabilistic Framework w/ Family of Curves

1. Integrate 2. Apply contour 
mask to param space

3. Bounded 
Pfail space

• After integrating over 
the device behavior 
parameter space, apply 
90% confidence contour 
as a mask to bound the 
space and determine 
worst-case Pfail
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• Many parts are tested to a certain dose level rather than failure
• If parts survive TID testing, can this information be used to 

constrain mission failure probability?
• This type of data is known as type-I censored data (datapoints 

not monitored to failure), and type-I censored likelihood can be 
used to constrain the parameter space

Survivor Data – How to use it?

From NASA Goddard Space Flight Center's Recent Radiation Effects Test Results (2022)
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Type-1 Censored Confidence Contours

Type-1 Censored Likelihood = 

Type-1 Censored data: dataset where not all parts tested 
to failure (i.e., composed of some/all survivors) [7]

𝐿𝐿 = 𝐶𝐶 �
𝑓𝑓=1

𝑟𝑟

𝑓𝑓(𝑡𝑡𝑓𝑓) [1 − 𝐹𝐹(𝑇𝑇)]𝑛𝑛−𝑟𝑟

Uncensored data w/ 4 
failure doses (original)

• T = dose survivors tested to
• n = sample size
• r = # of failures
• ti = failure dose of ith failure
• f = device behavior PDF
• F = device behavior CDF
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• As before, the 
confidence contours 
can be used to 
constrain the 
parameter space and 
find a worst-case Pfail
at the desired 
confidence

• Survivor data is less 
restrictive than 
failure data – use 
upper bound based 
on engineering 
judgement

Bounding Failure Probability

Lower bound (A)
(from data)

Bounded Pfail space
(about 3.1% WC)

Area of 
Interest A

B

90% WC 
parameter 

pair
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• Both sample size and amount of overtest will affect the WC Pfail

- Need to test many parts if dose tested to is lower, and even high 
tested doses only constrain Pfail so much when sample size is small

• Any failure data will dominate the Pfail calculation over any 
survivor data

Examples

2 Year GEO, 200 mils Al

Manufacturer Part Number Test Results 90% Confidence WC Failure

Semicoa JANS2N2907AUB 88 survivors to 30 krad(Si) 1.5

Semicoa JANS2N5339 10 survivors to 36 krad(Si) 3.7

Microchip SY88422L 2 survivors to 100 krad(Si) 10

Microchip MIC4427 1 failure at 20 krad(Si), 7 
survivors to 30 krad(Si)

17.9
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• In addition to post-test analysis, the framework can 
be applied to test planning to determine sample 
size and overtest needed
- Optimize sample size and tested dose for budget 

and timing constraints to meet survival requirements

Test Planning – Optimizing Between Sample Size 
and Beam Time

(1) Select (σg,μg) 

(2) Minimum Dose
Pairs on/above the 
lines are acceptable

Minimum dose
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• Survivors can be used for a complete assessment of a device’s 
failure probability in space environments
- Failure data dominates constraints, but survivor data still provides 

useful bounds on the parameter space
- Large portions of the failure space can be excluded based solely on 

survivors, eliminating high failure probability regions
• Applications: test planning, heritage data
• The framework allows an engineer to consider all available 

survival and failure data on a candidate device 
- Permits a quantitative assessment of survival in a variable space 

environment
• Full work will be presented as a poster at NSREC; analysis will 

become available on RADHUB in the future

Discussion/Conclusions
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• Any environment can be used with 
this framework by ranking or 
fitting MC trials
- Sample environments shown 

follow expected trends with 
duration and shielding thickness

• The probabilities listed below are 
worst-case for survivor data
- A high worst-case failure 

probability does not mean the part 
will fail – only that there is not 
enough info from the test to 
constrain Pfail a meaningful 
amount

Extra: Other Environments

Note: GEO data incorporates IRENE and ESP, LEO and elliptical 
orbits only use IRENE
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• While previous 
slides used 
lognormal fits of 
the device 
behavior, any fit 
can be used
- Weibull fits of 

10 survivors 
shown

• The type of fit 
selected will 
affect the worst-
case Pfail and 
must be chosen 
mindfully

Extra: Other Device Failure Fits – Weibull 

90% WC Pfail ~= 7.3% 
(lognormal fit produced WC Pfail ~= 3.1%)

90% WC 
Parameter 

Pair

B

A

A

Area of 
Interest
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• Step-stress: device parameters measured 
after set intervals of irradiation rather than 
while being irradiated (cannot determine 
exact point of failure)

• AD9050 TID test results:

Extra: Incorporating Step Stress

https://www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm
Evaluation Of High Performance Converters Under Low Dose Rate Total Ionizing Dose (TID) Testing For NASA Programs (1998)

Dose Intervals 
(kradSi)

# Failures

0-5 1
5-10 2
10-20 0
20-30 3
30-50 1

Readout Data Likelihood =
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• Parts flown on previous missions can also be used to constrain 
the parameter space, treat as survivors

• Caveats
- Mission qualification documents list upper bound on dose 

encountered
- Heritage parts may be from different lots, need to account for lot-to-

lot variability
- Previous mission doses may be less than current mission

Extra: Heritage Data

R. Ladbury and B. Triggs, “A bayesian approach for total ionizing dose hardness assurance,” IEEE Transactions on Nuclear Science, vol. 58, no. 6, pp. 3004–3010, 2011. 
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• The device failure distribution is well-behaved (not bimodal or 
thick-tailed)
- Examined lognormal and Weibull fits

• Only one lot is being considered (neglecting lot-to-lot variability)
• The upper bound of realistic device performance is 99% of 

devices failing at 1 Mrad(Si)

Extra: Key Assumptions


	Including Survivors in Probabilistic TID Failure Assessment�NASA NEPP Electronics Technology Workshop, June 2023
	Acronyms
	Motivation
	Probabilistic Framework
	On-Orbit Failure Probability over Parameter Space
	Likelihood-based Confidence 
	Probabilistic Framework w/ Family of Curves
	Survivor Data – How to use it?
	Type-1 Censored Confidence Contours
	Bounding Failure Probability
	Examples
	Test Planning – Optimizing Between Sample Size and Beam Time
	Discussion/Conclusions
	References
	Extra: Other Environments
	Extra: Other Device Failure Fits – Weibull 
	Extra: Incorporating Step Stress
	Extra: Heritage Data
	Extra: Key Assumptions

