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Outline

1. PrOJect Overview
2. Line Chilldown 1-g and 0-g Testing
3. Two-Phase Pressure Drop Experiment

4. Modeling (Thermodynamic, Injector Modeling,
Lumped Capacitance, and CFD Modeling)
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Cryogenic fuel depots will enable long duration
human and robotic missions past LEO

Depots reduce amount of launched propellant thus
size of in-space stage

LOX/LH2 or LOX/LCHA4

Transfer Elements
Pressurization in supply tank
PMDs in supply tank
Chilldown of transfer line
Chilldown of receiving tank |
Fill of receiving tank
Gauging mass during transfer
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RGCT Project Goals

1. Understand baseline transfer line, tank chilldown, and tank fill performance
- Consolidate & anayze world database to determine universal trends in chilldown and
fill physics
- Use historical datasets to guide and anchor model development & design of higher
performance systems)

2. Obtain new well-instrumented 1-g and low-g cryogenic transfer data and visualization
- Designing & testing two parabolic flight experiments and two ground systems using
LN2 to explore issues during transfer

3. Design & test technology to enable higher propellant transfer performance
(emphasis on reducing consumed propellant mass)

- Line chilldown (low-thermally conductive coatings, pulse flow)

- Tank chilldown and fill (design of high performance injection methods)

4. Develop and validate improved empirical, analytical, lumped capacitance, & CFD
propellant transfer models




Base Case Line Chilldown Performance

Film Boiling Transition Boiling Nucleate Boiling Single-phase Convection
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Up to 85% of chilldown is spent in the highly inefficient filmsboiling regime
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Quenching Two-Phase Pressure Drop '“(A\sﬁ

« There are no models for predicting two-phase pressure drop
during transfer line chilldown

= Controlling parameters and properties are very different for
cryogenic fluids compared to water and refrigerants

= EXxisting models have only been developed for heating case

» Most models have only been developed for room temperature
fluids

» EXxisting models have not been validated against any cryogenic
guenching data

= Fluid transient effects are not accounted for

« Test anew 2m transfer section with detailed pressure drop
measurements & flow visualization

« Measure two-phase pressure drop across range of conditions

« Develop a new UDF that accounts for frictional, accelerational,
gravitation, and transient pressure drop

« Feed UDF into higher order models to better predict flow rate
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Lessons Learned during Cryogenic Propellant
Transfer Data Analysis

Parameters that
affect no-vent fill:

1. Injection method

2. Initial state of
Receiver tank

3. Fluid inlet state
(T, P) 10 - |dentical target temperature (245K)

4. Flow rate and inlet conditions
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Lessons Learned during Cryogenic Propellant

Transfer Data Analysis

1 ! ! ‘ . JT Orifice LN2 Supply Valve
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- TVS augmented injector makes it possible to restart a stalled transfer
- Success depends on timing and length of operation

In-depth data analysis and modeling reveled that the cause for recovering a failed transfer was
enhanced condensation at the injector/ullage surface



Modeling
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Universal Cryogenic Correlation Development and N@%A

Validation

 Intwo phase flow literature, each new set of data yields a new set of correlations
« Each correlation is generally only fit to a select group of data

« Majority of correlations applicable only for room temperature liquids

 Recent drive towards developing so-called universal correlations

« Dimensionless groups generally fit to wide range of data

* Requires careful filtering scheme

« Universal correlations are highly desirable because they will enable design reference books for two
phase systems and simplify thermal/fluid models

 Answers the question: With hundreds of correlations in the literature, which one do | use?

 Aerospace Corp & Purdue University developed the pioneering universal correlations for line
chilldown and flow boiling with heating, respectively

« Correlations fed into GFSSP & Thermal Desktop to predict: 1) location of ONB and CHF during
steady state heating, 2) set insulation requirements, 3) chilldown time, 4) chilldown mass

All correlations generally predict data within +/- 25% across all cryogens & flow conditions
Prediction of flow boiling heat transfer coefficients and zCHF improved by factor of 3-10 over base predictions



Universal Cryogenic Flow Boiling Correlation

Development and Validation
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Universal Cryogenic Flow Boiling Correlation Nasa

Development and Validation

) Methane Case 2
« Heated tube correlations were

patched together to form smooth .
continuous prediction of wall 0 e o g

: ® o 9 o ¢ o
superheat as a function of z 800 s °
700

1000

Point of thermal runaway,
600 post-CHF

500

» Original set of correlations handles
nucleate boiling well for Glickstein et
al. LCH4, but fails to capture location
& magnitude of CHF and film boliling 300
regimes; MSA=75% 200 s

. With new subroutine, wall oo | ¥ o
temperature with MSA= 8% using
the new SUbrOUtine across a” 0 100 200 300 400 500 600 700 800 900

regimeS Axial Location (mm)

400

Wall Temperature (K)

® Test Data Built-In Subroutine ® New RGCT Subroutine

New Purdue correlations demonstrate superior predictive performance over baseline correlations in Thermal Desktop13
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Injector Modeling

RGCT evaluated over a dozen models for how best to model saturated two-phase flow through
restrictions (valves, orifices, etc.)

» |sentropic models

» |senthalpic models

» Choked flow models

Needed to predict transient two-phase flow rate during tank chill & fill, to bound expected flow
rate during prop transfer, and to determine choked flow conditions

Evaluated the models over historical data sets where two-phase flow was encountered at tank
Inlet during tank chilldown

Explored sensitivities in operating near the saturation line for tank chilldown and fill

Work was leveraged by SpaceX on the 2020 Tipping Point to improve predictive performance for
multiple phases of their prop transfer, to improve mass flow rate predictions, and to reduce
uncertainty in propellant mass transferred

15
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« Numerous lumped capacitance models are being deVeIoped and validated against historical databases for
line chilldown, heated tube, tank chilldown, and tank fill

 New interfacial condensation and injector condensation model developed and implemented

GFSSP demonstrates superior predictive performance, predicting receiver tank pressure and fill level within
6% of the data across all phases of a high delta-T tank chill/fill no-vent fill test 16



Extended full 3D CFD simulations with
conjugate heat transfer, focusing on the
Injection phase of a classic
charge/hold/vent tank chilldown using
FLUENT

New cryo-based DHM subroutine updated
and implemented into FLUENT

Reasonable improvement in predicted
tank pressure and tank wall temperature
from baseline study conducted
previously
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Built-in VOF model showed (a)
inaccurate surface tension calculation
which degrades interface tracking and
(b) under-representation of bubble-to-
bubble interaction

Stems from the innate nature of
employing single momentum equation in
VOF (cannot discern phase velocities)

Coupled Level Set VOF (CLSVOF) was
adopted in FLUENT

New UDF created to account for crucial
effects of bubble collision dispersion
force

Works extremely well for nucleate
boiling

Without B.C.D.

2D Axisymmetric FLUENT simulations with and without inclusion of new Bubble
Collision Dispersion Force

Dispersed
large bubbles
during migration

Dispersed
small bubbles
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CFD simulations capture crucial details of flow boiling behavior along the heated tube, including bubble
nucleation, sliding, growth, departure, dispersion, and coalescence.
Predicted wall temperatures for four sets of operating conditions showed excellent agreement with the

benchmark experimental data
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