Testing the Exploration Conops (Excon) Mockup Suit in Lunar Analog Environments in 2022

International Conference on Environmental Systems

July 16-20, 2023 Calgary, Alberta Canada

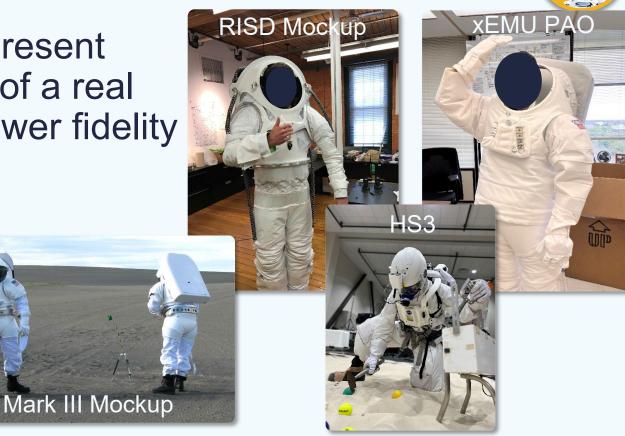
DATE

CONTRIBUTORS

PREPARED BY

7/16/2023

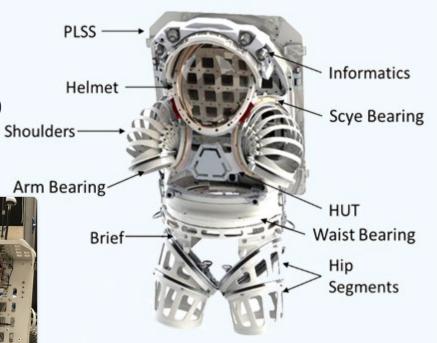
Kris Davis, Christine Flaspohler Zach Tejral



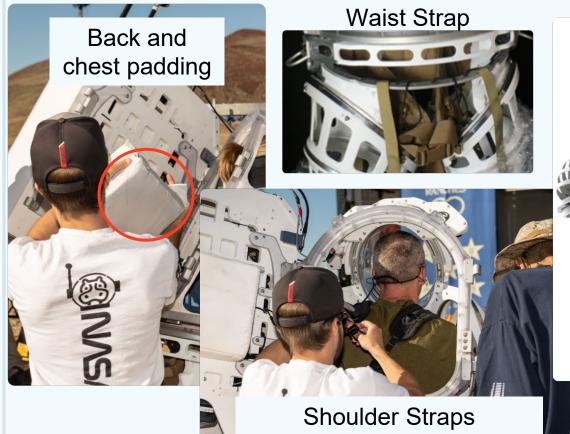
Suit Overview

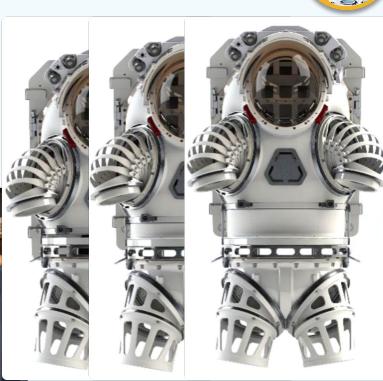
Mockup Suit Background

 Purpose: To represent some aspect(s) of a real spacesuit in a lower fidelity package.



Exploration ConOps (Excon) Design




- Based on Exploration Extravehicular Mobility Unit (xEMU)
 - Informatics: Camera & Lights
 - Helmet
 - Small & Large Hard Upper Torso (HUT)
 - 6 pivot rolling convolute shoulders
 - Mobile Lower Torso Assembly (LTA)
 - Waist Flexion/Extension
 - Waist bearing
 - 2 bearing hips
 - Volumetric Portable Life Support System (PLSS)
 - Field Communications

Sizing/Indexing

Waist sizing

Donning/Doffing

TEAM REAL TRANSPORTER TO THE PART OF THE P

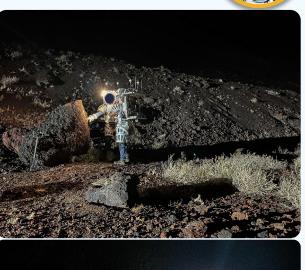
- Height adjustable donning stand
 - Lower suit and subject steps in
 - Raise suit, tighten waist strap, shoulder straps
 - Install PLSS, egress donning stand, install helmet

Volumetric Performance

- Upper torso and PLSS are good volumetric representations of xEMU
- LTA is reasonably accurate after some modifications
- Arms, legs, hands, and feet are not well represented but not critical for majority of use cases

Mobility Performance

- Total range of motion
 - Some similarities to xEMU in isolated aspects
- Motion performance
 - Unpressurized
 - Different from xEMU in:
 - Necessary Mental Bandwidth
 - Joint "programming"
 - Required force



JETT Testing

JETT1

TEAM OF ANSA A SOLUTION OF A S

- Location: Kilbourne Hole by El Paso, Texas
- Test Goal: Initial Field Deployment of Excon Mockup Suits with a focus on at-station operations
- Test Time:
 - 7 subjects up to 2 hour test duration each

JETT1 Key Lessons Learned

- Lessons Learned
 - Excon is a useful tool for station ops in field
 - Improves simulation quality relative to shirtsleeve/backpack
 - Helps keep subject in suited mindset
 - 3 out of 7 subjects reported medium to heavy inner thigh contact
 - Subject familiarization
 - Critical to provide subjects with sufficient predeployment evaluation time (fitcheck, rockyard, etc.)
 - Subject feedback indicated suit system weighed too much
 - Not measured but expected to have been ~125lbs between suit, communications gear, and tools.

JETT2

- Location: Icelandic Highlands
- Test Goal: Perform full-scale EVA in high lunar fidelity environment
- Test Time: 1 Subject 4 hour EVA

JETT2 Key Lessons Learned

- 4 hour simulated EVA is possible but is physically challenging
- Updated hips improved inner thigh contact
- Suit weight is biggest issue
 - Suit system weight ~100lbs for majority of run (partial tool offloading)
 - Cumulative fatigue
- Waist belt comfort should be improved for long duration simulations

JETT3

- Location: SP Crater by Flagstaff, Arizona
- Test Goal: Artemis III EVA mission simulation in low light conditions
- Test Time: 2 subjects 3.5 hour EVAs on back-to-back days (EVAs 3 and 4 performed in field backpacks)

JETT3 Key Lessons Learned

- Back-to-back 3+ hour EVAs doable but very physically challenging
- Suit weight dominating source of crew fatigue
 - No opportunity for improvements between JETT2 and JETT3
- Waist belt comfort should be improved
 - Comfort padding was utilized but difficult to implement
 - Adjustments made during EVAs in an effort to improve subject comfort
- Front of thigh bruising due to hip design

Conclusions

- The Excon, and unpressurized mockup suits in general, are not useful for training subjects on how to operate a pressurized spacesuit
- In some cases, the Excon improves simulation quality for field testing by requiring subjects to think about suit impacts without the overhead of a pressurized suit
- Further weight savings are required to improve simulation quality and use cases

