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ABSTRACT 
 
Machine learning (ML) models are increasingly being used in many engineering fields 
due to the advancements in ML algorithms and availability of high-speed computing 
power. One of the most popular ML class of models is artificial neural networks (ANN).   
ML is increasingly being used in the design and analysis of composite materials and 
structures, specifically in the constitutive modeling of composite materials with the 
focus on greatly accelerating multiscale analyses of composite materials and structures 
through development of surrogate models. Towards that end, Python-based neural nets 
have been developed to predict initial stiffness and fatigue life of an eight-ply symmetric 
polymer matrix composite laminate.  Two types of neural networks, a Multilayer 
Perceptron (MLP) and a Recurrent Neural Network (RNN), have been established.  
Results show that both neural net type algorithms can provide an excellent estimate of 
initial laminate stiffness as well as fatigue life of eight-ply symmetric polymer matrix 
composite laminates (PMCs).  RNNs are better able to capture the shape of the fatigue 
curve of a laminate.  The resulting tool and GUI can be very useful for system level 
studies to obtain an estimate of desired properties and life of PMC composite laminates. 
Further, the associated surrogate models can also be used in composite multiscale 
analyses to replace the actual physics-based calculations at lower scales and thereby 
significantly increase the computational efficiency of such analyses and thus make 
micromechanics-based multiscale analyses a viable industrial tool for large scale 
structural problems.   
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INTRODUCTION 
 
In recent years, the phraseology artificial intelligence (AI), machine learning (ML) and 
deep learning artificial neural network (ANN) appear in countless articles with a 
promise of achieving self-driving cars, intelligent chatbots, and virtual assistants etc. 
[1].  ANN are a subset of ML, which itself is a subset of AI.  AI can be thought of as a 
process that tries to automate intellectual tasks that are normally expected to be 
performed by humans. As mentioned, AI is much more than ML. Previously, research 
was done in symbolic AI, which does not involve any learning.  Researchers believed 
that by programming a sufficiently large number of explicit rules, human level 
intelligence could be achieved [2]. Such an approach seemed to work to solve logical 
problems such as playing chess; however, it proved insufficient in solving complex 
problems such as image classification, speech recognition, language translation etc. 
which resulted in developing new approaches now known as ML. Today, machine 
learning is being employed in a wide range of computing tasks where designing and 
programming explicit algorithms is infeasible [3]. 

Deep learning, mentioned in relation to ML, refers to systems with more than 
one layer of neurons between the input and output layers and associated weights applied 
to each neuron.  It has been observed that multi-layer networks can learn and interpret 
relations that single layer networks cannot learn. The elements of a neural network are 
nodes or neurons, where weighted signals are combined, and biases added.  In a single 
layer, the inputs are multiplied by weights and then added with a bias, before passing 
through a non-linear activation function.  In a multi-layer or “deep learning” network, 
the inputs are combined in the second layer before being output [4].   It is highly linked 
to optimization techniques as it’s trying to find the most optimum weights for each node 
that will minimize the error between the prediction and the target result.  Figure 1 shows 
the anatomy of a deep learning neural network.  

Another fast-growing discipline with emphasis on reducing the cost and time to 
market of new materials is Integrated Computational Materials Engineering (ICME).  
ICME is an integrated approach to the design of products and the materials which 
comprise them by linking multiple models at different time and length scales [5,6].  At 
present, such analyses that link atomistic scale models to structural scale models are 
extremely resource intensive, often requiring the use of high-performance computing 
platforms.  If some of these analyses at some scales could be replaced by artificial neural 
nets through surrogate modeling, it has the potential to greatly enhance the 
computational efficiency without sacrificing the accuracy required. 
 



 

 
Figure 1. Anatomy of a deep learning neural network 

 
ML is increasingly being used in the design and analysis of composite materials 

and structures, specifically in the constitutive modeling of composite materials with the 
focus on greatly accelerating multiscale analyses of composite materials and structures 
[7,8,9].  Towards that end, our objective is to provide designers a Python-based ML 
surrogate model, that can rapidly predict the initial stiffness (ABD matrices) and fatigue 
lives (S-N Curve) of polymer matrix composite (PMC) laminates.  Since ML models 
typically require large amounts of data for training and validation and this quantity of 
measured data is not readily available, synthetic (virtual/simulated) data is generated 
using NASA’s MAC/GMC (Micromechanics Analysis Code using Generalized 
Method of Cells) computer code [10]. MAC/GMC is a comprehensive, physics-based, 
composite material and laminate analysis tool that utilizes the method of cells family 
(MOC, GMC and HFGMC) of micromechanics theories [11,12]. The current ML model 
has focused on predicting initial laminate stiffnesses and fatigue life of thermoelastic 
eight-ply, symmetric, PMC laminates subjected to stiffness reduction progressive cyclic 
damage. Results show that the trained surrogate ML model provides reasonable 
estimates of the desired composite behavior for a fraction (10-4) of the computational 
cost of the corresponding physics-based model.  Consequently, such an approach will 
lead to efficient, robust, and accurate data-driven design and analysis of composite 
materials and structures.  
 
OVERVIEW OF MAC/GMC COMPUTER CODE 
 
The Generalized Method of Cells (GMC), first developed by Paley and Aboudi [13] and 
the High Fidelity Generalized Method of Cells (HFGMC), first developed by Aboudi et 
al. [14], are semi-analytical in nature, and their formulation involves application of 
several governing conditions (e.g., traction and displacement compatibility) in an 
average sense within a repeating unit cell (RUC). They provide the local fields in 
composite materials, allowing incorporation of arbitrary inelastic constitutive models 
with various deformation and damage constitutive laws. The microstructure of a 
periodic multiphase material, within the context of GMC and HFGMC, is represented 
by a doubly periodic (continuously reinforced) or triply periodic (discontinuously 
reinforced) RUC consisting of an arbitrary number of subcells, each of which may be a 
distinct material (Figure 2). In the case of GMC, the displacement field is assumed 



 

linear, whereas in the case of HFGMC the displacement approximations are assumed 
quadratic, thus leading to a constant and linear subcell strain field, respectively. In fact, 
it is precisely this higher order assumption in the displacement field that enables 
HFGMC to retain its ability to compute nonzero transverse shear stress distributions 
within the composite (i.e., normal and shear coupling) when global tensile loading is 
applied.  This shear coupling is very important when dealing with disordered 
microstructures [15,16]. However, it is also this high-order field assumption which 
makes HFGMC more computationally expensive and subject to subcell discretization 
dependence as compared to GMC. 

Displacement and traction continuity are enforced in an average, or integral, 
sense at each of the subcell interfaces and the periodic boundaries of the RUC. These 
continuity conditions are used to formulate a strain concentration matrix A, which gives 
all the local subcell strains (ϵS) in terms of the global, average, applied strains ϵapplied 
(i.e., ϵS = A ϵapplied). The local subcell stresses (σ) can then be calculated using the local 
constitutive law and the local subcell strains. Finally, the overall RUC stiffness is 
obtained utilizing the local constitutive law and the strain concentration matrix averaged 
over the RUC dimensions. The detailed methodology of GMC and HFGMC and the 
formulation to be embedded within classical laminate theory are described thoroughly 
in Aboudi et al. [11,12]. Also, in these references the superior accuracy of HFGMC over 
that of GMC is demonstrated, consequently in this study HFGMC will be assumed to 
provide the most accurate predictions. 

 
                            a) Doubly periodic      b) Triply Periodic 

Figure 2. Composite with repeating microstructure and arbitrary constituents 
 

Constitutive Models 
The most well-known and widely used constitutive model, Hooke’s law, is written as  

𝜎!" = 𝐶!"#$	𝜀#$                                                                    (1) 
which describes time-independent, linear (proportional) reversible material behavior, 
where Cijkl is the classic stiffness tensor and ekl is the elastic component of the strain 
tensor.  Extension into the irreversible regime has been accomplished by assuming an 
additive decomposition of the total strain tensor into three components, that is a 
reversible mechanical strain 	(i.e., elastic/viscoelastic) 𝜀!"; an irreversible (i.e., inelastic 
or viscoplastic) strain eIij,; and a reversible thermal strain, 𝜀!"&' component. 

𝜀!"&(&)$ = 𝜀!" + 𝜀!"* +	𝜀!"&'                                                           (2) 
or 

𝜀!" = 𝜀!"&(&)$ − 𝜀!"* − 𝜀!"&'                                                            (3) 



 

After substituting expression (3) into equation (1) we arrive at a stress strain relation 
(generalized Hooke’s law) that incorporates irreversible strains as well as reversible 
ones, that is: 

𝜎!" = 𝐶!"#$(𝜀#$ − 𝜀#$* − 𝜀#$&ℎ)	 	 	                                           (4) 
where numerous models describing the evolution of the inelastic strain have been 
proposed in the literature [17-19].  Herein we will confine this initial study to elastic 
constituent materials only. 
 
Continuum Fatigue Damage Model 
The fatigue life of the composite will be predicted utilizing micromechanics and the 
multiaxial, isothermal, continuum damage mechanics model of Arnold and Kruch [20] 
for the matrix constituent. When reduced to its isotropic form (i.e., parameters 
wu , wfl, wm, hu , hfl , and hm  are all set equal to one) this model reduces to the Non-Linear 
Cumulative Damage Rule (NLCDR) developed at ONERA [21].  This model assumes 
a single scalar internal damage variable, D, that has a value of zero for undamaged 
material and one for a completely damaged (or failed) material. The implementation of 
the damage model within GMC and HFGMC has been performed on the local scale, 
thus damage evolves in each subcell based on its local stress state and number of cycles.  
For a given damage level, the stiffness of the subcell is degraded by (1 – D).  Further, 
the implementation allows the application of a local damage increment ΔD, and then 
calculates the number of cycles, N, required to achieve this local increment of damage.  
This approach allows the model to determine the stress state in the composite, identify 
the controlling subcell that will reach the desired damage level in the fewest cycles, 
apply that number of cycles to all subcells, and calculate the damage that arises 
throughout the remainder of the composite.  Then the composite can be reanalyzed, and 
a new stress state determined based on the new, spatially varying, damage level 
throughout the composite RUC.  In this way, the local and global stress and damage 
analyses are coupled.  As the damage in the composite evolves, the stress field in the 
composite is redistributed, which then affects the evolution of damage. 

For an isotropic material, the damage parameters that must be selected reduce to M, 
β and a, while the pertinent equation relating the fatigue life of the isotropic material to 
the cyclic stress state is, 

 

                         
(5) 

where su is the material ultimate strength, sfl is the material fatigue limit (stress below 
which damage does not occur), smax is the maximum stress during a loading cycle,    
is the mean stress during a loading cycle, and NF is the number of cycles to failure.  Note 
that, in the terminology of Arnold and Kruch [20],  𝑎" = 𝑎 !!"

!#
 .  Utilizing equation (5), the 

damage model parameters M, β and ‘a’ can be selected for an isotropic material based 
on the material’s S-N curve (stress level vs. cycles to failure).  Both the fatigue limit and 
the scaling parameter M are general enough to account for the effect of mean stress.  
However, in this study this additional effect is ignored since only one R ratio (R = -1, 
fully reversed) is examined.  A representative S-N curve for an epoxy matrix was 
obtained, and the corresponding fatigue damage model parameters were found to be M 

( )

( )( ) 0
1ˆ max

max
max

>
--+

÷÷
ø

ö
çç
è

æ
-

-
= F

fl

u

F Nfor
a

M

N
sssb
ss

ss
b

s



 

= 150 MPa, β = 9, and a = 0.05, with su = 80 MPa, and sfl = 27.0 MPa.  A plot showing 
the resulting matrix S-N curve is given in Figure 3.    
 

 
Figure 3 — Stiffness reduction fatigue damage model representation for epoxy matrix. 
 
A second damage model within GMC and HFGMC is much simpler and involves 
degradation of a material’s strength due to cyclic loading.  As shown by Wilt et al. [22], 
this type of damage model can be used to simulate the fatigue behavior of fibers that 
occurs in-situ during fatigue of a composite.  The model assumes a logarithmic relation 
between the material’s strength and the number of cycles within a certain range such 
that: 

 

   (6) 

This strength degradation model (Eq. 6) was employed in the present example to model 
the longitudinal fatigue behavior of the graphite fiber.  The necessary parameters for the 
model are su1, su2, N1, and N2, see Example 5d in [23].  The values of these parameters 
chosen for a graphite fiber are shown in Fig. 4. Note that these data were not correlated 
with experiment, but rather chosen based on the expected trend. Given these required 
parameters for the fatigue damage models for each phase in the PMC, macroscopic or 
composite fatigue life of both unidirectional and laminate composites can be simulated.  
Note although creep-fatigue interaction can be incorporated in the above theory, see 
[24], it is not included in the present calculations. 
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Figure 4.  Strength reduction fatigue model parameters assumed for the graphite fiber. 
 
NEURAL NETWORKS 
 
There are different types of deep learning neural networks that have applications in 
different areas [25].  In general, they work well with large amounts of data and have 
multiple layers to learn the input/output relationships accurately.  Generally, the 
anatomy of a neural network can be described by the following objects – (a). Layers, 
which are combined into a network, each containing a distinct number of neurons, (b) 
Input data and the corresponding targets, which is divided into training, validation, and 
test sets, (c) the loss function, which defines the feedback signal used for training, most 
common being mean-squared error (MSE), and (d) Optimizer, which determines how 
learning proceeds and finds the most optimal weights for each neuron that will minimize 
the error.   

Although there are many types of neural nets [26], two types of deep learning 
neural nets have been investigated here – first is a Multi-layer Neural Network, also 
referred to as Multi-layer Perceptron (MLP) architecture and the second is a Recurrent 
Neural Network (RNN).  MLP is the most common and basic deep learning neural 
network that consists of input neurons, multiple layers of hidden neurons, and output 
neurons.   They are a fully connected feed-forward artificial neural network,  sometimes 
loosely referred to as simply ANN.  The other RNN is a type of recursive neural network 
which work on structured data (or data that has some functional relationship) and 
generally have time as the structuring element.  RNN have a loop within that combines 
the previous time step’s data with the hidden or intermediate layer to represent the 
current time step. They can be useful in modeling sequences of data to predict things 
such as future earthquakes and stock market performance and are very useful in 
language translation, speech recognition and many other applications.  In our case, for 
fatigue life prediction (S-N curve) of polymer matrix composites, time is not the 
sequential element. Even though each stress-life pair are independent from each other 
yet are totally dependent upon the specific laminate defined, thus they exhibit a 
functional relationship between each point.  Consequently, an RNN can potentially be 
useful in predicting the fatigue life curve (i.e., S-N curve) as it is a series of stress – life 
data, and thus it is a sequential series data.  

 



 

 
DESCRIPTION OF PMC LAMINATES AND DATA GENERATION 
 
Neural nets inherently require a significant amount of training data depending upon the 
number of inputs and outputs. Typically, in material science the amount of experimental 
data available doesn’t exist in sufficient quantity due to the expense involved in 
generating this data. Consequently, in this study, the physics-based GMC 
micromechanics method was used to generate the large amount of synthetic training 
data. HFGMC micromechanics (a more accurate but significantly more computationally 
expensive, by 2-3 orders of magnitude, compared with GMC) was used to generate 
synthetic data as well.   It was observed that for most laminates considered, there was 
no significant difference between GMC and HFGMC predictions particularly for 
fatigue lives. Stiffness matrices [A] and [D] ([B] =0 for symmetric laminates) and 
fatigue lives (S-N curve) were generated for eight-ply, symmetric, regular1 PMC 
laminates with varying fiber volume fractions as well as varying constituents (fiber and 
matrix) material properties.   A 7x7 RUC, which is available within the MAC/GMC’s 
internal library of repeating unit cells [10], was used to represent the microstructure of 
the composite as shown in Figure 5. Fatigue lives were predicted under a fully reversible 
cyclic uniaxial load applied in the global X direction. Fiber volume fractions and 
constituent material properties were randomly generated between some pre-defined 
ranges and following all applicable laws of material behavior (see Table 1, first two 
columns for the limits used). Twelve input values consisting of ply angles, fiber volume 
ratio, fiber and matrix stiffness-related properties are needed to predict the [A] and [D] 
matrices for the resulting laminate.  To predict fatigue life, 7 additional fiber and matrix 
fatigue parameters (see Table 1) are required, as well as N1, N2, and ‘a’ (which were 
held constant at 1000, 109, and 0.5 respectively) in running the MAC/GMC computer 
code.  Note a reduction in the number of input parameters from 26 (5 for RUC/laminate, 
5 for fiber elastic, 2 for matrix elastic, 8 for fiber fatigue, 6 for matrix fatigue) to 19 was 
achieved by assuming that the fiber strength parameters are related to each other via a 
Von Mises relationship (i.e., √3), see Table II.  In the development of surrogate model(s), 
various neural net methods contained within the Python scripting environment [27] 
were considered.   Note it is also essential that an informatics infrastructure be utilized 
to store not only the data (albeit virtual or real) but also more importantly the meta data 
for both data and ML model(s) to maximize traceability and minimize misuse, see [28]. 
Finally, the applied load is also required.  

The stress versus cycles fatigue curve (i.e., S-N curve) and [A] and [D] matrices 
of approximately 10,000 different laminates were computed and stored as the synthetic 
data. They were divided into training (80%), validation (10%), and test data (10%).  It 
was also noticed that when training either the conventional MLP neural net or the RNN, 
training is much better for fatigue prediction when the data covers the full range of the 
fatigue curve (e.g., life between 1000 and 1E9 cycles).  To facilitate the use of the 
developed surrogate models for the prediction of the ABD matrices and the full range 
of the S-N curve a Python GUI was developed [29].    

 
 
 

 
 

1 Each ply of the laminate has the same thickness. 



 

Table I. Data Generation: Input Parameter Ranges 
Property Upper Lower 

RUC/Laminate Properties 

FVR 0.4 0.7 
Θ1 -90 90 
Θ2 -90 90 
Θ3 -90 90 
Θ4 -90 90 

Constituent Deformation Properties 
Fiber 

Efa, GPa 70 700 
Eft, GPa 70 200 

νfa 0.2 0.4 
νfa 0.2 0.4 

Gfa, GPa 25 200 
Matrix 

Em, GPa 2.5 4.5 
νm 0.2 0.45 

Constituent Fatigue Parameters 
Fiber 

SU11, MPa 2500 9500 
SU21, MPa 300 2500 

Matrix 
Epsm1 0.015 0.03 
Epsm2 0.015 0.03 

β 4 12 
SFL, MPa 15 30 

XML, MPa 80 160 
   

 
Figure 5. 7x7 RUC used for data generation 

 
 
 

 



 

Table II. Implicit relationship between Fiber properties and Matrix properties. 

 

 

 
RESULTS  
 
Two types of neural nets MLP and RNN were developed to predict the laminate stiffness 
and fatigue curves.  Both types of networks provided results with excellent accuracy 
and speed.  
 
Stiffness Prediction 
A standard MLP neural net was trained to predict the stiffness (i.e., A and D matrices) 
for an eight-ply symmetric laminate (i.e., B = 0).  There are 12 input parameters – four 
angles, five fiber elastic properties for a transversely isotropic fiber (axial and transvers 
modulus, axial and transverse Poisson’s ratios, axial shear modulus) and two matrix 
elastic properties for an isotropic matrix (modulus, Poisson’s ratio).  There were 12 
output properties – six components associated with the A matrix (3x3 symmetric matrix) 
and six components of the D matrix (also a 3x3 symmetric matrix).  The specific neural 
net for stiffness prediction had five hidden layers and 26 nodes in each layer.  The mean 
square error (MSE) for stiffness prediction was 0.02.   Figure 6 shows the comparison 
between the ANN stiffness prediction of a random laminate, [-17°/35°/-72°/5°]S, with 
that produced from MAC/GMC (labelled as actual in Fig. 6). Results show excellent 
agreement between the predicted and actual values. It should be noted that when the 
target values are relatively small (e.g., very close to zero), somewhat amplified errors 
can occur.  
 
Prediction of Fatigue (S-N) Curve 
Training of a neural net to predict the fatigue curve for a given laminate configuration 
turned out to be a much more complex process.  The ANN for the fatigue life prediction 
has added complexity where the number of inputs increase from 12 to 19 as the inputs 
for fatigue related properties must be considered as well, see Table 1 and 2. The 
calculation of fatigue life is where the development of an ANN estimator shows its true 
benefit; as physics-based model prediction of fatigue life can take anywhere from 
minutes to hours to compute the entire S-N curve, depending upon the laminate 
specification. Consequently, all fatigue synthetic data (training data instances) were run 
on a Linux cluster.  
 

Fiber properties:
q Et ≤ Ea
q Et/(2(1+νt))≤ Ga ≤  Ea/(2(1+νa))
q SU12 = SU13 = (SU11/Ea)*Et  
q SU14 = SU12/sqrt(3)
q SU15 = SU16 = SU11/sqrt(3)
q SU21  < SU11
q SU22 = SU23 = (SU21/Ea) * Et
q SU24 = SU22/sqrt(3)
q SU25 = SU26 = SU21/sqrt(3)
q X11=SU11, X22=SU12, X33=SU13, X23=SU14, 

X12=SU15 X13=SU16

Matrix properties:
q Su = Em * Epsm1 (failure is based on strain and is 

assumed linear until failure)



 

 
Figure 6. Comparison of NN (predicted) and GMC (actual) output for a random 
laminate, [-17°/35°/-72°/5°]S. 

 
As mentioned before, two different types of neural nets were trained to predict 

the fatigue life of a given laminate as described below. 
 
Multi-Layer Perceptron (MLP) Network 
Also sometimes loosely referred to as simply an artificial neural network (ANN), MLP  
is the most common and the simplest form of a deep learning neural network.  An 
ensemble deep learning neural net was employed.  An ensemble approach is used to 
reduce the variance of neural network models by training multiple models instead of a 
single model and to combine the predictions from these models. This is called ensemble 
learning and it not only reduces the variance of predictions but also can result in 
predictions that are better than any single model. A schematic of an ensemble model is 
shown in Figure 7. 
 
 

 
Figure 7. Deep learning ensemble neural net 

 
Thirty sub-models or neural nets were trained to predict the log of fatigue life 

(Log N) that is expected to be between 3 and 9 given all the inputs for the laminate 
including the fatigue load. Each individual neural net (sub-model) consists of 6 hidden 
layers with 48 neurons in each layer.  The mean square error (MSE) ranged from 0.25 



 

to 0.32 for the 30 sub models.  The output from these 30 sub models was then combined 
using a simple linear stacked model and the overall error (MSE) reduced to 0.104 with 
the mean absolute error (MAE) in Log N being 0.181.   

The fatigue (S-N) curve for a laminate is defined by 10 points (Stress vs. 
Number of cycles to failure pairs). To obtain an S-N curve, the MLP model is called at 
each applied load to predict a single value of life.  About 5000 laminates (50,000 rows 
of data) was used for training and validation while the test data consisted of 
approximately 600 laminates (6000 rows of data each).  These laminates consisted of 
angles that were purely random as well as those with custom angles such as [0], [90], 
cross-ply [0/90], quasi-isotropic [0/±45/90], etc.  Each laminate had a full range of stress 
values which provided number of cycles to failure ranging from approximately 1E3 to 
1E9.  Also, the training set consisted of 40% random and 60% custom laminates.  When 
the trained neural net was tested on validation and test data, it showed that the: 

     
Probability that a prediction will lie within ±10% log of target was 84.4% 
Probability that a prediction will lie within ±20% log of target was 94.6% 
Probability that a prediction will lie within ±30% log of target was 97.4% 

 
Note that ±10% log (N) is approximately equivalent to ±300% of target N, which is 
within typical experimental error, which is in the range of 2x-4x. 

Figure 8 shows the comparison between the neural net prediction of the fatigue 
curve (blue line) vs. the simulated (red line) curves using the physics-based model 
MAC/GMC, for 16 laminates with a mixture of custom and random laminates.  It shows 
that the ANN predictions are a good estimate of the actual fatigue curves, with an MSE 
range of 0.01 to 1.27 for these 16 laminates. However, these predictions are made at a 
fraction of the cost (CPU time and effort) compared to the actual physics-based model 
(i.e., MAC/GMC); e.g., 1.8x10-04 . Note the worst error occurs for the random angled 
laminates.  

 
Recurrent Neural Network (RNN) 
As mentioned before, an RNN was also trained using the same virtual data set even 
though our model and data do not fit the traditional definition of RNN.  However, given 
a specific laminate (volume fraction, ply angles, constituent material properties) 
MAC/GMC predicts the fatigue life (number of cycles to failure) for a given fatigue 
load, thus providing a series of implicitly related points (S vs. N) for a given laminate.  

The RNN consisted of one dense and one LSTM (Long Short-Term Memory) 
layer with 20 neurons each, which was a relatively simple architecture. Unlike the MLP, 
the vector of applied loads is passed to the model once to predict the full S-N curve. The 
MSE for fatigue life prediction was 0.01 and MAE was 0.06 (for log N) for validation 
cases, which is remarkably better than what was achieved using an MLP network.  The 
training/validation data that was used to develop the MLP was also used here.  The 
results on validation cases showed that the: 

  
Probability that a prediction will lie within ±5% log of target was 92%  
Probability that a prediction will lie within ±10% log of target was 98% 
Probability that a prediction will lie within ±20% log of target was 100% 
 

 



 

Note that ±5% log (N) is approximately equivalent to ±200% of target N, which is well 
within the typical scatter range that is observed in experimental data; i.e., 2x-4x. 

The predicted and target S-N response curves for 16 cases randomly selected 
from the validation set are shown in Figure 9. Results indicate that the RNN predictions 
are a very good estimate of the actual fatigue curves, with an MSE range of 0.0 to 0.08 
for these 16 laminates.   Clearly, the RNN model provides overall significantly better 
results than what was observed using the MLP network (see Fig. 7).   
 

 
Figure 8. MLP Comparison of predicted and actual fatigue curves of few laminates 

 
Note the results observed here are opposite to those observed in the case of MPL 

model where the random laminate predictions were substantially worse than the custom 
angled laminates.  This prompted us to investigate the influence of the training data set 
mixture between custom and random angles.  Table III shows the results of this 



 

sensitivity study. Results show that overall accuracy improves when laminates with 
random angles are increased in the training set. As expected, the prediction of laminates 
with random angles improves significantly while laminates with custom angles 
degrades slightly. RNN model fatigue life predictions are in general better, as they are 
better able to capture the shape of the fatigue curve.  

 

 
Figure 9. RNN Comparison of the Actual and Predicted S-N curves of Few Random 
Laminates. 
 
Table III. MSE results given different mixture of data sets for total validation set (µ is 
mean and s is standard deviation) 
  Random (40%) & Custom (60%)  Random (60%) & Custom (40%) 
 MLP RNN MLP RNN 
Total µ = 0.26 

s = 0.93 
µ = 0.04 
s = 0.22 

µ = 0.07 
s = 0.18 

µ = 0.003 
s = 0.12 

Random µ = 0.59 
s = 1.48 

µ = 0.05 
s = 0.3 

µ = 0.03 
s = 0.17 

µ = 0.001 
s = 0.04 

Custom µ = 0.08 
s = 0.19 

µ = 0.03 
s = 0.13 

µ = 0.12 
s = 0.19 

µ = 0.04 
s = 0.18 

 



 

CONCLUSIONS 
 
ANN models using both MLP and RNN were developed to predict micromechanics-
based laminate stiffnesses (ABD) and fatigue life of eight-ply, symmetric, PMC 
laminates.  Deep learning artificial neural nets require a large amount of data for 
training/validation to achieve a certain level of accuracy. Generally, that amount of 
experimentally measured data is not available because of the cost and time involved.  
Therefore, synthetic/virtual data was generated using the physics-based MAC/GMC 
micromechanics model.  The 10,000 laminates simulated required approximately 
15,000 hours of computations.  Results indicate that the ANN based model can indeed 
accurately predict the laminate stiffness (i.e., ABD matrix) and fatigue life response of 
PMC laminates at a fraction of the cost (CPU time) compared to the actual physics-
based model.  Models based on both ANN (MLP) and RNN were able to predict the 
stiffness quite accurately, but in general the RNN model was better able to capture the 
character of the fatigue curve with generally better accuracy and less computational 
time. As such, an ML stiffness and fatigue life estimator tool was developed which 
designers can use for system level studies to obtain an estimate of desired properties and 
life of 8-ply symmetric PMC composite laminates with significantly less resources 
(CPU time, user effort and training). For example, given the generation of an entire 
typical S-N curve took approximately 1.5 hours for MAC/GMC and the surrogate was 
approx. 1 sec, this amounts to a speed up of 1.8x10-04. Similarly, the ply level Neural 
Net based surrogate models can be used in composite multiscale analyses to replace the 
actual physics-based calculations at lower scales and thereby significantly reduce the 
computational times of such analyses. These models thus enable multiscale analyses 
spanning several levels as viable industrial tools.   
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