10 Years of Timepix in Space -
How CERN Detectors are
Supporting Human Spaceflight
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Introduction

Artemis 1 launch Wednesday Nov
16

Carrying 4 Timepix detectors from
the Medipix2 collaboration at
CERN on board to measure
radiation

Part of a larger program at NASA
using Timepix based instruments
for radiation measurement

Why do we care about space
radiation?

How did we get here?
How do we use these detectors

How will we use them In the
future?




Complete List of NASA Timepix Based Flight Hardware

Name Date Flown Mission Location Objective Vehicle Number TPX
REM 2012 1SS LEO Demo ISS 5
BIRD 2014 Orion EFT-1 LEO/MEO |Demo/Science Orion 2
REM2 2018 1SS LEO Ops 1SS 7
MPT 2017 1SS LEO Science 1SS 2
Biosentinel 2020 1SS LEO Science 1SS 1
ISS-HERA 2018 1SS LEO Demo 1SS 3
AHOSS 2020 1SS LEO Demo/Ops 1SS 3
LETS(1) 2023 Astrobotic 1 | Lunar Surface Science Peregrine 1
LETS(2) 2024/5 Berensheet 2* | Lunar Surface Science Berensheet 2 1
HERA 2022 Artemis 1 Lunar Orbit Ops Orion 3
Biosentinel 2022 Artemis 1 Solar Orbit Science Cubesat 1
HERA 2023 Polaris Dawn MEO Science Crew Dragon 1
HERA 2024 Artemis 2 Lunar Orbit Ops Orion 6
HERA 2025 Artemis 3 Lunar Orbit Ops Orion 6

ARES 2025 Artemis 3 Lunar Surface Ops Starship >=1

LEIA ~~2024 CLPS Lander | Lunar Surface Science TBS Lander 1
ARES 2026 Artemis Lunar Orbit Ops Lunar Gateway 2

Highly successful technology transfer from CERN, powering NASA missions for the last 10 years, and likely for the next 10

*Evaluating mission possibility
7 missions flown, 4 missions next six months, 6 missions manifested, > 23 Timepix in Space to date
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Why do we care about radiation Iin space at all?

Astronauts can be exposed to quite a lot of
radiation. For example on ISS, 0.5 mGy/day.
(Average yearly exposure on the ground is 3 mGy/
year).

Most of the time this radiation is “Galactic Cosmic
Rays” containing heavy ions. These can cause
cancer and perhaps other effects.

In addition we also worry about Space Weather

A large reference space weather event in a lightly
shielded vehicle might cause moderate acute
radiation syndrome enough to impact crew.

An exceptionally large space weather event (similar
to those observed in the historical record, but not
the spaceflight era) could cause mission
threatening exposures.

p

High LET radiation
(Heavy lons)

e

"

Cluste red DNA damags

O Excitation
Low LET radiation

(X-rays)

O lonization

Heavy ions cause clustered damage along their tracks,
causing outsize biological effect compared to terrestrial

radiation sources like x-rays. From Tinganelli and
Durante (2020)



Protect crew, keep crew ALARA, enable
longer and more complicated missions,
understand risks of radiation



What Sort of Radiation is there In Space?
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Solar Particle Events

* (Left) Sept 10 2017 flare and CME measured with GOES-16 SUVI
 (Right) Oct 28 2003 CME imaged with LASCO coronagraph

GOES-16/SUVI 195 A 2017-09-10 15:01:14




What can we do about space radiation

Effectiveness of
Shielding*

Predictability Primary Mitigation Risks

Galactic Cosmic
Rays, Surfaces

Particle Belts

Solar Particles




CERN/Medipix Collaboration

1988 - Develops pixel detectors to replace crossed
strips for vertexing in particle physics experiments
after LEP era.

1999 - Pixel detectors designs for LHC experiments

Medipix collaboration formed to bring pixel
technology out of particle physics

1997 - Original Medipix detectors conceived of as
photon counters for x-ray applications

2007 - The energy measuring Timepix originally
conceived for gas detector readout applications

2011 - Miniaturization of Timepix readout systems
at IEAP

A bit of History and Serendipity

NASA/Space Radiation Analysis Group

Shuttle missions to LEO used a standardized set of
hardware (TePC) for crew radiation monitoring.

|ISS instruments were successors to these
detectors

As NASA moved towards exploration missions it
became clear that smaller, more robust systems
would be needed to support exploration goals.

It was also clear that there would be a gap between
Shuttle and next generation exploration systems

Timepix brought to the attention of NASA by
Lawrence Pinsky at the University of Houston in
2008 via Erik Heljne

2012 - 5 Timepix (IEAP Minipix) flown on International Space Station
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Timepix Hybrid Pixel Detectors

Hybrid pixel detectors like Timepix consist
of a pixellated semiconductor sensor
connected to an underlying signal
processing ASIC

Each pixel contains a shaper circuit to shape
the charge pulse from the semiconductor
Into a triangular pulse where length ~ charge

The time over threshold is measured by and
the resultant clock counts can be converted

to an energy deposit in the pixel

In the case of our Timepix detectors, the
sSensor is 256 x 256 pixels of 55um pitch and
500um thickness.

When particles traverse a Timepix detector,
the effect is much like solid state nuclear
emulsion.
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{3 e ’ silicon

Cosmic ray fragmentation interaction in nuclear
emulsion (top) and measured by Timepix detector
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Heavy ion tracks in cells (left) and Timepix (right). (c)
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(bottom) adapted from Cucinotta and Durante (2006)

 The essential point of a Timepix detector for particle tracking applications is that the pixels give you highly
resolved access to the track structure -> you can use this to determine relevant properties of the particle



Timepix Energy Calibration and “The Volcano Effect”

The energy calibration of Timepix detectors was not so
straight forward at first

Initial tests with heavy ions revealed dramatic, hollowed out
cluster shapes dubbed Volcanos (or sarcophagi by some)

For measurement of energies deposited by particles up to
Iron, we needed to manage from 5 keV per pixel, to 10 MeV
per pixel, 3 orders of magnitude.

A side effect of the instruments heritage as an x-ray
iInstrument. No-one in the Medipix collaboration considered
measuring such large input charges

Front end worked fine up to 700 keV

After 700 keV the response continues monotonically up and
can be calibrated with low energy protons

After 2 MeV, the response goes down, but we were lucky -
monotonically again, can be corrected pixel wise or “on the
whole cluster”

The radiation dose, is the sum of the deposited energy in
the sensor divided by the sensor mass.
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Top - “volcanos” as measured with a heavy ions at an accelerator

(bottom) - Timepix calibration curve 4 keV - 8 MeV

SP George et al (2018)



Track Length Calculation

 Tracks in Timepix detectors contain a number of
distinct features including the track skirt and delta
electrons (top)

e Skirt detector artefact from charge induction
interaction with front end in distant pixels.

* Jo calculate track length, remove skirt and delta
electrons to reveal core. Process core 1o get
projected track length.

Figure 3.6: Measurement of the azimuth angle 8 and altitude ¢ relative to the sensor
axes from a penetrating track of length L over a sensor of thickness 7.

LET = 19keV/um, 6 =-21.3, ¢ =75.8
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e Disentangle charge sharing effects -
charge sharing in track causes
characteristic ‘comet’ shape

Lo ~A-B/2-C/2

e Finally calculate track polar angles
based on assumption that track
penetrates sensor (left)
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2012 - First Flights of Tlmep

e In 2012 the first set of 5 REM
detectors (IEAP Minipix) flew to

1SS

 [hese detectors were plugged
INto space station laptops,
acquisition software running on
laptops

» | aptop software would load
configs into units, take frames,
apply calibration and display
dose rate

* All other data analysis done on
the ground, e.g LET, binned
dose etc etc



First Frames from ISS per Larry Pinsky

5000

2000

This is the first SAA image from
the ISS seen during the SRAG
team weekly meeting at NASA
JSC. There was a unanimous
gasp in the room. They all knew
the numbers from other
calculations and earlier
detectors, but the room was
silent for a few seconds until one
of the onlookers exhaled and

said, “Geeez, | knew that the
SAA was bad, but this...”
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North “Polar” Region - Precipitating electrons during

Measured ISS Dose Rates from Timepix - 2014
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ISS Deployment -> Towards the Modern REM2 Network

* Operational experience with the first REM (IEAP Minipix) instruments
* Science data was perfect, and impressive enough to progress to other instruments
 Some failures in early units, one electronics based, the others based on ‘crew interaction’.

* REMZ2 - New network of Advacam Minipix, 500um Si Timepix installed in 2019, now with
USB cables. Software as a windows service to improve uptime.

* Current operational experience of REM2 - detectors have been reliable, some
interesting performance hiccups that needed software/processing work to solve (noisy
frames etc, likely candidate radiation events in FPGA)

e USB cables seemed to have solved attrition issues

 Because of the shared nature of the resource (laptop USB ports) these take up perhaps
more crew time than originally anticipated.
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Short term dose rates

REM2 Science Report - 10/02/22 - 10/09/22 (2022 GMT 275 - 2022 GMT 282)
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Figure 1: REM2 Daily absorbed dose rates in water for last 60 days. SAA : Mcllwain L < 3, B < 23000 nT,
L > 3, GCR : not SAA (includes Polar).
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LET Spectra
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Figure 2: REM2 LET Spectra in silicon over last week (flux * LET to preserve visual area with log(x) scale).
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Hadron showers!

3 Image types:
e with core

Slides on hadron showers courtesy T. Campbell-Ricketts, in submission to LSSR
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Hadron showers!
3 Image types:

e Wwith core

e Wwithout core

e originating in
detector
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Human health implications

 Compact & near-instantaneous mode of dose delivery doesn’t seem to
correspond to epidemiological data and medical effects may not be well

understood

 Hadron showers grow as they propagate through condensed matter, each
daughter can produce more daughters, thus dose measured in a thin wafer of
silicon may greatly underestimate dose to human

* Average yearly fluency in a 2cm? detector is ~100/year. The surface area of a
person is ~18000cm? - Its quite reasonable to assume a person will see

~100k of these showers per year.



BIRD - Battery Operated Radiation Dosimeter

LED

Interface

Connector Battery

Assembly

Carrier Board

RAM

Processor Board

 The BIRD was our first piece of standalone Timepix based flight hardware.
Battery powered it triggered measurements off a built in accelerometer and
saved the resultant frames to onboard storage



EXPLORATION FLIGHT TEST ONE OVERVIEW
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BIRD - Measurements

Absorbed Dose Rate in H,O [uGy/min]
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HERA is ‘HERA’
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HERA Top Level Overview

HERA was the first effort to build a fully autonomous
radiation monitoring instrument for NASA exploration
programs, specifically the Orion spacecraft

HERA performs real time onboard calibration and PID/
binning

Each HERA consists of an HPU (HERA processing unit)
and two HSU'’s (HERA Sensor Unit), each containing a
timepix for a total of 3

Many challenges - needed to implement full on board
data processing chain due to limited telemetry
bandwidth (1.5 kB/min)

Data processing provide dosimetry, science data, crew
display and caution and warning data

Mass = ~1.5 kg (not including cabling), power
consumption 9W

Three HERA Flight Strings for Artemis 2
during calibration at BNL Tandem



Techniques for particle ID and data analysis with Hybrid Pixel Detectors

 Based on measured track polar
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EM2 Science Binning and V&V Campaign

* HERA performs real time onboard calibration and
binning utilizing the techniques outlined in the previous
section (also see supplementary slides)

e HERA telemeters a 500 byte science message every minute

 Contains per sensor dose rates and per sensor
spectroscopic flux binning.

 Flux bins on a 5 minute rotating schedule
e Science V&V testing at NSRL and CPC
e NSRL testing verifies spectroscopic capabilities

e CPC testing verifies dosimetry and flux measurements in a
continuous charged particle beam.

Bins Contents
1- Protons
2 CNO
3 APE
4 LET (1) (0.1 - 10 keVV/um)
5 LET (2) (10 keV/um - 1 MeV/um)
HERA Telemetry Binsets
Bin nBins Energy Range
Proton 21 5 MeV, 1 GeV+ ~Log
Alpha 6 0- 100 MeV+ Lin
CNO 19 100 MeV/A-1.5 GeV/A Log
Neon+ 1 Inclusive
Interaction 1 Inclusive
Photon 13 5 keV - 50 keV ~Lin

Electron 1 Inclusive



Environmental Qualification Campaign

More stringent environmental constraints than before due to
hard mount in Orion on SLS

Random Vibration - Placed on table and shaken, qualification
vibration level at 12.1 G’s (RMS), Vibration spectrum from
20-2000 HZ

Shock test (Pyro decoupling simulation). 5380g’s at 10000
Hz.

Timepix chips popped off board during shock. Issue with
epoxy, which was 2 part cured at room temperature. Heating
‘advanced the cure’ which made it brittle. Switched to a
softer epoxy that cures at an elevated temperature.

Thermal Vacumn testing - 32F (-36 C) to 162 F (72 C) and 10-5
Torr (1 mPa).

8 cycles of 6 to 8 hours per cycle. 1 hour cold soak, 2 hour
hot soak.
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AJTEMIS 1

The first uncrewed, integrated flight test of NASA’s Orion spacecraft and Space Launch System rocket, launching from a modernized Kennedy spaceport

‘ ;ﬁ;’ ':ﬁ: Orion lift ‘ SPLASHDOWN ‘ ENTRY INTERFACE (EI) ‘ OUTBOUND TRAJECTORY OUTBOUND POWERED FLYBY (OPF)
off from pad 39B at Pacific Ocean landing within view Enter Earth’s atmosphere CORRECTION (OTC) BURNS 62 miles from the Moon;
Kennedy Space Center of the U.S. Navy recovery ships N targets DRO insertion
Thm,
‘ ;E)ngg:g OCKET g ‘ FINAL RETURN TRAJECTORY Heliocentric Disposal

CORRECTION (RTC) BURN precludes re-contact

Solid rocket boosters Precision targeting for
separate _ Earth entry @ oreiT INSERTION
‘ JETTISON b Y Enter Distant Retrograde
LAUNCH ABORT s d Orbit for next 6-23 days
SYSTEM (LAS) o7
The LAS is no //’
longer needed, Pt DISTANT
Orion could Pl RETROGRADE
safely abort ORBIT (DRO)
o Orbit Maintenance
CORE STAGE ¥ 7 @ OUTBOUND TRANSIT burns and solar
MAIN ENGINE . : .
Requires several attitude maneuvers panel adjustments;
CUT OFF (MECO) .
and separation 38,000 nmi from the
surface of the Moon
ENTER EARTH
ORBIT
Perform the perigee 7 ‘ ‘ ’ ‘ DRO DEPARTURE
CUBESATS DEPLOY

raise maneuver Leave DRO and start

7
7
/.
// L}
s\“

e ICPS deploys 13 CubeSats total
EARTH ORBIT 4 N 7 return to Earth
Systems check and \ lg -7
solar panel adjustments o RETURN POWER FLY-BY (RPF)
| INTERIM CRYOGENIC PROPULSION @ reTurN TRANSIT 15 RPF burn prep and return

Return Trajectory Correction (RTC)

SFHHAA
TRANS LUNAR ® STAGE (ICPS) SEPARATION - : coast to Earth initiated
\ INJECTION (TLI) BURN The ICPS has committed Orion to TLI burns as necessary to aim for Earth’s
f Burn lasts for approximately atmosphere; travel time 3-11 days

- ...

20 minutes

AJTEMIS —— Launch -~ Earth Orbit — Trans Lunar — Lunar Orbit — Trans Earth — Earth Re-entry --- Payload Orbit/Disposal AJTEMIS |




HSU Starboard

HSU in Shelter
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Biosentinel

Biosentinel is a radiation biology experiment

Contains dehydrated micro wells of yeast, including variety
that does not repair DNA damage well

Yeast will accumulate radiation damage throughout flight and
be rehydrated through flight to measure growth rates

First study of biological response to space radiation outside
LEO since Apollo

Timepix based radiation sensor included in cubesat, similar
capability to HERA

Launched into a heliocentric (solar) orbit on Artemis 1

Nominal operations for 6 months, radiation data (dose, LET
spectra etc) on 1 hour cadence.

Good chance to see space weather events etc

AJ Ricco et al (2020)




Current Status

Artemis 1 launched November 16th
(wednesday) morning at ~7:50 Geneva time

HERA successfully turned on at 50,000 ft
as planned

Sending back (sensible looking) real time
telemetry on a minute wise cadence to
MCC radiation console

Artemis 1 successfully performed Trans
Lunar Injection burn 1.5 hours after launch -
on its way to the moon now (177,309 miles
from Earth this morning).

Biosentinel deploy ~ 2 hours after launch (no
updates on status, run out of NASA AMES)
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LETS stands for the “Linear Energy Transfer Spectrometer”

Goals - measure radiation environment on moon as precursor to
lunar missions, measure dynamic environment during cruise,

measure space weather events if we are lucky enough to observe
one.

Small, single Timepix instrument on the top deck of the
Astrobotic Peregrine (unmanned) lander

Scheduled for launch of first flight of ULA Vulcan Centaur, Q1
2023

Cruise phase ~40 days to moon

During cruise phase telemetry data on 60 minute cadence, same
as HERA with higher resolute LET/Stopping power spectrum

10 days operations on lunar surface

During surface phase telemetry data on 1 minute cadence, same
as HERA with higher resolute LET/Stopping power spectrum

hermal main constraint for mission - we are sun facing during
some phases. Biggest concern lunar noon (may need to siesta).
Optimized Timepix for stable operation up to 80C ambient.

LETS on Astrobotic Peregrine




Peregrine (and LETS) will launch in the first quarter of 2023 on the first launch of the ULA Vulcan Centaur
rocket







Polaris Dawn

* Polaris Dawn is the second free flying private
spaceflight from SpaceX following the
“Inspiration 4” flight in 2021. It is being privately
funded by Jared Isaacman.

* This is a significant free flying spaceflight. The
Polaris Dawn crew has a full roster of science for
their 5 day flight. They will ascend to a 1400 km
altitude and perform a spacewalk.

 From a radiation point of view, the high flight
path includes several high altitude Van Allen Belt
traversals with significantly higher proton fluxes

 We are flying a space HERA instrument (HPU
only) to support Polaris Dawn.



Altitude (km)

Proton > 100 MeV, N/cm?.s

Altitude vs Time
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ARES, CEPS Future Missions

 ARES is the NASA’s next Timepix based instrument for |V
monitoring

e Currently manufacturing 20x flight units to support HLS
SpaceX starship), NASA Gateway (planned lunar space station
hosting a number of ESA Timepix payloads) and future CLPS
missions

* Future CLPS flights include LEIA, a biology experiment similar
to Biosentinel destined for the lunar surface.

 CEPS (Compact Electron Proton Spectrometer) is an EV
instrument for electron spectroscopy 0.2 - 2 MeV, and proton

—

missions.



ARES CEPS




HERA and the future Artemis Vehicles

. . e
Artemis lll Concept of Operations

Moon

-
®,

Loiter

> q.—
Crew transfer Crew transfer
Propellant fill rast LI ]

— Crew returns
ARES to Earth

Propellant  HLS Starship  Extended loiter if Orion launch Variable Crew returns to
aggregation launches needed Stay on the Moon Orion




Thank you for your attention

And thanks to everyone here (there are many) who helped make this
program the success it is today



10 Years of Timepix in Space
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Single Layer Telescope

/ 7/
Dividing pixels into virtual telescope layers
(Subclusters)

Example “Virtual telescope layers”

 Most space instrumentation is some form of particle telescope - stacks of
monolithic detectors - e.g. MERIT on left (from Kanekal et al, “dJGR Space

Physics” (2019)

* One insight that helped to bridge the gap between imaging detectors like
the Timepix and more conventional space instrumentation is that the tracks

in the Timepix can be thought of as passing through a large number of
‘virtual telescope layers’ - a so called “Single Layer Telescope”.



Maximum Likelihood for Proton Energy ID .« ‘ ' — Cluster SRIM
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dramatically improve the measurement of >"
proton energy g )

400 ;",
Calculate likelihood of measuring sub S
cluster dE/dX for given energy N

% — 200 400 —_— 800 1000

Inferred particle energy (MeV)

P(E|AE, Ax) x P(E) x P(AE|E, Ax).

 Maximise likelihood by calculating product . | m FEIH FI |
of likelihoods over range of energy A s

S
o0

-
5
Equivalent number of telescope layers

P(Ej|AE, ...,AE,, Ax) HP ) x P(AE;|E;, Ax). Eo | PIH T FI I
» Good results for Ilkellhood of sub cluster e | | i ﬁ
dE/dX from theoretical calculation, best for 26 NN s s 7
Monte Carlo model w. charge sharing N H L 'm = T
Appl. Phys. Lett. 112, 134103 (2018); https://doi.org/10.1063/1.5024920 0 | 2(:30 4(:)0 600 860 1000 1200 1400 1600

Energy (MeV)



dE/dE Plots

| lllllll

first 500um of track against sub

3
cluster energy in last 500um of track e

€
=
>
)
==
. . o
* Plot sum of sub clusters energies in S T
’;?-
O
L
L=/
3
ke,

* |D technique for H/He isotopes

10°

80r * | | : = 0
(a) E,,, = 12.24 MeV 5 [

60 AE,  AE,

4.0 MeV:8.1 MeV -

40} E : -

20

10

2500 2000 1500 1000 500 0

801 (p) = : | -
60 AR E, ;.= 22.30 MeV A

' 1 ' ,

2.3 MeVi

* g [ s
- » .

_1";f.1'1m1]LL11|1L1111111J1111|1111

—1 -0.5 0 0.5 1 1.0 2
log 1 0(dE/dxz) [log : (keV/um)]

2500 2000 1500 1000 500 0 A - MIP Proton, B - Slow Proton/MIP He, C -
distance from stopping point (um) D - Stopping Hydrogen, E - Stopping Deuterium, F - Stopping Tritium

G - He3/He4

H - Nuclear interactions from proton

40
20

stopping power (keV/um)

0

Appl. Phys. Lett. 113, 174101 (2018); https://doi.org/10.1063/1.5052907



Frame Dose Rate (uGy/min)

Dosimetry V&V at Chicago
Proton Center (2 Slides)

Dropped frames vs measured dose rate
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Dosimetry V&V at Chicago Proton Center
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