Moon-to-Mars Planetary Autonomous Construction Technology **MMPACT Material Screening**

Reduced-Cost Construction on the Moon and Mars

MMPACT's goal is to use regolith, available all over the Moon and Mars, in the construction of local infrastructure. Taking advantage of resources at the destination of a space mission is referred to as an In-Situ Resource Utilization (ISRU) and has the potential to save on mission costs. The tradeoff here is that material properties of regolith-based constructions are limited, unless additional materials are added. Additionally, targeted minerals in regolith can be sorted or concentrated in order to change the final properties.

MMPACT Major Milestones

2020: MMPACT project chartered 2020: YET2 Planetary Construction Materials Study 2021-2023: Down-select for landing pad application 2022: Advanced Concepts Office Study 2022: SBIR III award to ICON for development of VMX technology

Landing Pad Down-select

Testing of technologies mature enough to achieve:

- 10⁻³ torr vacuum during fabrication or environmental enclosure CONOP
- Incorporation of new high-glass simulant 3. • Sizing to meet test standards ceramic (ME)

Materials tested:

- 1. Calcium Sulfo-Aluminate binder-based mortar (CSA)
- 2. Vitreous Material Transformation glassy • Multi-layered (min. 2) specimens ceramic (VMX) Molten Extrusion glassy

Down-select Test Matrix

Test Name	Material	Standard #	Standard Name	Test Enviro.	Test Qty.	Specimen Configuration
Compression	Mortar	ASTM C0109	Standard Test Method for Compressive Strength of Hydraulic Cement Mortars	STP	3	Cube
	Ceramic	ASTM C1424	Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature	STP	3	Cylinder
Compression at Cold Temperature	Mortar	ASTM C0109	Standard Test Method for Compressive Strength of Hydraulic Cement Mortars	-192°C	3	Cube
	Ceramic	ASTM C1424	Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature	-192°C	3	Cylinder
Compression at Hot Temperature	Mortar	ASTM C0109	Standard Test Method for Compressive Strength of Hydraulic Cement Mortars	57°C	3	Cube
	Ceramic	ASTM C1424	Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature	57°C	3	Cylinder
Compression After Thermal Cycling Under Vacuum ²	Mortar	ASTM C0109	Standard Test Method for Compressive Strength of Hydraulic Cement Mortars	STP	3	Cube
	Ceramic	ASTM C1424	Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature	STP	3	Cylinder
Layer to Layer Adhesion	Mortar	ASTM C297	Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions	STP	3	Cylinder
	Ceramic			STP	3	
4 Point Bend Flexural Test	Mortar	ASTM C78	Standard Test Method for Flexural Strength of Concrete	STP	3	Rectangle
	Ceramic	ASTM C1499	Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature	STP	3	Disk
Ablation ³	Mortar Ceramic	EM40-OWI-013	EM40 Non-Metallics & Advanced Manufacturing Division Plasma Torch Test Facility Operation Procedure	TBD	6	Cylinder
Coefficient of Thermal	All	ASTM E228	Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-rod Dilatometer	One cvcle ⁴	3	Rectangle

Toolbox Development

- Development of processes and CONOPs
- Applications: landing pad repair or augmentation, roads, habitats
- Variety of materials: ceramics, mortars, alloys, sealants, polymer matrix composites, additives and more

Down-select testing was performed between 2022 and 2023. Only VMX and CSA completed a full-suite of the required test matrix. ME submitted specimens for compression and ablation. Due to unsuccessful technology demonstrations for the necessary envirionmental enclosure, CSA mortar was not considered successful for the down-select test campaign, leaving VMX as the best candidate. In addition to down-select results, VMX showed overall better maturity, versatility and extensibility out of all candidate technologies.

Examples of down-select specimens: (CT image courtesy of EM21; x-ray and digital pictures, Kratos-Southern Research Engineering)

Material	Process	Development & Test Responsibility		
Laser Vitreous Material Transformation (VMX)	Thermal	ICON		
Molten Regolith Extrusion	Extrusion	ICON		
Microwave Multi-Mode Sintered Regolith	Thermal	MSFC/Holly Shulman		
Calcium Sulfo-Aluminate (CSA) Binder/Lunar Regolith Concrete	Extrusion	MSFC		
Na ₂ SiO ₃ /NaOH (Geopolymer) Binder/Lunar Regolith Concrete	Extrusion	MSFC/PSU		
Sulfur Binder / Lunar Regolith Concrete	Extrusion	MSFC/LSU		
AT2LAS Polymer Binder / Lunar Regolith Composite	Extrusion	MSFC/AAT		
Molten Regolith Tile Formation	Extrusion	MSFC/Astroport		
Microwave Near Field Coupler Sintered Regolith	Thermal	MSFC/Radiance		
Magnesium Oxysulfate (MgO) Binder/Lunar Regolith Concrete	Extrusion	MSFC		
Sulfur / Nickel (S/NI) Binder / Lunar Regolith Concrete	Extrusion	MSFC		
Aluminum/Graphite (Low Thermal Expansion)	Extrusion	MSFC		

Examples of MMPACT material and technology development:

Microwave multimode fabrication

setup

Kappler-developed environmental enclosure at ~0.7 atm internal pressure

Post-test CSA tension specimens

Molten extrusion compression specimens

Geopolymer concrete specimens

Magnesium Oxysulfate concrete print

Astroport molten extrusion tile setup

Regolith-based construction materials can be used for a number of applications, such as: **1** Landing pads + blast shields **2** Roads **3** Habitats

Upcoming Work

- Refinement of VMX material properties Lunar Landing pad design optimization
- Systems and materials testing in combined vacuum + temperature testing in a "dirty" chamber (V20)