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Abstract— This paper presents a solution to the motion
planning problem for an autonomous airship under super-
rotation winds of the Venusian atmosphere. The airship uses
both buoyancy and aerodynamic lift to control its altitude.
In addition, solar panels distributed over the aircraft provide
energy to the propellers and allow for battery recharging. Our
approach uses a sampling-based planner that relies on Dubins’
Airplane paths deformed under the influence of the winds
to create a tree of kinematically feasible trajectories. We use
the battery state to prune energetically unfeasible trajectories
and we propose a cost function that accounts for the energy
expenditure of the propulsive system and that considers battery
charging by using the Economics notion of opportunity cost.
The method is illustrated through a series of simulations that
show how the vehicle takes longer and high-altitude paths to
minimize the use of energy and favor battery recharge. Our
results also show that naive trajectories are not feasible in terms
of energy, justifying the need for more efficient solutions.

I. INTRODUCTION

Venus has been considered Earth’s twin planet due to
its similar composition, mass, gravitation, and radius. Re-
searchers believe that Venus may have had a shallow ocean
and livable surface conditions during 2 billion years of its
early existence. However, past exploration missions found
that, today, at the surface of Venus, the environment is hugely
different from Earth, with temperatures exceeding 450 °C
and atmospheric pressure more than 90 times larger than
Earth’s [1]. Venus went through a transformation due to the
greenhouse effect, being 96% of its current atmosphere com-
posed of carbon dioxide [2]. Understanding what happened
to Venus in the past can give insight into what can happen
on Earth in the future, as greenhouse gases accumulate in
our atmosphere.

While exploring the Venusian surface is extremely hard,
its atmosphere has air pressure, temperature and density
comparable to what is found on Earth. From 50 to 70 km
altitude, the pressure ranges from 1.066 to 0.0369 bar, the
temperatures from 76.85 to −43.15 °C, and the air density
from 1.594 to 0.084 km/m3 [3]. Conceptual vehicle de-
signs have been proposed for exploring Venus [4]. Some of
these concepts are autonomous fixed-wind solar-powered air-
crafts [5], [6], [7], including semi-buoyant inflatable planes,

This research was made possible with support from the NASA Established
Program to Stimulate Competitive Research, Grant #WV-80NSSC21M0145,
and the Benjamin M. Statler Fellowship.

Authors are with Mechanical and Aerospace Department at Benjamin
M. Statler College of Engineering and Mineral Resources, West Virginia
University. Morgantown, WV, 26501 USA.
Emails: bm00002@mix.wvu.edu, ap00063@mix.wvu.edu,
guilherme.pereira@mail.wvu.edu

z

x

y

Fig. 1: The solution of a motion planning problem in the
atmosphere of Venus can result in the most efficient path
to a desired goal being very different from the shortest
path when considering the vehicle dynamic constraints and
environmental properties such as high-speed winds and avail-
able solar power. In the figure, green and red dots represent
start and goal region, respectively. The yellow path is more
energetically efficient than the blue path, which is shorter.
The thin arrows represent magnitude and direction of the
wind field.

also know as hybrid airships [8], which are the focus of this
paper.

Even with reasonable climate conditions, the atmosphere
of Venus still imposes challenges to a fixed-wing aircraft.
It has, for example, high-speed zonal winds, called super-
rotation winds [9], that can reach speeds greater than
100m/s. As a consequence, a vehicle left to drift in the
atmosphere will circle the planet in as few as four Earth-
days and, unless the vehicle is powerful enough to counteract
these wind speeds, it is expected that it will experience
long periods in the absence of light, making them depen-
dent on charged batteries for controlled flight during these
periods [10]. These challenges raise the problem of how to
obtain the optimal path that these aircrafts should follow.
As illustrated in Fig. 1, in such an environment, the energy
optimal path may be very different than the shortest path.

We want to design motion planners that: 1) create min-
imum energy paths, since the vehicles have limited battery
and will fly for long periods of time; 2) account for battery
re-charging; and 3) account for the strong winds in which



the aircraft will fly. Several previous works have solved
some of these problems on Earth [11], [12], [13], [14], [15].
A real-time environment-aware planner has been proposed
in [11] using variations of RRT* [16], that approximate the
dynamics of the aircraft using Dubins’ Airplane [12], and
incorporating wind field data in its heuristics. A minimum
energy planner was proposed in [13] for a UAV subject to
wind caused by urban canyons. The authors used a A* grid
search to find a minimum cost path, and their proposed cost
function is based on the change of total energy: composed
by potential, kinetic, and stored energy (battery). However,
their model assumed constant altitude, constant airspeed
and no recharging. Consequently, the total energy decreases
monotonically with the consumption of the stored energy.
Also, their method require wind speeds to be smaller than
the airspeed to converge. Path planners for a gliding aircraft
under complex wind fields were studied in [14], [15]. These
planners grow a tree of feasible trajectories from a discrete
set of allowable inputs and weigh the branches using a
cost function that accounts for changes in total energy and
distance to the goal. Further, this method allows for increase
of potential energy caused by the vertical component of wind,
what is known as static soaring.

In this work, we present a sampling-based path planner for
a fixed-wing, hybrid airship that relies on Dubins’ Airplane
as a local planner and accounts for the influence of strong
winds. The planner optimizes a cost function based on
energetic transactions. This cost function includes not only
expenditure, in the form of thrust or drag, but also accumula-
tion, in the form of charging using solar panels and gains in
potential energy (e.g., with upward directional winds). It is
important to mention that the naive inclusion of such influx
energy could generate negative costs for some paths, what
would violate the requirements for most optimizers [16]. We
then, use the notion of opportunity cost [17], the loss of
gain caused by choosing not to follow an alternative that
can offer the highest benefit. In our case, when considering
solar power, the cost is computed as the difference between
the maximum charging energy that the vehicle could gain
(e.g., when flying above the clouds) and the energy gained
when it is flying in a less favorable altitude. Therefore, the
main contributions of this paper are:

• An energy efficient sampling-based motion planning
strategy that i) uses wind-deformed Dubins’ Airplane
trajectories as local planners, ii) includes a semi-buoyant
dynamic model for the aircraft, iii) accounts for the
vehicle’s battery state.

• A cost function that i) accounts for the energy expendi-
ture of the propulsive system and ii) considers battery
charging as an opportunity cost, thus avoiding negative
costs in the function.

This paper is organized as follows. Problem definition
is presented in Sect. II. Our motion planning approach is
explained in details in Sect. III. Some numerical results are
presented in Sect. IV. Finally, conclusions and future work
are presented in Sect. V.
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Fig. 2: Atmospheric characteristics of Venus. Wind is illus-
trated by the blue left arrows where each value represents
the average wind speed and its possible variation in function
of the altitude.

II. PROBLEM DEFINITION

This section describes the problem we are dealing with
in this paper, especially the environment and the airship.
We show the equations necessary to describe the force
equilibrium during the flight of the aircraft and its dynamic
and kinematic models.

A. The environment

In this work we target a region of the atmosphere of Venus
within 50 km to 70 km altitude, where exploration is viable.
For this region, atmospheric properties as temperature, Θ(z),
pressure, p(z), air density, ρ(z), and wind field, w(x, y, z),
where x and y represent latitude and longitude respectively
and z represents the altitude, were obtained from data
tables presented in [3], compiled from data of several past
missions to Venus [2]. The gravitational acceleration, g(z),
is approximately 8.87m/s2, changing only slightly with the
altitude. For simplicity, all properties are assumed to be
time-invariant. We assume that the wind field is dominated
by the super-rotation winds, which is compatible with the
observations near the equatorial region [9]. Fig. 2 shows the
density, temperature and pressure in relation to the altitude.
Wind and cloud layers are also displayed according to the
altitude. The farther we get from the Venusian surface, the
lower density, temperature, and pressure we get. Wind speeds
vary from around 61 ± 25 m/s at 50 km altitude to 92 ±
30 m/s at 70 km altitude.

Another factor considered in our model is the availability
of solar intensity (Isolar(z)) to charge the batteries and power
the aircraft. Venus is exposed to a solar flux of 2600W/m2

(this is also called exoatmospheric solar flux), almost double
the solar flux that Earth is exposed to. However, this flux is
attenuated by the atmosphere. The available solar intensity
(ratio between available flux and the exoatmospheric) is 95%
at the top of the clouds (at 65 km altitude) and 20 to 50% at
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Fig. 3: Venus solar intensity with respect to altitude. The
graph also considers the conversion efficiency of the solar
panels.

TABLE I: Vehicle Design Parameters

Parameters Values Parameters Values

Aircraft Mass 450 kg Solar Panel Area 50m2

Aircraft Volume 490m3 Battery Max. Energy 50MJ
Wing Span 50m Propellers Efficiency 0.8
Mean Aerodynamic Chord 10m Shaft Efficiency 0.8
Wing Area 500m2 Airspeed Limits 0-30m/s
Wing Aspect Ratio 5 Roll Angle Limits ±30°
Oswald Efficiency Number 0.85 Flight Path Angle Limits ±45°
Zero-lift Drag Coeff. 0.02

the bottom of the cloud layer (at 40 km altitude), depending
on the considered wavelength. Further, solar panels have an
intrinsic efficiency in converting solar power to stored energy
in the batteries. A model for the solar intensity in Venus
considering this energy conversion efficiency was obtained
from [10] and is shown in Fig. 3.

B. The vehicle

In this work we are considering a vehicle based on the
concept proposed by [8]. This vehicle is a semi-buoyant un-
manned propelled aircraft. To provide buoyancy, the aircraft
has a light-weight design and is filled with a low density
gas. At 70 km above Venus surface, the vehicle is expected
to be 10% buoyant with 90% lift from the propellers. At low
altitudes the vehicle is 100% buoyant. The aircraft is solar-
powered and its solar panels are distributed over its body.
The maximum airspeed of the vehicle is 30m/s. Table I
shows the main design parameters used in this paper.

C. Aircraft Steady Flight and Kinematic Models

The hypothesis for our work is that the aircraft is able
of two coordinated flight modes. Given a desired flight path
angle, the first mode is flying in a straight line and the second
is turning with a constant bank angle, both with respect
to the wind reference frame. Similarly to what is proposed
in [14], we consider that switching between steady turn and
steady climb/descent is fast compared to the duration of the
command itself and that a point-mass model is sufficient
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Fig. 4: Coordinate frames and free-body diagram of the
vehicle. The flight path, heading, and roll angles (γ, ψ, ϕ) are
given with respect to the inertial frame (x, y, z). The thrust
force is assumed to be aligned with x-axis of the vehicle’s
body frame, which is denoted by xb.

to represent the vehicle. Further, for this work, we assume
that the aircraft maintains its airspeed constant. Fig. 4 shows
a free-body diagram of a point-mass model of the aircraft
where W is the weight of the aircraft, B is the buoyancy
force, L is the lift force, D is the drag force, T is the thrust
force, α is the angle of attack of the aircraft with respect to
the airflow (represented by va), γ is the flight path angle, ψ
is the heading angle, and ϕ is the roll angle.

For our planning purposes, we need to obtain an expres-
sion for the thrust required at any given point of the aircraft
trajectory. By equating the forces parallel and perpendicular
to the vehicle airspeed we have

(W −B) cos γ = L cosϕ+ T sinα (1)
(W −B) sin γ = D − T cosα. (2)

The term (W −B) can also be written as (m−ρV )g, where
m is the mass of the aircraft, ρ is the density of the fluid, V
is volume of the aircraft, and g is the acceleration of gravity.
Both density and gravity are variable with the altitude of the
vehicle. Considering that the angle of attack is usually small,
we assume the approximations T sinα ≈ 0 and T cosα ≈ T .
Given a specific input u = [va, γ, ϕ]

T and the wing area (S),
we can rewrite (1) and obtain the lift force and lift coefficient
as

L =
(m− ρV )g cos γ

cosϕ
⇒ cL =

L
1
2ρv

2
aS
. (3)

We represent the drag coefficient with a second-order
polynomial using the lift coefficient, the wing aspect ratio
(A), and the Oswald efficiency number (e). This allow us



to calculate the drag force exerted on the vehicle:

cD =

N∑
i=0

aic
i
L = cD,0 +

c2L
πAe

⇒ D =
1

2
ρv2aS cD. (4)

Finally, by rewriting (2) and including our model for the
drag force from (4), we obtain the required thrust as

T = D − (W −B) sin γ ⇔

T =
1

2
ρv2aScD − (m− ρV )g sin γ. (5)

Additionally to the balance of forces, the kinematic model
for the aircraft motion under the influence of the wind
presented in [14] is extended to account for the buoyancy
of the vehicle:

ẋ = va cos γ cosψ + wx

ẏ = va cos γ sinψ + wy

ż = va sin γ + wz

ψ̇ =
(m− ρV )g cos γ tanϕ

mva
. (6)

where ψ̇ is obtained from L sinϕ = mvaψ̇.

D. Motion Planning Problem

The position of the aircraft is given by p = [x, y, z]T ,
where x, y and z represent, respectively, the Cartesian
coordinates aligned with longitude, latitude and altitude, and
the heading angle is given by ψ. The configuration vector is
then given by x = [x, y, z, ψ]T . We also keep a separate
state, b, to account for the battery level of the vehicle. The
input vector u = [va, γ, ϕ]

T includes the airspeed, va, flight
path angle, γ, and roll angle, ϕ, of the vehicle. The wind
field experienced by the aircraft w = [wx, wy, wz]

T will
vary with its position, as it moves through the wind field.

Our goal is to find a feasible and low-energy path that
guides a hybrid airship from the initial configuration xstart

to the final configuration xgoal in a finite time, subject to the
dynamic equations given by ẋ = f(x,u,w) and respecting
the constraints in the configuration and input spaces.

III. METHODOLOGY

Our sampling algorithm, inspired by RRT* [18], builds
and maintains a tree graph τ(V,E) using a set of vertices,
V , and a set of edges, E. The algorithm samples a random
point in the configuration space, finds its nearest vertex in the
current tree, uses an approximated steering function to create
a vertex based on the random point and its nearest vertex,
and, finally, selects the actual parent for this vertex using a
more appropriated steering function that also returns the cost
of the path between a vertex and its potential parent. One
important difference from other similar methods like [11]
is that, since we are not considering an environment with
obstacles, we do not have strict requirement for the path and
the vertices that are going to be added to the tree. Therefore,
instead of forcing the aircraft to reach the selected vertex,
we allow the wind to deform the trajectory created when
connecting a new vertex and its potential parents. Differently

Algorithm 1 Energy-efficient and wind-aware RRT planner

function τ = EW-RRT(xstart,xgoal, d, dmin)
vinit, vgoal ← xstart,xgoal

τ ← InitializeTree()
τ ← InsertNode(τ,∅, vinit)
for i← 1, N do

vrand ← Sample()
vnearest ← Nearest(τ, vnew)
vnew ← ApproxSteer(vnearest, vrand, d)
Vnear ← Near(τ, vnew)
vmin, vnew ← BestParent(Vnear, vnearest, vnew)
τ ← InsertNode(τ, vmin, vnew)
if Distance(vnew, vgoal) < dmin then

return
end if

end for
end function

from RRT* [18], we do not perform the rewiring of the tree
when a new node is inserted, what would not be straight
forward due to wind. This fact may lead our approach to
generate sub-optimal paths, since rewiring is necessary to
prove the asymptotically optimally of RRT*. Our motion
planner is shown in Alg. 1, and its functions are described
in the sequence.

1) Sampling: The Sample function randomly chooses a
configuration xrand ∈ C from the configuration space and
creates a vertex vrand with it.

2) Closest Neighbor: Given a vertex vrand and the tree
τ(V,E), the Nearest function returns the nearest vertex
vnearest ∈ V according to a distance function. At this point
a simple Euclidean metric is used to select vnearest, in order
to keep a low computational load.

3) Steering: The ApproxSteer function creates a new
vertex vnew in the direction given by the nearest vertex and
the vertex sampled randomly. This new vertex is created at
a distance given by the step size d. The heading angle is set
as aligned with this direction.

4) Near Neighbors: Given the new vertex vnew and the
tree τ(V,E), the Near function returns a set the vertices
Vnear ∈ V that are at a certain distance l from the new
vertex. The Euclidean distance is used as a metric to obtain
this set. The threshold l is calculated using the optimal
formulation proposed in [16].

5) Best Parent: The function BestParent , shown in
Alg. 2, selects the best parent vertex from the set of near
vertices Vnear by comparing the costs of steering from each
of them to the new vertex, vnew, using the DubinsSteer
function (Alg. 3). Fig. 5 illustrates how the selection of the
best parent process works.

6) Steering With Dubins: The local planner DubinsSteer ,
shown in Alg. 3, calculates a path connecting a given vertex
vnear to vnew using an extended 3D version of the Dubins’
paths. As described in [19] we consider that the airspeed,
va, is constant, and that the roll angle ϕ can only assume
three values {ϕmin, 0, ϕmax} (in other words, the aircraft



Algorithm 2 Choosing the best parent for a new vertex

function vmin, vnew = BESTPARENT(Vnear, vnrst., vnew)
vnew, cmin ← DubinsSteer(vnrst., vnew)
for vnear ∈ Vnear do

v′new, c
′ ← DubinsSteer(vnear, vnew)

if c′ < cmin then
vnew ← v′new
cmin ← c′

end if
end for

end function

Fig. 5: The new vertex vnew is connected using Dubins’
Airplane to all vertices in set Vnear (dashed colored curves).
These curves are deformed due to the effect of the wind
(solid colored curves). The cost for each of the wind-
deformed curves is calculated and ranked. The vertex vinew
with lowest cost is added to the tree τ(V,E).

is capable of turning in maximum rate or follow a straight
heading angle), and the flight path angle, γ, can assume any
value within its limits [γmin, γmax]. Therefore, DubinsPath
finds the sequence of inputs u = [va, γ, ϕ]

T that takes the
system from vnear to vnew in the wind reference frame, i.e.,
without considering the effect of the wind.

Based on the method presented in [11], the function
DeformTrajectory (Alg. 4) discretizes the Dubins’ path
at regular time intervals ∆t. Then the loop deforms the
trajectory from the wind reference frame to the ground frame
by adding the integrated wind drift at each time step using a
WindField function to obtain a wind vector for each ground-
relative position. This process is illustrated in Fig. 6.

The new trajectory, now in the ground reference frame,
is used to calculate the required thrust at every in-
stant (RequiredThrust) using the formulation presented in
Sect. II. With the necessary thrust and the ground-relative
trajectory, the cost for this potential edge is calculated, using
the Cost function, explained next. Fig. 5 shows how this step
is used in our algorithm.

7) Energy-Based Cost Function: In our planner we are
proposing an energy-based Cost function that takes into
account the energy expenditure due to the propulsive system,
and a heuristic to account for the changes in potential energy

Algorithm 3 Steering using Dubins’ Airplane and wind

function vnew, cmin = DUBINSSTEER(vnear, vnew)
σ ← DubinsPath(vnear, vnew)
Swind ← DeformTrajectory(σ,N, va)
vnew ← Swind(end)
T ← RequiredThrust(Swind)
cmin ← Cost(vnear, σwind, T )

end function

Algorithm 4 Deforming Dubins’ trajectory due to wind

function σwind = DEFORMTRAJECTORY(σ,N, va)
L← GetLength(σ)
∆t← (L/N)/va
Swind ← Discretize(σ,∆t)
D ← (0, 0, 0)
for i← 1, N do

Swind(i)← Swind(i) +D
(wx, wy, wz)←WindField(σ(i))
D ← D + (wx, wy, wz) ·∆t

end for
end function

and energy accumulation due to charging of the batteries with
the solar panels. The proposed cost function is given by

C =

{
Eprop + Eopp

pot + Eopp
solar, if b+∆b ≥ 0

∞, if b+∆b < 0
. (7)

The first component, Eprop, is straight-forward, since there is
a natural relationship between energy expenditure and cost.
The cost is given by the energy obtained by the integration
of the instantaneous power required by the propellers:

Eprop =

∫
Pprop

ηpropηshaft
dt =

∫
Tva

ηpropηshaft
dt, (8)

The first component, Eprop, is straight-forward, since there is
a natural relationship between energy expenditure and cost.

Fig. 6: A trajectory is deformed due to the effect of wind.
The black trajectory is obtained by connecting the start
and the goal configurations using a Dubins’ Airplane path
and discretizing this path over a time interval. Using this
discretization, we calculate the red and blue trajectories by
adding the drift caused by the wind field at each time-step.



The cost is given by the energy obtained by the integration
of the instantaneous power required by the propellers:

Eprop =

∫
Pprop

ηpropηshaft
dt =

∫
Tva

ηpropηshaft
dt, (9)

where the thrust, T , is calculated using (5), and ηprop and
ηshaft are the propellers and shaft efficiencies, respectively.

Including energy gains with solar energy and potential
energy is problematic, because, if the energy influx is greater
than the energy outflux, negative costs can be encountered,
which is unsuitable for optimization. Since there are paths
that can maximize the value for both energy components
(paths with the maximum altitude), we propose their inclu-
sion as a complement to their respective maximum value.
Like in Microeconomics, this can be thought of as opportu-
nity costs: the loss of a prospective gain when one chooses
to not use the action that maximizes its benefits [17]. Thus,
the opportunity costs for the potential and solar energies are

Eopp
pot = Emax

pot − Epot = mg(hmax − h) and

Eopp
solar = Emax

solar − Esolar =

∫
(Pmax

solar − Psolar) dt, (10)

where hmax is 70 km and h is the height of the child vertex
(local goal), Psolar = IsolarηpanelsApanels is the solar power
accounting for the available solar intensity, Isolar, solar panel
efficiency, ηpanels, and solar panel area, Apanels. In the
atmosphere of Venus, Pmax

solar is the maximum power that the
solar panels can absorb, 560W/m2 (reached at the highest
altitude, as shown in Fig. 3).

The change in the battery level is calculated using the
difference between influx and outflux energies

∆b = −Eprop + Esolar. (11)

where the thrust, T , is calculated using (5), and ηprop and
ηshaft are the propellers and shaft efficiencies, respectively.

Including energy gains with solar energy and potential
energy is problematic, because, if the energy influx is greater
than the energy outflux, negative costs can be encountered,
which is unsuitable for optimization. Since there are paths
that can maximize the value for both energy components
(paths with the maximum altitude), we propose their inclu-
sion as a complement to their respective maximum value.
Like in Microeconomics, this can be thought of as opportu-
nity costs: the loss of a prospective gain when one chooses
to not use the action that maximizes its benefits [17]. Thus,
the opportunity costs for the potential and solar energies are

Eopp
pot = Emax

pot − Epot = mg(hmax − h) and

Eopp
solar = Emax

solar − Esolar =

∫
(Pmax

solar − Psolar) dt, (12)

where hmax is 70 km and h is the height of the child vertex
(local goal), Psolar = IsolarηpanelsApanels is the solar power
accounting for the available solar intensity, Isolar, solar panel
efficiency, ηpanels, and solar panel area, Apanels. In the
atmosphere of Venus, Pmax

solar is the maximum power that the
solar panels can absorb, 560W/m2 (reached at the highest
altitude, as shown in Fig. 3).

The change in the battery level is calculated using the
difference between influx and outflux energies

∆b = −Eprop + Esolar. (13)

8) Insert Node: Given the current tree, τ(V,E), a ver-
tex vmin ∈ V , and a new vertex, vnew, the InsertNode
function adds the new vertex, vnew, to V and adds an edge
(vmin, vnew) to E. It also assigns the cost of this new edge
(local trajectory) and adds this cost to the cost of the parent
vertex to create a new total cost associated with the new
vertex. Similarly, the child (vnew) updates the state of the
battery by adding the change in the battery level required to
follow the added trajectory.

9) Termination: After the new vertex, vnew, is added to
the tree τ(V,E), we check if it is in the goal region, specified
by dmin, which is a hyper-parameter to control how close
the solution needs to get from the actual desired position. If
the condition is met, the algorithm is terminated and the tree
τ(V,E) is returned. Otherwise, the loop is continued until
the maximum number of samples N is reached.

IV. NUMERICAL RESULTS

Our final objective is to obtain a motion planner that
is capable of finding optimal trajectories in a planet-sized
environment: the Equatorial circumference of Venus is
38 024.6 km (in comparison, the Equatorial circumference
of the Earth is 40 030.2 km). However, for the analysis pre-
sented in this work, we were more concerned in checking the
behavior of our planner and, therefore, smaller environments,
in the order of some hundreds of kilometers (Table II), were
considered.

In our first example, shown in Fig. 7, we show the
relevance of taking into account high-speed winds on the
motion planning. In this experiment, we set the airship’s
airspeed to its maximum value va = 30m/s and then
used a wind model w = [wx, 0, 0]

T , varying the values
of the longitudinal component wx. The motion planner run
using N = 1000 random samples (which are represented
by the colored dots in the figure). For each value of wx,
we also compared the effect of two different steering step
sizes d = 10 km and d = 50 km. In Fig. 7(a) we can
see a scenario with wx = 0. Since there is no wind, the
Dubins’ paths are not deformed and the random samples
coincide with the vertices of the tree. Furthermore, because
va < ||w||, the vehicle is capable of moving in any direction.
From Fig. 7(b) to Fig. 7(d), we increase the wind speed and
observe that the reachable configurations become limited by
a “cone”-like geometry (similar to what is described in [20]).
In Fig. 7(b), the wind speed is equal to the airspeed of the
vehicle and we can see how the step size can be an important
parameter. In an ideal scenario, the vehicle could at most
maintain its x coordinate. However, if it chooses to move in
the other axes, it is carried by the wind. When a small step
size is chosen, the curved parts of the Dubins’ trajectories
are relatively large compared to its straight part and the cone.
If the step size is big, the straight parts are prevalent and the
airship is able to move in the y coordinate with low drift in



TABLE II: Configuration Space Limits

Parameters Values Parameters Values

xmin −100 km xmax 100/300 km
ymin −100 km ymax 100 km
zmin 55 km zmax 70 km
ψmin -π rad ψmax π rad
bmin 0MJ bmax 50MJ

the x coordinate. As the wind speeds become much larger
than the airspeed, the vehicle is not able to counteract the
wind speeds that much and the reachable regions is further
reduced. This is an important fact for motion planning in
Venus. If the distance to our desired goal in the y direction
(latitude) is too big and the vehicle is not able to produce
speeds to counteract the wind drift, the only possible way to
reach it is to circle the planet.

In our second simulation, shown in Fig. 8, we present
a solution for a well defined motion planning problem.
The start position of the aircraft was set to pstart =
[−100, 0, 55]T km with initial heading set to zero. The
goal position was set to pgoal = [300, 80, 55]T km. The
final heading was also set to zero but our planner do not
guarantee this heading, since the planner finds paths to a
region around the target. The aircraft airspeed was set to
be va = 30m/s. The 3D wind model used in this setup
was again simplified to w = [wx, 0, 0]

T , but now wx

was computed in function of the altitude of the vehicle, as
shown in Fig. 2. The motion planner run with N = 5000
random samples and a steering step size of 10 km. The path
found by the planner travels the majority of the course on
higher altitudes. This is expected since in higher altitudes
we find lower air density (i.e. less drag force) and higher
availability of solar intensity. A solution was reached at
a distance of 3490.9m from the goal, where the vehicle
would arrive with full battery (50MJ), having traveled a
distance of 361.35 km in 4065.0 s. The cost of the path is
221.9MJ. For the sake of comparison, we connected start
and goal configurations with a single Dubins path using an
iterative method to account for the wind drift. This solution
converged to a position at a distance of 1920.2m from the
goal. The traveled distance would be 360.84 km with total
time 3405.4 s. However, the path would not be energetically
feasible because the battery would fully discharge before
reaching the end (−Ebaseline

prop + Ebaseline
solar = −598.4MJ,

which is more than the battery capacity bmax = 50MJ).

V. CONCLUSIONS AND FUTURE WORK

This paper presented a motion planning strategy for solar-
powered hybrid airships flying in the atmosphere of Venus,
where strong winds are present and battery charging is a
function of the vehicle’s altitude. Our motion planner is able
to find low-energy trajectories and is a good first step for a
more complete system that will be used in future exploration
missions.

Our simulation results show a few limitations of our cur-
rent implementation. When the aerobot is limited to airspeeds
smaller than the wind speed, planning needs to account for

the wrapping nature of the atmospheric environment. If a
goal is set against the wind or at higher latitudes, the aircraft
needs to go around the planet at least once to reach it.
This behavior will be included in our future work. Also,
our current implementation does not consider the possibility
of motion without thrust (i.e., gliding) when the battery is
empty, since we do not expand the search tree using edges
that would result in a negative battery level. However, we
believe that gliding will be an important feature during the
night and we plan to slightly modify the algorithm to account
for that. Additionally, our current simulations consider the
wind field as time-invariant and mostly unidirectional. In
the future we want to consider a more complete model
of Venus atmospheric wind. We also want to include local
measurements of the wind and include multiple vehicles in
coordinated missions.
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(a) 3D view

(b) YZ view

Fig. 8: Motion planning for airship flying in the atmosphere of Venus with start and goal positions given by the green
circle and red circles. A tree of kinematically feasible trajectories is created considering the effect of the wind drift. Higher
altitudes are preferred by the solution trajectory (in blue) because at this altitudes the aircraft finds less air resistance and
highest solar energy for charging its batteries. The colored edges on the tree show the battery capacity after the vehicle
follows the edge: the color changes from green to red according to the battery level (green is full and red is empty).


