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ABSTRACT2

The harmful algal blooms (HABs) have dangerous repercussions for biodiversity, the ecosystem,3
and public health. Automatic identification based on remote sensing hyperspectral image analysis4
provides a valuable mechanism for extracting the spectral signatures of HABs and their respective5
percentage in a region of interest. This paper proposes a new model called non-symmetrical6
autoencoder for spectral unmixing (NSAE-SU) to perform endmember extraction and fractional7
abundance estimation. The model is assessed in benchmark datasets, such as Jasper and8
Samson. Additionally, a case study of at HSI2 images acquired by NASA over Lake Erie in 20179
is proposed for extracting optical water types. The results using the NSAE-SU for the benchmark10
datasets improve the performance as indicated by the spectral angle distance (SAD) compared11
to three baseline algorithms. Better results are obtained: for the Samson dataset, the NSAE-SU12
model performs better for the water endmember extraction 0.060, and soil 0.025. The mean SAD13
performance is also better than the other three baseline algorithms; for the abundances maps,14
the NSAE-SU method performs better with an RMSE for water 0.091, and soil 0.187, compared15
to the ground truth. Also, for the Jasper Ridge dataset, NSAE-SU performs well for the tree 0.03916
and road 0.068 endmember extraction and achieving better results also for the abundances maps17
of the water 0.1121 and soil 0.2316. The NSAE-SU, can identify the presence of Chl-a over18
water bodies. Chl-a is an essential indicator of the presence of the macrophytes under different19
concentrations and cyanobacteria. The NSAE-SU achieves the performance of the SAD metric of20
0.307, compared with a reference ground truth of the spectral signatures of the Chl-a.21

22

Keywords: Hyperspectral images, spectral unmixing, endmembers, abundances maps,image23
processing, Deep learning, Autoencoder, algal bloom.24
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1 INTRODUCTION

The increase in harmful algal blooms occuring in recent years is related to global warming and different25
human activities that contaminate and modify these water-bearing zones causing severe problems to the26
marine ecosystems, biodiversity, and collateral damage to the health of humans Guo et al. (2022). Human27
health is affected by the consumption of water coming mainly from lakes, which contains different kinds of28
algae, scum, and sediments. Hence, it is necessary to determine the proportions of these algae so that water29
quality management authorities can establish safe thresholds for consumption and recreative purposes.30

The objective of this article is hence to identify the presence and the percentage or fractional abundance of31
algae, the composition of the different materials, and concentrations in a region of interest in a hyperspectral32
image. At present, multiple techniques have been developed to detect and quantify Chlorophyll-a (Chl-a),33
with the concentration being an indicator of the algae presence, Chl-a models can be divided into two34
branches: physics-based methods and data-driven methods Zhu et al. (2023). Physics-based methods35
simulate the behavior of Chl-a at the water bodies. On the other hand, the data-driven methods are related36
to analyzing previous data of the region of interest (ROI). This data can be weather variables, field samples,37
and images. The last approach constitutes Machine learning Chong et al. (2023) and Deep learning Park38
et al. (2022), methods which are applied mainly to hyperspectral images. Additional measurements such as39
temperature, wind speed, and fluorometric data samples are acquired from the same ROI as the images.40

In order to perform Chl-a extraction, it is necessary to analyze the measurements; typically, much of41
these measurements are fluorometer samples taken at the field, weather variables, and hyperspectral images42
(HSI) acquired from an ROI. HSI measurements are recorded by sensors that record spectral signatures43
over hundreds of narrow contiguous bands ranging from 380 to 2500 nanometer wavelengths. However,44
the acquired wavelength range varies depending on the type of the sensor Xu et al. (2019)-Zhong et al.45
(2018). One of the most relevant features of the hyperspectral images is the high spectral content enabling46
the use of these images for specific applications involving spectral unmixing, classification, and region of47
interest-based segmentation.48

Spectral Unmixing (SU) is an active field of research whose goal is to analyze the materials and49
compositions of an acquired hyperspectral scene; from the analysis of the reflectance of the HSI image,50
the pure spectral signature called endmember of each material and the proportions of the endmembers of51
the different materials present in each pixel in the HSI scene known as fractional abundances maps are52
estimated. Typically, SU has been explored by classical approaches such as Linear Mixing Models (LMM)53
Heylen et al. (2014), optimization approaches such as MESMA, which are based on extracting multiple54
materials in a scene resulting in the application of classical optimization Tane et al. (2018), and machine55
learning techniques, such as Support Vector Machine (SVM) Chunhui et al. (2018) - Wang et al. (2013)56
and Neural networks Qi et al. (2023) - Zhang et al. (2022).57

The LMM is a baseline algorithm for the SU framework. LMM is based on a linear relationship between58
the endmembers or pure substances and their fractional abundances. Each pixel intensity can be considered59
as the linear combination of all materials that belong to the acquired scene; this approach represents60
an appropriate solution for the macroscopic analysis in which the object in analysis represents a large61
percentage of the acquired scene, such as soil, grass, and vegetation.62

Typically, SU is addressed using classical approaches for endmember extraction, such as the multiple63
endmember spectral signature Yang et al. (2022) method and the LMM Imbiriba et al. (2018). In addition,64
the methods performed for the atmospheric correction, based on the varimax-rotated principal component65
method, Ortiz et al. (2019). Notwithstanding, the spectral unmixing is solved using machine learning66
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approaches, such as Neural networks Qi et al. (2023) - Zhang et al. (2022) to increase the accuracies67
obtained in the fractional abundance maps and endmember extraction. Most of the applications of SU68
methods are for sediment analysis from satellite images Waga et al. (2022).69

On the other hand, geometrical approaches have been applied to solve the spectral unmixing problem,70
such as N-FINDR Winter (1999), Vertex Component Analysis (VCA) Nascimento and Dias (2005), and71
Fast Pure Pixel Index (FPPI) Das et al. (2019). These methods are based on iterative algorithms, which72
compute the determinant to maximize the volume estimation of a convex hull. In the ideal case, the73
endmembers or pure substances represent the vertices, and the mixed pixel is contained in the geometrical74
surface.75

New strategies based on supervised and unsupervised machine learning and optimization techniques76
have been developed to improve the endmember extraction algorithm’s accuracy Shah et al. (2020)-Xu77
et al. (2019). The majority of the unsupervised approaches are based on Autoencoders for endmember78
extraction and estimation of the fractional abundances maps Ranasinghe et al. (2020), Palsson et al. (2021)79
Hadi et al. (2022). The autoencoders used to address the SU framework are configured as non-symmetrical80
models where the encoder has more degrees of freedom in the design to add more layers. Commonly, the81
constraints for non-negativity (ANC) and sum to one (ASC) are included in the encoder. On the contrary,82
the decoder typically possesses one layer for conducting the endmember extraction and has additional83
layers added for non-negative regularization.84

In order to perform endmembers extraction and fractional maps estimation, we propose a new method for85
the analysis of optical water types for detecting Chl-a based on an unsupervised deep learning approach.86
The method is composed of five stages, as follows: the input is the HSI2 image, the region of interest87
selection that enables the analysis of the water bodies by regions due to the large size of the images,88
the spectral derivatives computation for performing the sunglint correction, and a block for endmembers89
extraction using the model NSAE-SU for detecting the Chl-a in Lake Erie. Also, other endmembers, such90
as HABs, sediments, and surface scum, are detected.91

This article introduces and assesses a new deep autoencoder called NSAE-SU for endmember extraction92
and estimation of fractional abundances maps. The model has been assessed using benchmark datasets,93
such as Jasper and Urban, with known ground truth for the endmembers and the fractional abundances94
maps. Additionally, to evaluate the performance of the proposed workflow illustrated in Fig. 2 has been95
used the HSI images at Lake Erie not possess ground truth for the endmembers and abundances maps. The96
workflow is applied to extract the optical water types or endmembers, and their abundances maps for each97
ROI selected at the HSI2 images. The main contributions of this article are as follows:98

• An unsupervised deep learning model called NSAE-SU is proposed. The NSAE-SU can perform better99
the extraction of the endmembers, particularly for the water and soil, without removing bands at the100
image. In addition, the model is also robust for the extraction of abundance maps of water, soil, and101
tree.102

• NSAE-SU is an unsupervised deep learning end-to-end model that can perform the endmember103
extraction and the fractional abundances map estimation, exploiting the spatial and spectral features of104
the hyperspectral images and addressing the problem of the mixed pixels.105

• In addition, NSAE-SU performs the endmembers extraction and the fractional abundances maps106
over benchmark datasets such as Jasper and Samson, and is proposed a case study at Lake Erie107
over a water body in order to analyze the different Optical water types, then compared with spectral108
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signatures extracted experimentally from the Lakes, which have been used as a baseline to compare109
the endmembers.110

The rest of this article is organized as follows: section 2 provides the background of hyperspectral111
images, optical water types, and mathematical foundations for the deep autoencoder. Section 3 describes112
the NSAE-SU method and its application. The experiments with hyperspectral images are described in113
section 4. Section 5 presents the metrics used to assess the NSAE-SU model. The analysis of the results114
and the selection of hyperparameters are explained in section 6 for the benchmark datasets and for HSI2115
images. Finally, the conclusions are presented in Section 7.116

2 HYPERSPECTRAL UNMIXING

2.1 Hyperspectral Images117

Hyperspectral images (HSI) have hundreds of narrow bands, providing a continuous measurement for118
each pixel in a limited wavelength range; this range depends on the sensor type, one of the most popular119
are near infrared (nm) and middle infrared (nm). The measurement is performed from the emitted and120
reflected light in a scene Vivone (2023).121

The HSI images are a hypercube or 3D representation with sizes given by W ×H × L when W ×H122
means the spatial resolution and L corresponds to the number of bands. In addition, HSI possesses a high123
spectral resolution and low spatial resolution that is useful for studying the material composition of each124
pixel in an HSI by spectral unmixing.125

2.2 Linear Mixing Models126

The spectral signatures presented in an acquired scene are considered as endmembers, and their proportion127
in each pixel are the abundance maps. Typically, Linear Mixing Model (LMM) performs the endmember128
extraction and estimation of the fractional abundance maps based on the physical behavior of the interaction129
between the light and the endmembers, described as a linear function, as we see in the following equation130
1.131

Yn = Mαn + ηn (1)

s.t1Tα = 1

αn ≥ 0

where M represents the endmember matrix of dimension LXR, R is the endmembers, and αn is the132
proportion of endmembers in each pixel, and ηn is the noise vector. The abundances maps are constrained133
by the sum-to-one (ASC) and non-negativity constraints (ANC).134

2.3 Mathematical Foundations of Autoencoder135

In order to perform the endmember extraction and the fractional abundance map estimation, a deep136
convolutional autoencoder is proposed as illustrated in fig. 1. An autoencoder is an unsupervised deep137
neural network that has learned the structure of the data and performs feature extraction due to a latent data138
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representation. This method does not require labels for spectral unmixing and the HSI data analysis can be139
performed without ground truth.140

An encoder and decoder together constitutes the autoencoder model. The encoder is given by fe = E(xd)141
and performs transformation of the input data into a hidden representation. Then, the decoder makes the142
reconstruction of the data x̂d = D((fe)), subject to a loss function, given by the following equation:143

L (xd, D(E(x̂d))) (2)

The reconstructed data can be represented as a forward pass given by the equation. 3, being αD, αE , their144
respective activation functions at the hidden layers of the model, and wd, we, are the weighted matrices145
for the decoder and encoder, respectively Goodfellow et al. (2016).146

xd = αD (wd (αe (we))) (3)

However, in order to obtain an accurate reconstruction result in feature enhancement based on the learned147
distribution of the training data, it is necessary to apply a regularized function, given by the following148
equation 4, where λ is a tuning parameter, and J (fe,we,wd) is a penalty function.149

L = L (xd, x̂d) + λJ (fe,we,wd) (4)

In order to perform spectral unmixing analysis using autoencoder; it is necessary to impose the ASC and150
ANC constraints at the encoder configuration; this enforces the endmembers and abundance maps to be151
non-negative and not greater than one. The encoder encodes the input data in a latent space, performing152
convolutional operations, leaky ReLU activations, and dropout to prevent overfitting.153

X̂d = [X̂1, X̂2, X̂3, . . . , X̂L] (5)
154

X̂d = WN
d [σ(N−1)(1), σ(N−1)(2), σ(N−1)(3), . . . , σ(N−1)(W×H)] (6)

155
X̂d = Wd

(N)
(W×H)×R

× σR×(W×H) (7)

Subsequently, the decoder reconstructs the data patch from the latent space; the data patch is given by the156
eq. 5, and the decoder can be rewritten as the equation 6 where Wd corresponds to the weight matrix of the157
decoder, and σ are the activation functions from the previous (N-1) layers. However, as it is required to158
perform R endmember extraction, the last layer has R neurons, resulting in the equation 7, which is similar159
to the equation 1.160

3 PROPOSED METHOD

3.1 NSAE-SU Autoencoder161

In order to perform the endmembers extraction and fractional map estimation, a convolutional model is162
proposed as depicted in figure 1, the model is a convolutional autoencoder, and the layers are arranged as163
described in table 1, the loss function used is the cross entropy given by the equation 8, where P is the164
number of patches. The input shape selected is patches of size 9× 9, then four convolutional operations are165
applied with the following filter sizes (3× 3, 128), (3× 3× 64), (3× 3× 32), (1× 1× R) where R is166
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the number of endmembers. Between each convolutional operations a dropout operation is performed to167
prevent the overfitting of the data, except at the first convolutional operation as the input data is directly168
applied to the convolutional operation. Then, the ANS constraint for the abundances maps is performed by169
the softmax function.170

L = − 1

P

P∑
i=1

(αi log α̂i) (8)

Next, at the decoder a 2-dimensional convolutional operation is performed to reconstruct the hyperspectral171
images with filters of size (7× 7× 198); the weights of the last layer are the extracted endmembers for172
each image.173

Figure 1. Architectural illustration of the NSAE-SU for performing the spectral unmixing, extracting the
abundances maps, and endmembers. The input patch for the model corresponds to the extracted patches of
the original image which is the input to the encoder, where convolutional operations, batch normalization
(BN), flatten, dense, and softmax operations to extract the abundances maps are performed. Finally, the
decoder performs a dense operation with a linear activation function for endmember extraction.

3.2 Hyperparameter configurations174

The NSAE-SU model is an unsupervised deep learning model autoencoder. The NSAE-SU is programmed175
in Python using the TensorFlow libraries; the encoder and decoder integrate the model. Estimating the176
abundances map is done by the encoder, and endmember extraction is done by the decoder.Estimating the177
abundances map is done by the encoder, and endmember extraction is done by the decoder. The encoder178
uses the Leaky Relu activation function with a slope of 0.1 in four 2D convolutional processes to estimate179
the abundance map; after the first 2D convolution is applied, custom batch normalization is conducted180
by each batch, removing the gamma factor which is typically performed during a batch normalization181
operation. Then, a dropout with a rate of 0.03 is applied for the consecutive convolutional operations. This182
is performed in the ASC layer, a softmax operation is applied using a scale factor of 3; the details for each183
filter are described in Table. 1. After the abundance maps have been estimated, the decoder executes a 2D184
convolution operation, whose number of filters equals the number of image bands. A non-negative kernel185
is employed to add ASC requirements; since the endmembers must be greater than zero, a kernel constraint186
is applied to avoid the non-negativity. The optimizer employed is the RMSProp, and the learning rate is187
0.0001, with 250 epochs total.188
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Parameter Value

Input data 9× 9
Number of filters Convolution 2D 128
Filters Convolution 2D 3× 3
Number of filters Convolution 2D 64
Filters Convolution 2D 3× 3
Number of filters Convolution 2D 32
Filters Convolution 2D 3× 3
Number of filters Convolution 2D 16
Filters Convolution 2D 3× 3
Number of filters Convolution 2D
decoder

L

Scaling factor 3
Optimizer RMSprop
Learning rate 0.0001
Batch size 20
Epochs 250

Table 1. Configuration of the NSAE-SU model and parameter settings for Jasper Ridge dataset.

3.3 General Pipeline for the HSI2 Lake Erie Images189

This section presents the workflow developed to address the SU of the HSI2 hyperspectral image for
endmember extraction and the estimation of abundance maps. The proposed workflow has five stages, as
illustrated in Fig. 2, and are explained as follows: the first stage is the data representation of the hyperspectral
image in hypercube format with sizes W ×H×L. The second stage is the selection of ROIs; this procedure
is necessary because of the high spatial resolution of the image HSI2 496× 5000; the image is subdivided
into rectangles of small areas in order to cover the entire image [(W1 ×H1 × L), . . . , (Wn ×Hn × L)],
the areas of these rectangles are heuristically chosen. Once the ROIs are selected, the third stage performs
the spectral derivative (SD) to remove the sunglint effects in the image; the SD is given by eq. 9, where x is
the middle band, and k is the step-length, corresponds to the hypercube wavelength.

f ‘ (x) ≈ f (x+ k)− f (x− k)

2k
(9)

The data is represented in a 2D array once the spectral derivatives have been completed in order to extract190
the patches for the suggested model NSAE-SU, the batch sizes have the dimensions 9× 9×L are the input191
data at the model, and the last stage is used to visualize the abundance maps and the endmembers. This192
workflow is executed for each ROI of the HSI2 image.193

The algorithms are executed in a Dell precision server 7920 Rack XCTO Base, Intel Xeon Gold, Graphic194
card 4GB Nvidia T1000, 1 TB SATA hard drive, 64GB RAM, performance optimized.195
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Figure 2. Proposed workflow for spectral umnixing analysis of the HSI2 image

Algorithm 1 Pseudo code of the workflow for performing the endmember extraction and fractional
abundance map estimation for the HSI2 Lake Erie image.

Input: ROI’s
Output: Endmembers extracted, fractional abundances maps.
h← 3
for each roi in range(ROI’s) do

input patches = extract patches(ROI’s)
f

′
(x) = f(x+h)−f(x−h)

2h

endmember NSAE-SU, abundances NSAE-SU = NSAE-SU(f
′
(x))

end for

4 EXPERIMENTAL ANALYSIS

The experiments for the proposed method are conducted on three different datasets of which two are196
benchmark datasets: Samson and Jasper. The other dataset corresponds to the HSI2 NASA flight campaign197
from 2017. The datasets used in the experiments are described as follows:198
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Figure 3. RGB images of the datasets used to evaluate the performance of the NSAE-SU model. Figure.
(a) Samson, Figure. (b) Jasper Ridge, and (c) Lake Erie HSI2 image with ROIs highlighted.

1. Jasper: This dataset has 224 bands, out of which 194 are chosen after the noisy channel correction, and199
has a resolution of 100× 100, the wavelength range of each recorded scene is 380− 2500 nm; Jasper200
dataset has four endmembers, as follows: Road, Soil, Water and Tree.201

2. Samson: This dataset is a hyperspectral image with 156 bands and a spatial resolution of 95× 95, the202
wavelength range recorded by each pixel of this scene is 401− 889 nm. This dataset has three Regions203
of Interest (ROI) selected from the original hyperspectral image, each of which has its respective204
ground truth. Samson datasets have three endmembers corresponding to Soil, Tree, and Water.205

3. HSI2 Image of Lake Erie: This dataset is taken by NASA during the campaign flight of 2017. After the206
acquisition stage, these images were preprocessed for atmospheric correction. The image is called in207
this paper as Hyperspectral image (HSI2), and has a spatial resolution of 496× 5000× 170. The HSI2208
image do not possess ground truth for the endmembers and the abundances maps. Instead, the ground209
truth is extracted from optical water types acquired from field measurements explained in the proposed210
methods section.211

5 PERFORMANCE METRICS

In order to evaluate the performance of the proposed algorithm, the extracted endmembers and fractional212
abundances are evaluated separately. For the endmember extraction, the spectral angle distance is given213
by eq. 10, where m̂i represents the endmembers extracted for the model, and mi are the ground truth214
endmembers.215

SAD =
1

R

R∑
i=1

arccos

(
⟨m̂i,mi⟩
∥m̂i∥2 ∥mi∥2

)
(10)

Frontiers 9



Alfaro Mejı́a et al. spectral unmixing over waterbodies

For the abundances, maps are used to mean square error, given by the eq. 11 where α̂i represents the216
abundances of all pixels for i endmember, and αi are the reference abundance maps.217

MSE =
1

R

R∑
i=1

∥αi − α̂i∥ (11)

6 RESULTS AND DISCUSSION

This section presents and discusses the results of applying the general workflow and the NSAE-SU for218
spectral unmixing analysis of the benchmark datasets and HSI2 Lake Erie hyperspectral images.219

6.1 Endmembers extraction and abundance maps estimation from benchmark datasets:220
Samson and Jasper221

In order to measure the performance achieved for the NSAE-SU at the endmembers extraction (EE)222
and for the abundance maps estimation (AM), it is assessed with Samson and Jasper Ridge benchmark223
datasets. The Samson dataset is also compared with three methods, two of them based on Deep learning,224
such as CNNAEU and UnDIP, and a classical method based on geometrical approaches. The endmembers225
extracted in Samson dataset for the three baseline algorithms and our model NSAE-SU are illustrated in226
Figure.4. The comparison is shown for the endmembers produced from the baseline algorithms and the227
ground truth; each spectral signature is scaled between 0 and 1 to allow for comparison.228

As described in the experimental analysis section, Samsom possesses three endmembers, as follows water,229
soil, and road, the measure used to assess the endmembers’ fidelity is the SAD, described in the section of230
performance metrics in the Table. 2, is shown the performance obtained for the baseline algorithms and231
the NSAE-SU. Our algorithm achieved better performance for the water endmember extraction, obtaining232
0.060 and 0.025 for the soil, and we achieved the best mean SAD. On the other hand, the abundance maps233
are evaluated for the RMSE metrics. In this case, our algorithm achieves better results for the water, 0.091,234
and soil, 0.187, compared to the other baseline algorithms.235

236

Method/
Materials NSAE-SU UnDIP CNNAEU VCA

Water 0.060 0.130 0.113 0.200

Tree 0.029 0.022 0.041 0.055

Soil 0.025 0.040 0.048 1.839

Mean SAD 0.038 0.064 0.067 2.095

Table 2. Comparison between the models UnDIP Yu et al. (2022), CNNAEU Yu et al. (2022), VCA
Ranasinghe et al. (2020), and our NSAE-SU model for performing the endmember extraction for the
Samson dataset using the spectral angle distance metric.

237
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Figure 4. Extracted endmembers for Samson dataset using the techniques CNNAE, UnDIP, and our NSAE-
SU model compared with the ground truth. The colors for the endmembers are red-CNNAE, green-UnDIP,
blue-NSAE-SU, and cyan -ground truth. (a) water spectral signature, (b) soil spectral signature, and (c)
tree spectral signature.
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Figure 5. Comparison of the abundance maps extracted from Samson between with the ground Truth (GT)
or reference maps and the following models: CNNAEU Palsson et al. (2021), UnDip Rasti et al. (2022),
and NSAE-SU.

Method/
Materials NSAE-SU UnDIP CNNAEU VCA

Water 0.091 0.426 0.202 1.111

Tree 0.172 0.252 0.172 0.245

Soil 0.187 0.267 0.198 1.284

Mean RMSE 0.150 0.315 0.190 0.879

Table 3. Comparison between the models: UnDIP Yu et al. (2022), CNNAEU Yu et al. (2022), VCA
Ranasinghe et al. (2020), and our NSAE-SU model for performing the abundance map estimation for the
Samson dataset using the root mean square error metric.
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Figure 6. Extracted endmembers for the Jasper dataset performed by the techniques CNNAE, UnDIP, and
our NSAE-SU model and compared with the ground truth. The colors of the endmembers are red-CNNAE,
green-UnDIP, blue-NSAE-SU, and cyan for the ground truth. (a) water spectral signature, (b) road spectral
signature, (c) soil spectral signature, and (d) tree spectral signature.

Method/
Materials NSAE-SU UnDIP CNNAEU VCA

Water 0.077 0.252 0.061 0.139

Tree 0.039 0.149 0.060 0.405

Soil 0.118 0.114 0.140 1.535

Road 0.068 0.086 0.134 0.530

Mean SAD 0.076 0.150 0.099 0.652

Table 4. Comparison between the models: UnDIP Yu et al. (2022), CNNAEU Yu et al. (2022), VCA
Ranasinghe et al. (2020), and our NSAE-SU model for performing the endmember extraction for the Jasper
dataset using the spectral angle distance metric.

The second benchmark dataset studied is Jasper Ridge; this dataset has four endmembers, and the ground238
truth for the abundances maps is given in Table. 4. This table gives the performance for the endmember239
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extraction measured by the spectral angle distance; the NSAE-SU achieved better results for the tree240
endmember, for which the SAD is 0.039, 0.068 for road. The water endmember is the second best result241
with 0.077. The NSAE-SU method also performs well for the mean SAD, it exhibit better results than the242
baseline algorithms with a mean of 0.076. For the abundance maps, better results are obtained for the water243
abundance map with RMSE of 0.1121, and 0.2316 for the soil (see Table. 5).244

245

Figure 7. Comparison of the abundance maps extracted from Jasper with the ground Truth (GT) or
reference maps and the following models CNNAEU Palsson et al. (2021), UnDip Rasti et al. (2022), and
NSAE-SU.

246
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Method/
Materials NSAE-SU UnDIP CNNAEU VCA

Water 0.112 0.201 0.183 2.212

Tree 0.172 0.160 0.199 0.380

Soil 0.232 0.132 0.294 1.754

Road 0.192 0.109 0.308 0.264

Mean RMSE 0.177 0.150 0.246 1.152

Table 5. Comparison between the models UnDIP Yu et al. (2022), CNNAEU Yu et al. (2022), VCA
Ranasinghe et al. (2020), and the NSAE-SU model for performing the abundance map estimation for the
Jasper dataset using the root mean square error metric.

6.2 Endmembers extraction and abundance maps estimation for HSI2 Lake Erie247
Hyperspectral image248

The NSAE-SU model is used to perform the endmember extraction and the computation of the fractional249
abundance maps for the HSI2 image in order to establish the different spectral signatures that the image250
exhibits. The experiment is conducted on the five ROIs selected previously and classified in Manian et al.251
(2022). The selected ROIs are called as follows: red ROI with an area of 25.730 pixels, green ROI with an252
area of 25.344 pixels, cyan ROI with an area of 19.430, blue ROI with an area of 17.856 pixels, and yellow253
ROI with an area of 19.296 pixels, as depicted in Figure 3. Once the ROIs are selected, a spectral derivative254
is used to perform the atmospheric correction, using k = 3, defined heuristically.255

The data is then distributed in a patch size selection of (9, 9, 170); the number of patches changes due to256
the difference in the area of the ROIs, as shown in Table. 6 . Subsequently, each ROI is analyzed, and the257
abundance maps and endmembers are extracted, as shown in the Figure. 8.258

ROI Area Patch size

Red 25.730 (23068, 9, 9, 170)

Green 25.344 (22680, 9, 9, 170)

Cyan 19.340 (17125, 9, 9, 170)

Blue 17.856 (15640, 9, 9, 170)

Yellow 19.296 (17000, 9, 9, 170)

Table 6. Description of the number of patch sizes which are input to the NSAE-SU model. Each ROI is
stacked with size 9× 9× 170 for each area.
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Figure 8. Endmembers extracted from the HSI2 Lake Erie image using the NSAE-SU for each ROI, as
follows, (a) red ROI, (b) green ROI, (c) cyan Roi, (d) blue ROI, and (e) yellow ROI.

Figure 9. Abundance maps extracted from the selected ROIs for the HSI2 image, where AM-0, AM-1,
AM-2, and AM-3 represent the number of the abundance map associated with the endmembers.
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It is essential to compare the recovered endmembers with baseline spectral signatures to conduct the259
analysis; for this case study, we propose two comparison methods. The first is a comparison method to260
analyze the presence of Chl-a spectral signature, which is provided in the paper Ficek et al. (2011) with261
eight curves that possess the following Chl-a concentrations, respectively for each curve: 0.020mgL−1,262
0.038mgL−1, 0.052mgL−1, 0.112mgL−1, 0.276mgL−1, 0.742mgL−1, 0.966mgL−1, 1.660mgL−1.263
Each concentration curve for this analysis will be called Chl-a-1, Chl-a-2, Chl-a-3, Chl-a-4, Chl-a-5, and264
Chl-a-6, respectively. The second method performs the analysis of the spectral signatures as extracted from265
Liang et al. (2017) of Cyanobacteria scum, Nymphoides, Potamogeton, and different proportions of Chl-a266
as follows: suspended solid (SS) concentrations 266.2mgL−1, Chl-a 0.0083mgL−1, SS 228.7mgL−1,267
Chl-a 0.0077mgL−1, SS 127.7mgL−1, Chl-a 0.0034mgL−1, SS 65.9mgL−1,Chl-a 0.0023mgL−1, SS268
28.8mgL−1, Chl-a 0.0024mgL−1, SS 21.2mgL−1, Chl-a 0.0057mgL−1. Each concentration curve of269
Chl-a is called: Chl-a-11, Chl-a-22, Chl-a-33, Chl-a-44, Chl-a-55, and Chl-a-66, respectively to distinguish270
between the labels provided for the first comparison. The SAD metric is employed, the reference spectra271
are the spectral signatures offered in papers Ficek et al. (2011), Liang et al. (2017), and the endmember272
estimation is carried out by NSAE-SU model to execute the comparison.273

Figure 10. Comparison between the spectra provided in Ficek et al. (2011), as ground truth, and the
spectra extracted by the NSAE-SU model illustrating the best match using the SAD metric for the red
and green ROI, respectively. (a) The best match obtained for the red ROI is the Chl-a-3 spectra and the
endmember 1 extracted from NSAE-SU. (b) The best match obtained for the green roi is the Chl-a-2 spectra
and the endmember 1 extracted from NSAE-SU.

In Figure. 10 (a), the comparison between the reference spectra provided by Ficek et al. (2011), and274
the spectra obtained for NSAE-SU for the red ROI is shown. The best approximation for the SAD metric275
is 0.369, which corresponds to Chl-a-3, that possessed 0.052mgL−1 of the content of Chl-a with the276
endmember 1 obtained from NSAE-SU. Figure .10(b) analyzes the green ROI whose best match according277
to the spectral angle distance is 0.311, corresponding to the combination of Chl-a-2 and the second278
endmember extracted from NSAE-SU. The SAD metric obtained for each region of interest using the279
spectra of Ficek et al. (2011) as ground truth, and the spectra obtained using the NSAE-SU method as the280
estimated endmembers are summarized in Table .7, for the best endmembers by each ROI. The comparative281
analysis for the endmembers obtained from NSAE-SU and the ground truth provided by Liang et al. (2017)282

Frontiers 17



Alfaro Mejı́a et al. spectral unmixing over waterbodies

are assessed by the SAD metric for each ROI; the results are summarized in Table. 8, the term endmember283
is used to refer to the spectral signatures extracted from the model NSAE-SU.284

The concentration of Chl-a-33 compared to endmember 1 for the green ROI, Chl-a-44 compared to285
endmember 1 for the cyan ROI, and Chl-a-33 compared to endmember 2 for the yellow ROI provides the286
best curve fitting for the ROIs using the SAD metric. In Figure. 10(b) the best curve fitting according to the287
SAD metric for green and cyan ROIs are depicted. The best concentration of Chl-a for Chl-a-33 is Chl-a288
0.0034mgL−1, and for Chl-a-44 is Chl-a 0.0023mgL−1, respectively.

Red Roi Green Roi Cyan Roi Blue Roi Yellow Roi
Chl-a-1 0.771 0.334 0.382 0.339 0.364
Chl-a-2 0.738 0.311 0.416 0.307 0.328
Chl-a-3 0.369 0.352 0.754 0.463 0.456
Chl-a-4 0.453 0.417 0.798 0.507 0.490
Chl-a-5 0.550 0.408 0.742 0.476 0.453
Chl-a-6 0.605 0.567 0.896 0.629 0.601

Table 7. Results for the SAD metric comparison of the spectral signatures of different Chl-a concentrations
extracted from Ficek et al. (2011), with the endmembers obtained from NSAE-SU.

289

Figure 11. Comparison between the spectra provided from Liang et al. (2017), as ground truth, and
the spectra extracted by the NSAE-SU model according to the SAD metric for the green and cyan ROI,
respectively. (a) The best match for the green ROI is between the Chl-a-33 spectra and the endmember
1 extracted from NSAE-SU. (b) The best match for the cyan roi is between the Chl-a-44 spectra and the
endmember 2 extracted from NSAE-SU.
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Red Roi Green Roi Cyan Roi Blue Roi Yellow Roi
Cyanobacterial scums 0,741 0,639 0,739 0,545 0,798
Nymphoides peltatum 0,845 0,746 0,834 0,635 0,885
Potamogeton crispus 0,786 0,695 0,762 0,587 0,799
Chl-a-11 0,540 0,447 0,447 0,547 0,754
Chl-a-22 0,654 0,617 0,640 0,733 0,857
Chl-a-33 0,448 0,307 0,319 0,376 0,658
Chl-a-44 0,477 0,321 0,307 0,356 0,669
Chl-a-55 0,616 0,549 0,547 0,650 0,822
Chl-a-66 0,619 0,551 0,563 0,659 0,832

Table 8. Results for the SAD metric comparing the spectral signatures of different Chl-a and macrophytes
under different concentrations extracted from Liang et al. (2017), with the endmembers obtained from
NSAE-SU.

7 CONCLUSIONS

An unsupervised deep learning model for the endmember extraction and fractional abundance map290
estimation is presented. The NSAE-SU model performs well for the benchmark datasets, such as Samson291
and Jasper, and for the study case of the HSI2 image over Lake Erie. The model is able to identify the292
endmembers for the water, soil, and road, and the abundances maps for water, road, and trees better than the293
baseline algorithms. Additionally, the spectral signatures extracted using the NSAE-SU model over Lake294
Erie hyperspectral image is analyzed to determine the presence of Chl-a. The 9x9 patch size is determined295
to be the ideal configuration, and the best hyperparameter settings for the model are listed in the Table. 1.296
Additionally, the models operate at a nominal speed of approximately 3 hours and 45 minutes.297
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