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[bookmark: _Toc135038307][bookmark: _Toc135238144][bookmark: _Toc137637955][bookmark: _Toc132039227][bookmark: executive-summary]1	Executive Summary
Since the launch of the Soil Moisture Active Passive (SMAP) satellite mission in 2015, post-launch calibration and validation (Cal/Val) activities have been guided by two primary objectives: 1) To calibrate, verify, and improve the performance of the science algorithms; and 2) to validate the accuracy of the science data products as specified in the SMAP Level 1 mission science requirements. This report provides an assessment of the latest, Version 7 (V7) SMAP Level 4 Carbon (L4_C) product. The L4_C global record now spans eight years (March 2015 – present) of SMAP science operations, including seven major reprocessing updates to the operational product. These updates include various L4_C algorithm refinements and calibration adjustments to account for changes in ancillary inputs.
The SMAP L4_C algorithm estimates a global, daily terrestrial carbon budget that is informed by daily surface and root-zone soil moisture information from the SMAP Level 4 Soil Moisture (L4_SM) product and by land cover from the Moderate Resolution Imaging Spectroradiometer (MODIS), canopy fractional photosynthetic active radiation (fPAR) from the Visible Infrared Imaging Radiometer Suite (VIIRS), and other ancillary biophysical data. The L4_C product provides estimates of global, daily net ecosystem CO2 exchange (NEE) and the component carbon fluxes, namely, vegetation gross primary production (GPP) and soil heterotrophic respiration (RH). Other L4_C product elements include surface (ca. 0-5 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints, including soil moisture-related controls on GPP and RH ecosystem respiration (Kimball, Jones, and Glassy 2014; Jones et al. 2017). The L4_C product addresses SMAP carbon cycle science objectives by: 1) Providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture-related constraints; 2) Documenting primary connections between terrestrial water, energy and carbon cycles; and 3) Improving understanding of terrestrial carbon sink activity.
L4_C is calibrated against eddy covariance (EC) tower CO2 flux measurements, which are a proxy for terrestrial ecosystem NEE. The L4_C product has self-imposed performance requirements related to NEE, the primary product field for validation, although the other L4_C product fields (namely GPP, RH, and SOC) have demonstrated utility for carbon science applications (Liu et al. 2019; Endsley et al. 2020; Wurster et al. 2021). The L4_C targeted accuracy requirement is to stay below a mean unbiased root-mean-square (RMS) error (ubRMSE, or standard deviation of the error) for NEE of 1.6 g C m-2 d-1 (or, equivalently, 30 g C m-2 yr-1), emphasizing northern (≥45°N) boreal and arctic ecosystems; this accuracy is similar to that of EC tower CO2 flux observations (Baldocchi 2008). The methods used for L4_C performance and validation assessment have been established from the SMAP Cal/Val plan and previous studies (Jones et al. 2017; Endsley et al. 2020) and are reported here for L4_C V7.
Our primary validation compares L4_C V7 estimates of NEE, GPP, and ecosystem respiration (RECO) to EC tower flux measurements at 26 globally distributed SMAP Core Validation Sites. We also compared the L4_C V7 mean annual fluxes, interannual variability, and short-term trends to the recent literature and to independent reference datasets, including: solar-induced fluorescence data from the Orbiting Carbon Observatory-2 mission; global, up-scaled EC tower fluxes from an ensemble of machine-learning models; global soil carbon inventory records; an ensemble of dynamic global vegetation models; and two indices of recent (2015-2022) climate oscillations.
V7 shows a slight, statistically insignificant increase in RMSE compared to the previous version, largely owing to the unavoidable change from MODIS to VIIRS fPAR inputs. The L4_C product continues to exceed the target NEE accuracy and continues to show favorable accuracy for GPP and RECO. GPP and RECO interannual variability also show good agreement with independent estimates, particularly in the northern hemisphere. A comparison of recent L4_C flux variability with the literature and with El Niño Southern Oscillation indices demonstrates that L4_C can represent the response of the terrestrial carbon-cycle to moisture and temperature variability, particularly in southern, semi-arid regions. Similarly, L4_C surface SOC anomalies in the southern hemisphere show variability that closely corresponds to recent drying and re-wetting trends.
These assessments underscore the utility of L4_C for diverse science applications; indeed, L4_C surface SOC was recently used in a NASA DEVELOP project, sponsored by Conservation International, for assessing the spatial and temporal variability of irrecoverable carbon reserves (Noon et al. 2021) in Peru and Bolivia. Other recent examples include the use of L4_C for constraining the magnitude and timing of the northern hemisphere land carbon sink (Endsley et al. 2022; Watts et al. 2023); estimating the impact of the COVID-19 pandemic on global carbon emissions (Ray et al. 2022); evaluating the impact of changes to a land surface model (Huang et al. 2022); diagnosing the response of ecosystem productivity to extreme climatic events, including droughts, heatwaves, and ice storms (Li and Wei 2020; Kwon et al. 2021; Dannenberg et al. 2022; Yang and Liu 2023); and regional monitoring of cropland conditions for projecting annual crop yields (Wurster et al. 2021).


[bookmark: _Toc135238145][bookmark: _Toc135038308][bookmark: _Toc137637956]2	Version 7 Algorithm and Product Updates
The updates in the L4_C Version 7 (V7) algorithm address changes made to the L4_SM drivers as part of L4_SM V7. These include changes to L4_SM estimates of root-zone soil moisture, surface soil moisture, and surface soil temperature, which are used to drive the operational L4_C V7 product. In addition to these changes, L4_C V7 was recalibrated using the L4_SM Nature Run version 10 (NRv10), a multi-decadal simulation using the L4_SM V7 land modeling system that is not informed by SMAP brightness temperature retrievals. Model spin-up to the soil-organic carbon equilibrium state was also changed in V7. While the L4_SM Nature Run climatology (2000-Present) was previously used in L4_C spin-up, in V7 we instead used the L4_SM ensemble Open Loop (2015-Present) climatology to minimize the difference in climatology between the L4_C spin-up and forward operations. No changes were made to the core L4_C algorithm.
Another major change in L4_C V7 is the adoption of a new fraction of photosynthetically active radiation (fPAR) dataset, which is used as a key model input for estimating vegetation productivity. In all prior versions of L4_C, fPAR data were obtained from the Terra MODIS MOD15A2H product. However, as the Terra satellite is nearing the end of its mission (Endsley et al. 2023), it has become imperative to switch to a new source of fPAR data with global coverage, favorable performance, and low latency matching those of the MODIS heritage record. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensors aboard the Suomi NPP (SNPP), NOAA-20 and NOAA-21 satellites are similar to the MODIS sensors aboard Terra and Aqua, and a VIIRS VNP15A2H fPAR product is already available. Therefore, L4_C V7 is the first L4_C product version using VIIRS fPAR data. Prior to recalibration, we applied a bias correction, using cumulative distribution function (CDF) matching, to our MODIS Collection 6.1 fPAR data so as to better match VIIRS Collection 1 fPAR at eddy covariance (EC) tower sites. This is necessary because most of our EC tower flux data were collected prior to the launch of SNPP VIIRS. The operational L4_C V7 product is run exclusively using the VIIRS VNP15A2H Collection 1 product as the sole fPAR input.
We recalibrated the L4_C model Biome Properties Look-up Table (BPLUT) by optimizing L4_C predicted GPP and RECO fluxes against observed GPP and RECO fluxes from a global network of 356 EC flux towers (Pastorello et al. 2020; Ukkola et al. 2021). New calibration software was used in L4_C V7; the major difference is that an open-source re-implementation of Sequential Least-Squares Quadratic Programming (Kraft 1994; Johnson 2023) was used instead of the default, closed-source implementation in Matlab. As in the previous L4_C Version 6 (V6) calibration, in V7 soil litter decay rates were again adjusted to improve L4_C agreement with independent datasets in the initial size of soil organic carbon (SOC) stocks. Following recalibration of the BPLUT, the L4_C initial SOC pool sizes were initialized as described by Jones et al. (2017), based on an updated L4_SM soil moisture and temperature climatology.
[bookmark: _Toc135238146][bookmark: _Toc135038309][bookmark: _Toc137637957][bookmark: l4_c-product-performance][bookmark: _Toc132039229]3	L4_C Product Performance
The L4_C V7 product continues to perform within specified accuracy requirements (Jones et al. 2017), with unbiased root-mean squared error (ubRMSE) in mean daily NEE well below 1.6 g C m-2 day-1 (Figure 1). Relative to the previous Version (V6) product, when compared to observed fluxes at the Core Validation Sites, the V7 product shows stable performance albeit with a slight, statistically insignificant increase in RMSE and decrease in spatial correlations (Figure 2) for NEE, GPP, and RECO. Viewed over the entire, 8-year L4_C production record, however, NEE ubRMSE has generally improved with each new product version (Figure 3).


[bookmark: fig%25252525252525252525253ACVS-ubRMSE][image: Figure 1: Unbiased root-mean squared error (ubRMSE) against observations at eddy covariance (EC) flux towers, averaged for the entire set of 26 Core Validation Sites, for net ecosystem exchange (NEE), gross primary productivity (GPP), and total ecosystem respiration (RECO).]
[bookmark: fig%25252525252525252525253ACVS-ubRMSE1]Figure 1: Unbiased root-mean squared error (ubRMSE) against observations at eddy covariance (EC) flux towers, averaged for the entire set of 26 SMAP Core Validation Sites, for net ecosystem exchange (NEE), gross primary productivity (GPP), and total ecosystem respiration (RECO). Metrics are shown for the L4_C V6 and V7 products with Science Version Identifiers Vv6042 and Vv7042, respectively.
[image: Figure 2: Correlations against observations at eddy covariance (EC) flux towers, averaged for the entire set of 26 Core Validation Sites, for net ecosystem exchange (NEE), gross primary productivity (GPP), and total ecosystem respiration (RECO).]
[bookmark: fig%25252525252525252525253ACVS-Correlat]Figure 2: As in Figure 1 but for the time series correlation coefficient.

We attempted to attribute the change in skill between V6 and V7 for L4_C component fluxes by analyzing the covariation in the change in RMSE (ΔRMSE) and the change in the relevant input driver data. This analysis was performed by pooling data from all tower Core Validation Sites on all available days. For GPP, ΔRMSE may be a function of change in vegetation fPAR (from MODIS fPAR in V6 to VIIRS fPAR in V7), change in L4_SM root-zone soil moisture (SMRZ), or change in the parameterization of the GPP response to SMRZ. For RECO, ΔRMSE may be a function of change in L4_SM soil temperature (Tsoil), L4_SM surface soil moisture (SMSF), or the parameterization of the RH response to either of these.
The 20th and 80th percentiles of ΔRMSE were used as indicators of significant changes in predictive skill (worst increases in RMSE and best decreases in RMSE, respectively). Site-days where GPP skill improved in V7 have higher root-zone soil moisture than in V6 and show little to no change in fPAR between product versions; a decline in GPP skill in V7 is associated with large changes in fPAR as well as drier root-zone soil moisture (not shown).


[image: Figure 4: Unbiased root-mean squared error (ubRMSE) in NEE against observations at Core Validation Sites for each product generation’s release year, beginning with the initial release (2015-16).]
[bookmark: move132033716]Figure 3: Unbiased root-mean squared error (ubRMSE) in NEE against 2015-2017 observations at SMAP Core Validation Sites for each product version by release year, beginning with the initial Version 1 “beta” release in 2015-16.  Product generations 2021 and 2022 correspond to L4_C V6 and V7, respectively.  For each version, the validation period is April 2015 through December 2017; ubRMSE for versions prior to 2018 have been re-validated against the 2015-2017 dataset, for consistency.

The decline in GPP skill is partly due to the change from MODIS fPAR to VIIRS fPAR (not shown); the latter data are known to have different quality assurance (QA) flagging for clouds and aerosols (Yan et al. 2021), and the afternoon overpass of SNPP VIIRS leads to significantly different fPAR retrievals in the tropics (Xu et al. 2018). For optical remote sensing of vegetation conditions in humid or tropical regions, the morning overpass of Terra MODIS is preferable (Tang et al. 2020), and we expect that lower-quality fPAR retrievals in these regions lead to lower-quality GPP estimates. As seen in Figure 4a, VIIRS fPAR shows early saturation at high values in most of the tropics (20 S through 10 N); lower latitudes are also areas where GPP differs the most between V6 and V7 GPP (Figure 4b).
The change in GPP skill is also partly due to a change in the Emult constraint, which may reflect changes in SMRZ, the re-calibrated parameters related to SMRZ, or both (not shown). While site-days with higher GPP RMSE in V7 are often drier than in V6, they almost exclusively show higher Emult values as well, suggesting V7 SMRZ parameters should be re-examined (not shown). In particular, the increased GPP RMSE on drier site-days in V7 is consistent with the reduced sensitivity to SMRZ at higher SMRZ values for deciduous broadleaf and cropland areas (not shown).
[bookmark: fig%25252525252525252525253AGPPfPARCompa][image: Figure 3: A comparison of MODIS and VIIRS fPAR (a) and L4_C V6 and V7 GPP (b), at FLUXNET sites, broken out by month. Subplots show different latitude bands of 10 degrees between 50 degrees S latitude (-50) and 80 degrees N latitude.]
Figure 4: Comparison plots of (a) MODIS and VIIRS fPAR (percent units) and (b) L4_C V6 and V7 GPP, at FLUXNET sites, broken out by season (color-coded symbols). Subplots show results for 12 latitude bands between 50 degrees S latitude (-50) and 80 degrees N latitude; dashed line denotes 1:1 line.

Examining RECO ΔRMSE, we found that site-days with the greatest increase in RECO RMSE between V6 and V7 are generally warmer and drier (not shown). RECO sensitivity to surface soil moisture generally increased in V7. Site-days where RECO RMSE increased most show the greatest changes in both L4_SM SMSF and L4_SM Tsoil between versions; site-days with RECO improvement are associated with virtually no change in the L4_SM data. However, both the best and the worst site-days in V7 show a similar pattern of change in the Wmult constraint. We conclude that while the Tsoil parameterization in L4_C V7 could likely be improved, part of the increase in RECO   RMSE is due to upstream changes in L4_SM SMSF.
[bookmark: move1320337161][bookmark: fig%25252525252525252525253ANEE-ubRMSE-l][bookmark: _Toc135038310][bookmark: _Toc135238147][bookmark: _Toc137637958][bookmark: _Toc132039230][bookmark: differences-from-prior-product-release]4	Calibration and Climate Differences from Prior Release
Model calibration (via non-linear optimization) using updated L4_SM and fPAR driver datasets results in changes to the ancillary BPLUT (Figure 5). Maximum light-use efficiency (εmax) increased for woody plant functional types (PFTs) other than deciduous needleleaf forest (DNF) but decreased for cropland types. This pattern of change can be seen in a map of global changes in mean annual GPP (Figure 6); most of the L4_C land domain shows an increase in mean annual GPP between product versions, but there are notable decreases in global croplands, particularly in Europe, Northeast China, and Central India.
Changes to the SMRZ and vapor pressure deficit (VPD) constraints on GPP are more complicated than changes to εmax. They can be evaluated in terms of whether the linear ramp function became more or less steep between product versions. An increase in the ramp function’s slope is characterized by a minimum bound that increases and a maximum bound that decreases between V6 and V7 (Figure 5); a decrease in the slope is characterized by the opposite changes. An increased slope represents stronger sensitivity but over a narrower range. The range of sensitivity of GPP to VPD (MaxVPD minus MinVPD), as one example, increased significantly for DNF, but this also means that similar changes in VPD produce less of a response in DNF GPP. Croplands and deciduous broadleaf forest (DBF) have higher, narrower sensitivity to SMRZ in V7 than in V6.
The general increase in the BPLUT parameter MaxSM (Figure 5) indicates that the SMSF constraint on RH was slightly relaxed (lower sensitivity over broader range) in V7 compared to V6. RH  declined slightly in tropical and southern temperate evergreen broadleaf forests (EBF) but increased elsewhere, compared to the previous version. RH strongly increased in high-northern latitude shrublands (≥55 N; Figure 7), despite a slight decrease in the decay rate (Kmx) because the temperature sensitivity of RH in shrublands (SHB) increased (Figure 5). This translates into lower surface SOC storage in V7 in this region (Figure 8).

[image: ]
Figure 5: Percent change in BPLUT parameters from V6 to V7. Descriptions of parameters can be found in Kimball et al. (2014, their Table 5). The abbreviations “ENF” through “BCR” refer to, respectively: Evergreen Needleaf, Evergreen Broadleaf, Deciduous Needleleaf, Deciduous Broadleaf, Shrublands, Grasslands, Cereal Croplands, and Broadleaf Croplands.
[bookmark: fig%25252525252525252525253ADiffGPPMaps]
[bookmark: fig%25252525252525252525253ADiffGPPMaps1][image: ]
Figure 6: V7 minus V6 difference in mean annual gross primary productivity (GPP) for 2016-2019 in (a) absolute and (b) relative carbon flux terms.  Relative fluxes are in terms of percentage of mean annual flux. Positive (red) values indicate greater GPP in V7 than in V6.




[bookmark: fig%25252525252525252525253ADiffRHMaps1][image: ]
Figure 7: As in Figure 5 but for heterotrophic respiration (RH). Positive (red) values indicate greater RH in V7 than in V6.

Calibration against tower fluxes resulted in a larger value of Topt in grasslands (GRS; Figure 5) and thus a narrowing of the range of the temperature sensitivity of RH (see equation 11 of Kimball et al. 2014). But the predicted SOC distribution in this land-cover type was still higher than expected, so we manually adjusted Kmx, decreasing the turnover time. Despite these changes, there were no significant differences in annual RH flux or SOC magnitudes. Comparing L4_C SOC from both product versions (V6 and V7) with independent reference data from SoilGrids (v1) 250m surface layer (0-5 cm) SOC storage (Hengl et al. 2017), we find that GRS SOC storage is closer to the SoilGrids estimate in V7 than in V6 whereas SHB SOC has diverged further (not shown). There is still a large under-estimate of SOC storage above 60 N latitude (Figure 8). See Section 5.2 for further discussion.

[image: Figure 7: Latitude-band summary of surface soil organic carbon (SOC) storage in multiple products, including the two most recent L4_C versions (V6 and V7), the SoilGrids 250m product’s top 5-cm layer, and the TRENDYv7 ensemble mean and spread. The ensemble mean from TRENDYv7, which is expected to represent the top 1 meter of soil, has been interpolated to match the top 5-cm estimate of L4_C (Endsley et al. 2020). At left is shown the distribution of L4_C land model pixels.]
[bookmark: fig%25252525252525252525253ASOCLatBands][bookmark: fig%25252525252525252525253ASOCLatBands1]Figure 8: (Right) Latitude-band summary of surface soil organic carbon (SOC) storage in multiple products, including the three most recent L4_C versions (V5, V6 and V7), the SoilGrids 250m product’s top 5-cm layer, and the TRENDYv7 ensemble mean and spread. The ensemble mean from TRENDYv7, which is expected to represent the top 1 meter of soil, has been interpolated to match the top 5-cm estimate of L4_C (Endsley et al. 2020). (Left) Latitudinal distribution of L4_C land area (km2).

[bookmark: _Toc135238148][bookmark: _Toc135038311][bookmark: _Toc137637959][bookmark: _Toc132039231][bookmark: global-peatlands]4.1	Global Peatlands
In L4_SM V7, soil moisture and soil temperature data are informed by a reassessment of the global distribution of, and soil porosity in, peatlands, which impacts L4_C V7 carbon flux and SOC estimates. Areas designated as peatlands in the new L4_SM product have greater soil porosity than in the previous version. This results in potentially significant changes in soil moisture (and, to a lesser degree, soil temperature) inputs in V7 compared to V6. A priori, it is expected that peatlands would be generally wetter and cooler than predominantly mineral soils when situated in otherwise similar climate conditions. However, because of their higher soil porosity in V7, peatlands in L4_C may be modeled as having stronger water limitations on RH and GPP than other soils, given the potentially lower relative saturation because, to first order, the same amount of water input from precipitation has more volume to fill.
We compared L4_C V7 fluxes to L4_C V6 fluxes in high northern-latitude (≥50 N) peatlands at FLUXNET tower sites for each calendar month (not shown). Tower NEE observations indicate that peatland towers (N=21) have lower seasonal NEE amplitudes than non-peatland towers (N=83) above 50 N latitude. L4_C generally reproduces this pattern, except that the differences between peatland and non-peatland towers are much smaller and L4_C predicts a summer-time CO2 sink at peatland towers of equal or greater magnitude than non-peatland towers. When comparing V7 to V6, we find that the seasonal NEE cycle has a larger amplitude in V7 than in V6, and that the summertime CO2 sink strength is enhanced in July and August.
We also compared L4_C V7 fluxes and environmental constraints in peatlands to those of non-peatlands for all pixels in the high-northern (≥50 N) EASE-Grid 2.0 land domain, where peatlands are defined by L4_SM land pixels with an increase in porosity between V6 and V7 (Figure 9). In contrast to both the observed and simulated NEE at FLUXNET sites, monthly NEE distributions for all northern land pixels show larger seasonal-cycle amplitudes in peatlands than in non-peatlands; i.e., peatlands are predicted to be a greater CO2 source in winter and a greater CO2 sink in summer than non-peatlands. The greatest difference between peatlands and non-peatlands in V7 occurs during May, when peatlands are a significantly greater CO2 sink than non-peatlands. This difference is much less pronounced in summer and there is no difference between peatlands and non-peatlands NEE in late summer and fall. This summertime sink activity is enhanced in V7 relative to V6, which otherwise displays the same pattern.
Differences in NEE between northern peatlands and non-peatlands can be partly understood in terms of the RH flux. During the winter, peatlands are a slightly stronger source of CO2 to the atmosphere (i.e., more positive NEE) than non-peatlands (Figure 9) due to a greater RH flux. This greater, mean RH flux in northern peatlands is mostly a result of warmer peatland soil temperatures rather than of wetter soils, which are largely frozen during the northern winter. As winter progresses in northern latitudes, peatland soil temperatures decline more slowly than in non-peatlands and in some years may display short-term increases associated with warmer weather (not shown), likely because of the higher heat capacity associated with the higher water content in peatlands.
In northern spring, however, soil temperatures in non-peatlands increase faster and eventually overtake mean soil temperatures in peatlands. This results in a faster rise in non-peatland RH fluxes. In summary, northern peatlands have smaller amplitudes in the seasonal cycle of soil temperatures, compared to non-peatlands. The higher thermal inertia of peatlands causes them to become a stronger C source in winter and a stronger C sink in spring (Figure 9). By mid-to-late summer, mean peatland NEE is largely consistent with that of non-peatlands. When we compare the monthly NEE flux distributions (peatlands versus non-peatlands) in V7 to that of V6 (not shown), we find that these patterns are enhanced in V7 (lower seasonal-cycle amplitudes in peatlands in V7 than in V6), indicating that the upstream changes to L4_SM in peatlands have helped to differentiate respiration processes in northern peatlands. As peatlands have higher monthly Emult than non-peatlands throughout the year (not shown), we can infer that the particular difference in spring sink activity in peatlands is due to suppressed RH flux at that time, rather than enhanced GPP flux.
[bookmark: _Toc135238149][bookmark: _Toc135038312][bookmark: _Toc137637960][bookmark: independent-assessments][bookmark: _Toc132039232]5	Independent Assessments
The L4_C carbon budget can be compared to similar estimates from terrestrial biosphere models, Dynamic Global Vegetation Models (DGVMs), and statistical upscaling models. In particular, we might ask how L4_C estimates compare to independent products in terms of the mean carbon (CO2) flux, its interannual variability, and trend. Here, we compared the L4_C V7 record with similar carbon flux estimates from other global reference data and assessments.
[image: Figure 8: Monthly mean L4_C (V7) net ecosystem exchange (NEE) in all northern peatlands versus all other (non-peatland) northern lands. Peatlands are defined as those areas where the L4_SM land model’s total soil porosity increased between V6 and V7, which reflects the incorporation of a new peatlands map into that upstream product.]Figure 9: Monthly mean L4_C (V7) net ecosystem exchange (NEE) in all northern peatlands versus all other (non-peatland) northern lands. Peatlands are defined as those areas where the L4_SM land model’s total soil porosity increased between V6 and V7, which reflects the incorporation of a new peatlands map in V7 of this upstream product.

[bookmark: _Toc135238150][bookmark: _Toc135038313][bookmark: _Toc137637961][bookmark: _Toc132039233][bookmark: global-carbon-budget]5.1	Global Carbon Budget
The mean global GPP flux estimated by L4_C V7, for the period 2016-2022, is 131.4±2 Pg C year-1. Based on an informal literature review (Table 1), the L4_C estimate is close to the average annual GPP flux (128.9 Pg C year-1) estimated from 33 studies since about 2003. These studies span multiple time periods, however, and there are several factors that could induce a trend in the global annual GPP (or NPP) flux (Zhao and Zeng 2014; Mao et al. 2016; Peñuelas et al. 2017; Chen et al. 2019). A recent validation of the latest MODIS MOD17 global productivity record arrived at a similar mean annual flux (for 2012-2021) of 130.0±1.5 Pg C year-1 (Endsley et al. 2023). The same study found that this value agrees well with the TRENDYv7 DGVM ensemble mean (128.6±1.4 Pg C year-1) for the same period.

[bookmark: tbl%25252525252525252525253AGPP]Table 1: Mean global GPP flux estimated in multiple studies, for different periods of assessment, based on an informal review of the literature. The period of assessment is denoted with “n.a.” when it could not be determined from the study. See the bibliography for each complete reference.
	Publication
	Total GPP (Pg C year-1)
	Period

	Ruimy et al. (1996)
	133.0
	n.a.

	Still et al. (2003)
	150.0
	n.a.

	Alton et al. (2007)
	126.0
	n.a.

	Sasai et al. (2007)
	131.5
	2001-2004

	Demarty et al. (2007)
	129.0
	n.a.

	Joiner et al. (2008)
	140.8
	2007

	Yuan et al. (2010)
	110.0
	2000-2003

	Beer et al. (2010)
	123.0
	1998-2005

	Ryu et al. (2011)
	118.0
	2001-2003

	Jung et al. (2011)
	119.0
	1982-2008

	Chen et al. (2012)
	132.0
	2003

	Koffi et al. (2012)
	146.0
	n.a.

	Mao et al. (2012)
	146.3
	2000-2009

	Piao et al. (2013)
	133.0
	n.a.

	Parazoo et al. (2014)
	127.4
	2010

	Cai et al. (2014)
	119.4
	n.a.

	Yan et al. (2015)
	128.2
	n.a.

	Yebra et al. (2015)
	107.0
	2000-2011

	Harper et al. (2016)
	128.0
	2016

	Zhang et al. (2016)
	129.3
	2007-2015

	Zhang et al. (2016)
	134.2
	2000-2007

	Wei & Yi (2017)
	107.5
	2001-2005

	Madani et al. (2018)
	134.2
	1950-2000

	Yu et al. (2018)
	112.0
	2004-2012

	Norton et al. (2019)
	166.7
	2015

	Li & Xiao (2019)
	135.5
	2000-2017

	Badgley et al. (2019)
	147.0
	n.a.

	Zheng et al. (2020)
	106.2
	1982-2017

	Tagesson et al. (2020)
	121.8
	1982-2015

	Madani et al. (2020)
	130.0
	1982-2016

	Wang et al. (2021)
	128.3
	1982-2019

	Bi et al. (2022)
	125.0
	1992-2020

	Zhang et al. (2023)
	129.7
	2001-2018

	AVERAGE ± Std Dev.
	128.9 ± 13
	[bookmark: tbl%2525252525252525252525253AGPP]n.a.


The mean annual NPP flux (2016-2022) estimated in L4_C V7 is 79.6±1.3 Pg C year-1. This is higher than the inter-model spread of the TRENDYv7 DGVM ensemble and about 20 Pg C year-1 higher than the ensemble median (Endsley et al. 2023). In L4_C, NPP is a fixed fraction of autotrophic C uptake (GPP). This fraction (the NPP:GPP ratio or plant carbon-use efficiency, CUE), with values ranging from 0.47 (Evergreen Broadleaf) to 0.79 (Deciduous Broadleaf), is higher in V7 than the oft-cited multi-biome mean of ~0.5 (DeLucia et al. 2007). A recent synthesis study suggests that the global mean NPP:GPP ratio is closer to 0.46 but varies widely, between 0.22 and 0.79 (Collalti and Prentice 2019). It is this range, [0.22, 0.79] that was used as the prior bounds on the NPP:GPP ratio during calibration of L4_C; that values are pushed to the higher end of this range suggests a model bias that cannot be overcome by the cost function when calibrating against tower fluxes. Our experience with L4_C, and the evidence that GPP is not itself overestimated (see above), suggests that the problem is a high bias in RH, which leads to a low bias in autotrophic respiration, RA (RA being the difference between GPP and NPP). The L4_C V7 mean annual RH flux (2016-2022) is 78.6±0.9 Pg C year-1, which is also higher than other independent estimates for recent periods (Zaehle 2013; Konings et al. 2019).
Finally, L4_C V7 estimates a global NEE land sink (2016-2019 average) of 2.3±0.9 Pg C year-1, which is of comparable magnitude, though lower, than the Global Carbon Budget’s estimate for 2015-2019 of 3.3±0.5 Pg C year-1 (Friedlingstein et al. 2020). It is also lower than the estimated 2010-2019 mean (3.7±0.5 Pg C year-1) from the Global Carbon Assimilation System, version 2 (GCASv2), which is based on satellite observations of atmospheric CO2 concentration (Jiang et al. 2022). NOAA’s CarbonTracker (Jacobson et al. 2023) estimates a mean land C sink of 2.7 Pg C year-1 for 2015-2020 (compare to Global Carbon Budget) and 3.2 Pg C year-1 for 2010-2019 (compare to GCASv2). 
The global NEE flux estimated by L4_C V7 in each year is calculated as the difference between RECO and NPP; as a difference calculation, it is highly sensitive to small changes in NPP and RECO. In 2016, the earliest complete year available, L4_C V7 estimates an unusually strong land C sink of -3.8 Pg C year-1, approximately twice as large as subsequent years and more than twice as large as the mean 2015-2016 sink estimated from the Orbiting Carbon Observatory-2 (OCO-2) satellite mission (Crowell et al. 2019). As the estimated 2016 RH flux is quite average, this strong, negative annual NEE appears to be due to an above-average annual GPP flux (141.4 Pg C year-1) in 2016 (Figure 10). Breaking this flux out by TransCom region (Baker et al. 2006), the 2016 GPP flux can be attributed to high GPP flux in northern mid-latitude regions: Europe, Eurasia Temperate, and North American Temperate regions, in particular (not shown).

[image: Figure 9: Anomalies in the annual, global flux modeled in L4_C V7, by year.]
[bookmark: fig%25252525252525252525253AFluxAnomalie]Figure 10: Anomalies in the annual, global flux modeled in L4_C V7, by year.

Mapping annual NEE fluxes indicates that, while the northern hemisphere land C sink usually shows high spatial heterogeneity, in 2016 most northern lands were synchronized in strong sink activity (Figure 11). It has been suggested that a strong northern-hemisphere land C sink may account for the recovery of the global net land sink following the 2015-2016 El Niño (Wigneron et al. 2020). L4_C V7, within this short period of record (2015-2022) that includes only one major El Niño phase, displays a stronger global land C sink during El Niño (see Section 6, “Global Teleconnections”), which is consistent with more recent studies (Hu et al. 2019; Cai et al. 2020; Du et al. 2021) and suggests that increased moisture in some water-limited ecosystems and increased canopy-intercepted solar radiation in the tropics could contribute to the stronger land C sink in 2016.
[bookmark: fig%25252525252525252525253AAnnualNEE][bookmark: fig%25252525252525252525253AAnnualNEE1][image: Figure 10: Annual NEE flux per year in L4_C V7. Global L4_C NEE maps were resampled to 36 km prior to plotting.]Figure 11: Annual NEE flux per year in L4_C V7. Global L4_C NEE maps were resampled to 36 km prior to plotting.

[bookmark: _Toc135238151][bookmark: _Toc135038314][bookmark: _Toc137637962][bookmark: X3d260bc7cb83d42a98b1337f090be50483691f1][bookmark: _Toc132039234]5.2	Mean Surface Soil Organic Carbon Stock
Surface (0-5 cm) SOC content is the amount of soil C supporting the modeled RH flux from this most labile soil layer. We can compare L4_C surface SOC to similar estimates from other models. The TRENDYv7 DGVM ensemble includes an estimate of total soil column SOC content; using global soil profiles derived from SoilGrids 250m, the TRENDYv7 estimates can be scaled to produce an SOC estimate for the top 5 cm soil layer, similar to L4_C surface SOC (Endsley et al. 2020). As depicted in Figure 8, L4_C V7 reproduces the global surface SOC storage magnitudes seen in similar products and in the previous version of L4_C. In the tropics and extra-tropical northern latitudes, L4_C surface SOC closely matches the SoilGrids 250m estimate and is either within or close to the range of estimates from the TRENDYv7 ensemble of DGVMs.
Systematic biases that have persisted through multiple product versions are still evident, however: Boreal and tundra SOC storage (≥50 N latitude) is under-estimated while southern temperate (below 20 deg S latitude) SOC storage is over-estimated. The latter is likely a consequence of the southern extratropics being dominated by two PFTs, SHB and GRS, that are found throughout the L4_C global land domain and in varying climates. In model calibration, we regress to the mean. This results in overestimated SHB and GRS SOC storage in the southern extratropics but underestimated SOC storage for these same PFTs in the boreal and tundra regions, relative to SoilGrids. The global FLUXNET tower network is also particularly sparse in the southern extratropics (Schimel et al. 2015), which imposes a regional limitation on model calibration and validation.
[bookmark: _Toc135238152][bookmark: _Toc135038315][bookmark: _Toc137637963][bookmark: _Toc132039235][bookmark: mean-and-interannual-variability-iav]5.3	Mean and Interannual Variability
We compared L4_C monthly total GPP and RECO fluxes to those of two ensemble estimates of terrestrial carbon fluxes: the TRENDYv7 ensemble mean’s “S3” simulation, which includes varying atmospheric CO2, climate, and land use; and the FLUXCOM RS+METEO ensemble (hereinafter referred to simply as FLUXCOM) of statistical learning models trained on FLUXNET data. TRENDYv7 mean monthly GPP displays a phase shift to earlier in the year (not shown), relative to L4_C, though L4_C’s estimate of the seasonal cycle is likely accurate, given that it is constrained by satellite observations of vegetation cover. Indeed, the L4_C GPP seasonal cycle aligns well with that of FLUXCOM across most TransCom regions (Figure 12). TRENDYv7 and L4_C show very similar magnitudes of GPP in the northern hemisphere but a strong phase shift in the southern hemisphere, where L4_C GPP can be more than 50 g C m-2 month-1 higher than the TRENDYv7 estimate. L4_C GPP is also higher than the FLUXCOM estimates for the southern hemisphere (Figure 12).

[image: ]Figure 12: Monthly GPP flux from (red) L4_C V7 and (black) the data-driven, upscaled FLUXCOM RS+METEO product averaged over TransCom regions. Shaded regions show the interquartile range (range between 25th and 75th percentiles) among pixels in each region.

Similarly, L4_C GPP shows excellent agreement with satellite-based solar-induced chlorophyll fluorescence (SIF, mW m-2 nm-1 sr-1) derived from the OCO-2 mission (Figure 13), where SIF is a byproduct of photosynthesis and an observational proxy for GPP (Joiner et al. 2014). Global, spatially contiguous SIF (CSIF) data based on OCO-2 retrievals, available at 0.05-degree resolution on 4-day intervals (Zhang et al. 2018), were resampled onto the global 9-km EASE-Grid 2.0, summarized by TransCom region, and converted to Z-scores for the SMAP post-launch period through the end of 2019. For most of the global land domain, L4_C GPP is strongly correlated with SIF (Pearson’s r≥0.84). The apparent smoothness of the CSIF time series, compared to that of L4_C, is likely due to multiple factors: the CSIF data have been subjected to greater spatial and temporal aggregation; they are derived from a neural network trained on aggregated OCO-2 SIF retrievals under cloud-free conditions and informed by 16-day MODIS nadir bi-directional reflectance distribution-adjusted reflectance (NBAR) composites; and “a gap-filling and smoothing algorithm” (Zhang et al. 2018) is applied to the MODIS NBAR data.

[bookmark: fig%25252525252525252525253ACSIF1][bookmark: fig%25252525252525252525253ACSIF][image: ]Figure 13: 4-day Z-scores of contiguous solar-induced chlorophyll fluorescence (CSIF) and L4_C GPP, summarized by TransCom region, with Pearson’s correlation coefficients indicated at top-right. 

However, in two regions, L4_C GPP fails to match the productivity time series seen in the SIF data. In the South American Tropical region (Figure 13), SIF shows a biannual cycle of productivity; L4_C only reproduces the larger peak in productivity and with an approximate 3-month lag. This is likely a reflection of the weak seasonality of satellite-based fPAR in this region. In Northern Africa, L4_C predicts a very different seasonal pattern than indicated from the SIF observations. However, both SIF and L4_C GPP show a distinct increasing productivity trend in this region, which is consistent with previous satellite vegetation and field biomass studies (Leroux et al. 2017; Anchang et al. 2019).

[image: ]Figure 14: As in Figure 12 but for RECO.

We also compared L4_C V7 ecosystem respiration (RECO) to FLUXCOM and both RH and RECO to TRENDYv7. The L4_C RECO seasonal cycle matches that of FLUXCOM at monthly time scales though L4_C RECO has much higher spatial variability than FLUXCOM (Figure 14). L4_C RECO is also generally higher than FLUXCOM RECO, except in Tropical Asia. L4_C RH shows a phase shift toward later in the year in some regions, relative to TRENDYv7, at monthly time scales (not shown). Again, L4_C RH is a better match with TRENDYv7 in the northern hemisphere, though the amplitude of the RH seasonal cycle is high, relative to TRENDYv7, in most regions (not shown).
Monthly NEE was calculated from FLUXCOM RECO and GPP data as RECO minus GPP. L4_C V7 NEE shows a slight phase shift toward later in the year at the monthly scale, relative to FLUXCOM (Figure 15), which is similar to the reported phase shift in L4_C V6 daily NEE (Endsley et al. 2022). However, L4_C NEE is a good match for the seasonal NEE amplitude in the northern hemisphere. In the southern extratropics, FLUXCOM predicts a stronger seasonal cycle, and greater magnitude, of the land carbon sink than L4_C V7.

[bookmark: fig%25252525252525252525253AFLUXCOMByTra][image: ]Figure 15: As in Figure 12 but for NEE.

Using the methodology of Ahlström et al. (2015), we computed the relative contribution of different regions to the interannual variability of fluxes in L4_C V7. South America and Southern Africa contribute approximately 43% of the global interannual variability in GPP in L4_C V7, and Tropical Asia and Australia contribute an additional, combined 8%. This is consistent with reports about the significance of seasonal moisture variability in the semi-arid tropics (Poulter et al. 2014; Ahlström et al. 2015). South America and Southern Africa also contribute 33% of the global interannual variability in RH in L4_C V7. Despite the importance of these regions to both land CO2 uptake (GPP) and soil CO2 losses (RH), however, these regions contribute little to the global interannual variability in NEE in L4_C V7, which is dominated by contributions from northern temperate regions that are inconsistent between years. This suggests that modeled GPP and RH fluxes are incorrectly timed or biased in L4_C V7, as multiple lines of evidence point to the importance of southern, semi-arid regions to the land sink interannual variability (Piao et al. 2020).
[bookmark: _Toc135238153][bookmark: _Toc135038316][bookmark: _Toc137637964][bookmark: X7d1758fdeff045582c404c38c7bcbd37d20747c][bookmark: _Toc132039236]5.4	Variability in Surface Soil Organic Carbon
A distinguishing factor of the L4_C product is that it provides what is likely the only global, daily, satellite-based estimates of surface SOC content. While SOC stocks do indeed vary on sub-annual time scales (Cagnarini et al. 2019; Padarian et al. 2022), there is no established method for validating dynamic SOC estimates. Field-based estimates of SOC content are destructive, which prevents longitudinal assessment of change in SOC stocks. However, modeled changes in SOC, such as those provided by L4_C, can be correlated with known climatic variation. A time series of surface SOC residuals from L4_C V7, with the seasonal cycle and long-term trend removed, reveals interesting interannual variation that corresponds well with short-term climatic variation (Figure 16). While northern-hemisphere regions exhibit little systematic variation, southern-hemisphere regions show a strong response to the 2015-2016 El Niño, which brought warm and dry conditions that likely suppressed soil decomposition and the RH flux, leading to a build-up of surface SOC stocks of between 2-4% of their 2015 magnitudes. More recently, persistent La Niña conditions seem to have reversed this trend, with surface SOC stocks returning to their 2015 values. In Australia, 2019 was both the warmest and driest year in that country’s record and it was followed, in 2020, with above-average rainfall commencing immediately in January 2020 (Australia Bureau of Meteorology 2021). This pattern of climate variability likely explains the sharp increase in surface SOC stocks followed by rapid SOC loss at the beginning of 2020.


[bookmark: fig%25252525252525252525253ASOCIAV][bookmark: fig%25252525252525252525253ASOCIAV1][image: ]Figure 16: Detrended residuals from a harmonic regression of regional surface SOC stocks, shown for select TransCom regions; the seasonal cycle and long-term trend are removed. Residuals are added to the initial March 31, 2015) surface SOC stock size and expressed as a percentage of the initial stock size. The regular oscillations seen in the subplots for regions with low (e.g., Southern Africa) or essentially no residual SOC change (e.g., North American Boreal) are an artifact of harmonic regression.

[bookmark: _Toc135238154][bookmark: _Toc135038317][bookmark: _Toc137637965][bookmark: recent-trends][bookmark: _Toc132039237]5.5	Recent Trends
While the L4_C record (2015-present) is not yet long enough for statistically robust trends to be inferred, examining the trends apparent in L4_C V7 can provide an indication as to how climate trends captured in the L4_C meteorological inputs are driving carbon fluxes. Based on harmonic regression of daily total fluxes, at global extent, L4_C V7 displays a significant (p-value<0.001), upward trend in NEE (diminishing global land CO2 sink strength) of 1.3 Tg C year-2 (not shown). This appears to be explained by increasing ecosystem respiration (0.9 Tg C year-2, p-value<0.001), mostly due to increasing RH (1.0 Tg C year-2, p-value<0.001), which is consistent with previous reports based on field data (Bond-Lamberty et al. 2018; Lei et al. 2021). Naidu and Bagchi (2021) recently suggested that upward trends in NPP (demonstrated elsewhere) are not sufficient to counter-balance rising soil RH.
L4_C V7 displays insignificant (p-value>0.1), weak negative trends in GPP and NPP over 2015-2022 (not shown). However, these trends, as well as the trends in other fluxes, are affected by the strong response of the modeled carbon cycle to the 2015-2016 El Niño (Figure 11). If data from 2015-2016 are discarded, we find upward trends in all fluxes, including GPP and NPP, with RECO increasing fastest. These upward trends across the modeled carbon budget are consistent with reports of an increase in the seasonal amplitude of the terrestrial carbon sink (Forkel et al. 2016; He et al. 2022). Broken out by TransCom region, we find divergent trends in GPP, with significant (p-value <0.001), upward trends in southern temperate regions and significant (p-value <0.0002) downward trends in northern temperate regions (not shown). Similarly, northern temperate regions show a strong, upward trend (p-value <0.001) in NEE since 2017, with diminishing land sink amplitudes in recent years.
[bookmark: _Toc135238155][bookmark: _Toc135038318][bookmark: _Toc137637966][bookmark: _Toc132039238][bookmark: global-teleconnections]6	Global Teleconnections
L4_C fluxes respond to short-term climate variability (Jones et al. 2017; Wurster et al. 2021), particularly in global drylands, where rates of RH are sensitive to SMAP-derived surface soil moisture estimates (Endsley et al. 2020). Regional and global climate oscillations, such as the El Niño Southern Oscillation (ENSO), should therefore influence the L4_C carbon budget through underlying model environmental constraints and be represented in the 8-year SMAP satellite record. 
ENSO is a bimodal oscillation with two phases. The “warm” El Niño phase is associated with drought in the Amazon forest, Southern Africa, and Australia (Holmgren et al. 2001; Bastos et al. 2018) while the “cool” La Niña phase generally brings wetter conditions to these regions, and the associations are reversed in parts of the northern hemisphere (Zhang et al. 2019). A warm El Niño has also been associated with decreased GPP world-wide (Hashimoto et al. 2004; Zhu et al. 2017; Bastos et al. 2018) but particularly in the tropics, southern Africa, and Australia (Bastos et al. 2013); a cool La Niña phase is associated with a stronger land C sink, particularly in tropical drylands (Ahlström et al. 2015). Tropical ecosystem productivity is characterized by a response to warmer temperatures during El Niño and a response to higher precipitation during La Niña (Fang et al. 2017). Global atmospheric moisture patterns are also affected: warm-dry ENSO fluctuations are associated with higher VPD in the Amazon forest, Africa, and Australia but lower VPD in the southwest U.S., temperate South America, and parts of Siberia (Hashimoto et al. 2004). Similarly, Du et al. (2021) recently found associations between the El Niño phase and increased land surface wetness in the southwest U.S. and temperate South America; drier conditions associated with El Niño were found in the Amazon forest, Southern Africa, southeast Asia, and much of Australia. Increased moisture associated with El Niño in North America is also consistent with a recent report by Hu et al. (2019) that this phase enhances the land C sink of this region. South America, which experiences the strongest direct effects of ENSO, generally receives less precipitation in the Amazon and more precipitation in the south, over Argentina, during a warm ENSO phase (Cai et al. 2020).
SOI and OLR, as measures of the bimodal ENSO oscillation, are negative during the El Niño phase and positive during the La Niña phase. We did not attempt to define a neutral phase in the SOI and OLR data, instead using all available monthly values in lagged correlations, allowing for up to a 3-month lag in SOI/OLR or L4_C. As both ENSO and terrestrial C fluxes are oscillating, Pearson’s correlations between L4_C variables and SOI or OLR are best interpreted as “in-phase” (positive correlation) with ENSO or “out-of-phase” (negative correlation). As terrestrial ecosystems are generally more strongly affected by the warm-dry El Niño phase (Teckentrup et al. 2021), our discussion of ENSO associations emphasizes this phase. Seasonal associations are discussed in terms of the northern hemisphere (NH) summer or winter, for simplicity. We can separate these phases but the resulting estimates have reduced statistical power (56 months of La Niña conditions and 37 months of El Niño conditions during the 93-month assessment period, based on SOI).
We compared L4_C to two measures of ENSO fluctuations: the Southern Oscillation Index (SOI), compiled monthly by NOAA (2023), and the Outgoing Longwave Radiation (OLR) index (Chiodi and Harrison 2013). L4_C data included detrended, mean monthly L4_C NEE, GPP, RH, and environmental constraint diagnostics: Tmult, Wmult, and Emult which describe the normalized impact of Tsoil on RH, the normalized impact of SMSF on RH, and the combined, normalized impact of minimum temperature, SMRZ, and VPD on GPP, respectively.
The L4_C environmental constraint diagnostics largely reproduce the aforementioned reported patterns. Emult is associated with warm ENSO fluctuations in the Amazon, Southern Africa, Australia, and most of Tropical Asia; in these regions, warm ENSO fluctuations are associated with more limiting conditions for GPP, likely lower root-zone soil moisture or higher VPD (not shown). These correlations are generally weaker in the L4_C GPP data, except for Western Australia, which indicates strong (r ≈ 0.5) declines in GPP with the onset of a warm El Niño (Figure 17). However, we do see weak out-of-phase correlations between GPP and ENSO throughout light-limited tropical forests, which may be explained by decreased cloud cover during El Niño leading to increased GPP despite drier conditions (Zhu et al. 2018). GPP in Southern Africa decreased strongly (r ≈ 0.6) during the 2015-2016 El Niño, which included the driest precipitation period for the region in 35 years (Rembold et al. 2016); a similarly strong decline in Australia is associated with increased aridity (Bastos et al. 2018).
[bookmark: fig%25252525252525252525253AGPPOLR][bookmark: fig%25252525252525252525253AGPPOLR1][image: Figure 16: Map of pixel-level correlations (2015-2022) in monthly, detrended L4_C GPP and the Outgoing Longwave Radiation (OLR) index, which is negative during the El Niño phase. Only significant (p-value \le0.05) correlations are shown (critical r\approx\pm0.2). Positive correlations (red) generally indicate decreased GPP during El Niño but possibly increased GPP during La Niña.]Figure 17: Time series correlation coefficient (2015-2022) between monthly, detrended L4_C GPP and the Outgoing Longwave Radiation (OLR) index, which is negative during the El Niño phase. Only significant (p-value≤0.05) correlations are shown (critical r ≈ ±0.2). Positive correlations (red) generally indicate decreased GPP during El Niño but possibly increased GPP during La Niña.

Significant, strong (r ≥0.5) correlations are found between SMSF and ENSO fluctuations throughout southeast Asia, indicating drier surface soils during El Niño (not shown). Warm ENSO fluctuations are associated with drier surface soil conditions across much of the global land domain, including the Amazon forest, Central Europe, Southern Africa, Australia, the North American Boreal forest, and parts of India and Central Asia. Conversely, cool ENSO fluctuations, such as the recent, multi-year La Niña phase, are associated with wetter surface soil conditions in Western North America and temperate South America. 
The effect of ENSO on ephemeral Tsoil appears to be dampened at monthly timescales, yet there are significant, moderate (r ≈ -0.4), negative correlations between Tsoil and ENSO throughout the Andes of South America (not shown), which reflect warmer December-through-February near-surface air temperatures associated with El Niño (Cai et al. 2020). The OLR index shows stronger correlations than SOI with the Tsoil environmental constraint (not shown).
These ENSO impacts on surface soils seem to induce periodic changes in soil decomposition, though the link is complicated by the positive response of RH to both warmer (during El Niño) and wetter (during La Niña) conditions. The warm-dry El Niño phase is associated with decreased RH in much of the southern hemisphere (Figure 18), but North America (by OLR and SOI) and India (by SOI only) show weak (r ≈ -0.25) negative correlations with ENSO, suggesting the opposite. The decline in tropical RH associated with El Niño occurs mostly in during the NH winter months. The OLR index shows moderately strong (r ≈ 0.5) positive correlations with ENSO in the Amazon, Central Australia, and southeast Asia, indicating lower RH during the warm El Niño phase. SOI correlations broken out by ENSO phase also suggest that RH may increase in the Southeast U.S. and parts of Mexico during La Niña.


[bookmark: fig%25252525252525252525253ARHOLR][bookmark: fig%25252525252525252525253ARHOLR1][image: Figure 17: Map of pixel-level correlations (2015-2022) in monthly, detrended L4_C R_H and the Outgoing Longwave Radiation (OLR) index, which is negative during the El Niño phase. Only significant (p-value\le 0.05) correlations are shown (critical r\approx\pm 0.2). Positive correlations (red) generally indicate decreased R_H during El Niño but possibly increased R_H during La Niña.]Figure 18: As in Figure 17 but for correlation between monthly, detrended L4_C RH and the Outgoing Longwave Radiation (OLR) index. Positive correlations (red) generally indicate decreased RH during El Niño but possibly increased RH during La Niña.

Correlations between NEE and ENSO fluctuations are further complicated by the countervailing impacts of RH and primary productivity, yet some generalizations can be made. In Southern Africa and most of Australia, NEE is weakly (r ≈ -0.3) anti-correlated with ENSO (Figure 19), suggesting an enhanced land C sink during the cool-wet La Niña phase. Indeed, using an annual index of La Niña events (Chiodi and Harrison 2013, 2015), albeit a short record, we find annual L4_C NEE anomalies in Australia (and Tropical Asia) are strongly associated with La Niña (Figure 20).

[bookmark: fig%25252525252525252525253ANEEOLR][bookmark: fig%25252525252525252525253ANEEOLR1][image: Figure 18: Map of pixel-level correlations (2015-2022) in monthly, detrended L4_C NEE and the Outgoing Longwave Radiation (OLR) index, which is negative during the El Niño phase. Only significant (p-value\le 0.05) correlations are shown (critical r\approx\pm 0.2). Positive correlations (red) generally indicate decreased NEE during El Niño but possibly increased NEE during La Niña.]Figure 19: As in Figure 17 but for correlation between monthly, detrended L4_C NEE and the Outgoing Longwave Radiation (OLR) index. Positive correlations (red) generally indicate decreased NEE during El Niño but possibly increased NEE during La Niña.


[bookmark: fig%25252525252525252525253AOLRNina1][image: Figure 19: Annual OLR-Event (La Niña) and NEE Z-scores compared for 2015-2022.]
Figure 20: Annual OLR-Event (La Niña) and NEE Z-scores compared for 2015-2022.

Australia showed strong, positive (in-phase) correlations between ENSO and both GPP and RH, suggesting both are suppressed during the warm-dry El Niño phase; the sign of the correlation with NEE suggests that GPP is suppressed (enhanced) to a greater degree than RH by El Niño (La Niña). When correlations are computed by TransCom region (Figure 21), Australia GPP and RH also show moderate, positive correlations (r = 0.358 for GPP using the SOI, r = 0.391 for RH); weak anti-correlation in NEE can also be seen at the regional scale. Much of the tropics, particularly the Amazon basin, show positive correlations between NEE and ENSO, which is unexpected. This could partly be explained by a stronger land C sink in tropical drylands during the cool-wet La Niña phase (Ahlström et al. 2015). However, the South American Tropical region exhibits a moderately strong positive correlation with regionally integrated NEE (r = 0.531), driven mostly by a tight link between ENSO and RH (r = 0.703). The OLR time series instead indicates that the recent, multi-year La Niña is associated with increased RH in the tropics and Southern Africa, while RH decreased during the 2015-2016 El Niño (Figure 21). Yet, it should be mentioned that a lagged spike in RH in Southern Africa is also evident, consistent with other reports (Liu et al. 2017). Taken together, these results suggest that the impact of ENSO fluctuations on the modeled land C sink in the tropics and Southern Africa are largely due to changes in RH, while moisture-driven GPP fluctuations are a stronger impact in Australia. These regions are especially sensitive to ENSO fluctuations of the Central Pacific region (Dannenberg et al. 2021).

[bookmark: fig%25252525252525252525253AOLRTransCom][bookmark: fig%25252525252525252525253AOLRTransCom1][image: Figure 20: The global Outgoing Longwave Radiation (OLR) index compared to L4_C Version 7 seasonally adjusted Z-scores, by TransCom region, with Pearson’s correlation coefficients shown. A 2-month, low-pass, moving-window filter was applied to both time series; Pearson’s correlations are based on the raw (unsmoothed) data.]Figure 21: L4_C V7 seasonally adjusted Z-scores (red lines) of GPP, NEE, RH, and Wmult (columns) by TransCom region (rows) compared to the global Outgoing Longwave Radiation (OLR) index (black line) for April 2015-December 2022. Pearson correlation coefficients (r) are shown in the bottom right of each subplot. A 2-month, low-pass, moving-window filter was applied to all time series for clarity of the display; Pearson correlations are computed from the raw (unsmoothed) data.
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Based on the multiple assessments described here, the L4_C V7 product continues to provide a level of performance and accuracy consistent with the product’s science objectives. The L4_C estimated global carbon budget shows mean annual GPP and NEE fluxes that are consistent with independent estimates, while the estimated seasonal cycle and interannual variability are also comparable to independent reference datasets. L4_C simulated NEE and SOC display the expected sensitivity to short-term climatic variation, as evaluated by our comparisons to recent ENSO events and some reported extreme weather events. The relatively short record of L4_C limits our analysis, while the global extent of the product obliges us to use broad-scale climate indices and reports for comparison. The slight (not statistically significant) increase in V7 NEE RMSE compared to the previous version is largely due to the unavoidable change in fPAR source data. The L4_C product continues to exceed the targeted accuracy requirements for NEE (mean RMSE ≤ 1.6 g C m-2 d-1) and continues to show favorable accuracy for GPP and RECO.
Future releases of the SMAP L4_C operational product will incorporate ongoing refinements and improvements to upstream inputs, including in the L4_SM algorithm. In addition, there are multiple options to improve the realism and performance of the L4_C algorithm, based on the assessments conducted here:
· Currently, L4_C is calibrated on EC tower flux data from the FLUXNET2015 and La Thuile datasets, which are only available through 2017. New EC tower flux data are available in the northern hemisphere from the NSF Arctic Data Center and individual Principal Investigators. Incorporating the CO2 fluxes from these sites into the L4_C calibration dataset should improve model fit and the simulated carbon-cycle response to recent climatic variation. Some of the sites may also be located in deciduous needleleaf forests, which are under-represented in the current calibration dataset.
· Performance in peatlands and other regions with seasonal soil saturation could be enhanced by adding an upper limit on the response of RH to soil moisture, effectively representing how limited soil O2 diffusion constrains microbial respiration. We have previously evaluated the impact of this limitation on L4_C RH and RECO performance but have not found an improvement when compared to available EC tower flux data. But more recent work (Endsley et al. 2022) suggests that some form of an O2 diffusion limitation can improve the L4_C soil decomposition and RH model. New tower data and the use of a second linear ramp function on the response of RH to increasing soil moisture, rather than a quadratic curve (as used previously), could improve model performance.
· Currently, litterfall in L4_C is a fixed fraction of the annual, climatological NPP in each pixel. This assumption makes for easy model representation but ignores real seasonal variation in C inputs to soil, particularly in deciduous forests and grasslands where there is strong seasonal variation in leaf shedding. L4_C could be more useful as a prior for atmospheric inversions if it instead used a litterfall schedule based on satellite-observed leaf-area index (Endsley et al. 2022), which is included as part of the input fPAR dataset (VIIRS VNP15A2H).
· As indicated in this assessment, the plant carbon use efficiency (CUE, or the NPP:GPP ratio) is likely too high in L4_C V7. CUE has been elevated in previous versions of L4_C as well, suggesting a persistent model bias, despite reasonable bounds on this value during calibration. Reducing CUE could help to reduce the high RH bias as well, as any reduction in CUE must be accompanied by an increase in autotrophic respiration. Several studies and datasets are now available describing the global variation of CUE with plant traits. We could either fix optimal CUE values for each PFT or use an environmental filtering approach, where plant CUE is a function of bioclimatic covariates.
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