

Machine learning approaches for rare-earth silicate environmental barrier coating thermodynamic property predictions

Cameron J. Bodenchatz¹, Wissam A. Saidi^{2,3}, and Jamesa L. Stokes¹

¹NASA Glenn Research Center, Cleveland, OH ²National Energy Technology Laboratory, Pittsburgh, PA ³University of Pittsburgh, Pittsburgh, PA

Funding provided by the NASA Transformational Tools & Technologies (TTT) Project

XVIII Conference & Exhibition of the European Ceramic Society Lyon, France July 5th, 2023

Increased efficiency and cost savings • Higher temperature stability

Lower density

INTAKE

CMCs can degrade under O_2 and H_2O environments at high • temperature (>800°C)

Replace metal alloy engine components with SiC/SiC

ceramic matrix composites (CMCs)

COMPRESSION

Cold Section

SiC/SiC Ceramic Matrix Composite (CMC) Components

SiC (s) + 3/2 O₂ (g) \rightarrow SiO₂ (s) + CO (g) SiO_2 (s) + 2 H₂O (g) \rightarrow Si(OH)₄ (g)

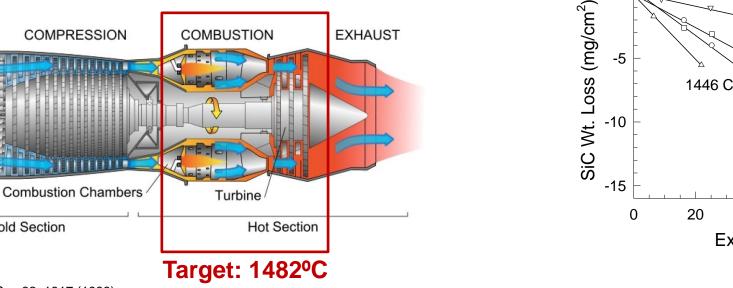
Weight loss of SiC in High-Pressure Jet Fuel Burner (6 atm, 20 m/s)

1385 C

60

Exposure Time (hrs)

40



Robinson and Smialek, J Am Ceram Soc 82, 1817 (1999)

Air Inlet

Zhu, et al. ICACC 2018

•

Jet engine diagram licensed under CC BY-SA 4.0, attributed to Jeff Dahl. https://commons.wikimedia.org/wiki/File:Jet engine numbered.svg

1252 C

1343 C

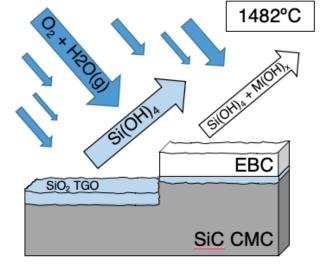
100

80

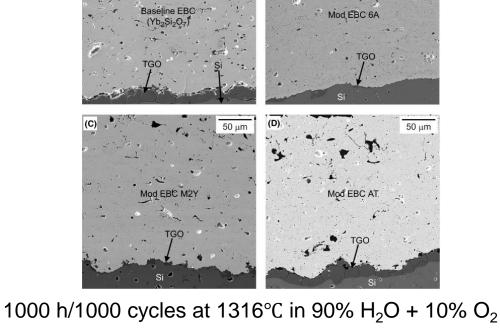
Environmental Barrier Coatings (EBCs) for SiC/SiC CMCs

- CMCs can recess under O₂ and H₂O environments at high temperature (>800°C)
- Rare-Earth (RE) disilicates ($RE_2Si_2O_7$) are a promising class of EBCs
- EBCs can reduce H₂O diffusion
- Some formation of SiO₂ TGO still occurs with EBC

$$\begin{split} \text{SiC (s)} + 3/2 \text{ } O_2 \text{ } (g) & \rightarrow \text{SiO}_2 \text{ } (s) + \text{CO } (g) \\ \text{SiO}_2 \text{ } (s) + 2 \text{ } \text{H}_2\text{O} \text{ } (g) & \rightarrow \text{Si}(\text{OH})_4 \text{ } (g) \end{split}$$



EBC chemistry affects TGO growth and CMC recession



EBC-coated turbine vanes

EBC Failure Modes and Design Criteria

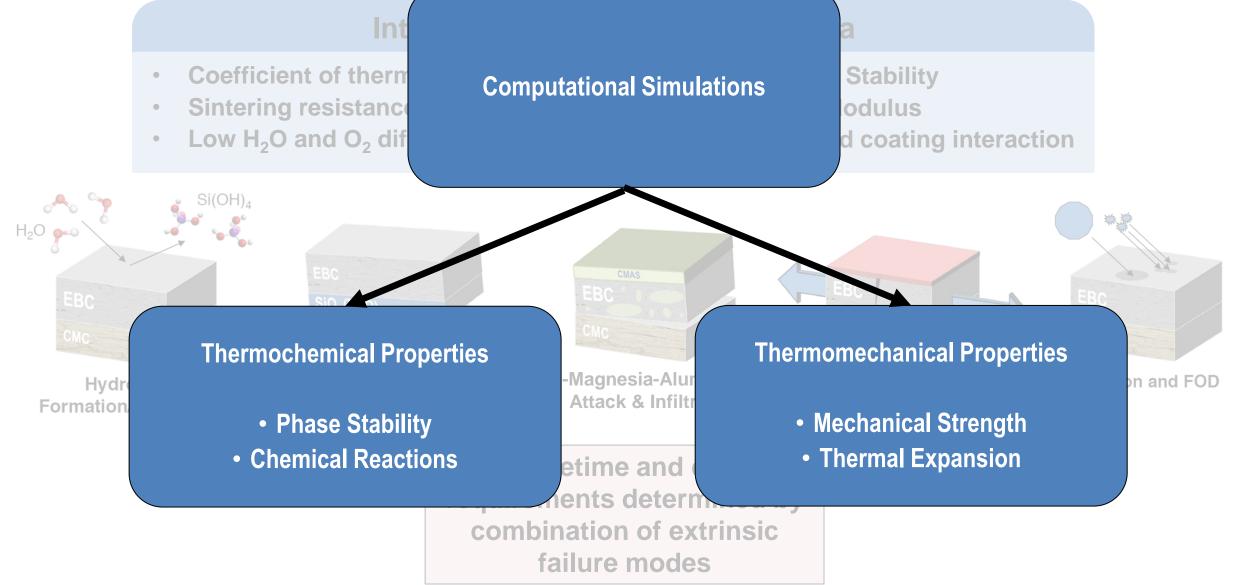
Intrinsic Material Selection Criteria

- Coefficient of thermal expansion (CTE)
- Sintering resistance
- Low H₂O and O₂ diffusivity/solubility

- Phase Stability
- Low Modulus
- Limited coating interaction

EBC lifetime and design requirements determined by combination of extrinsic failure modes

EBC Failure Modes and Design Criteria



Density Functional Theory

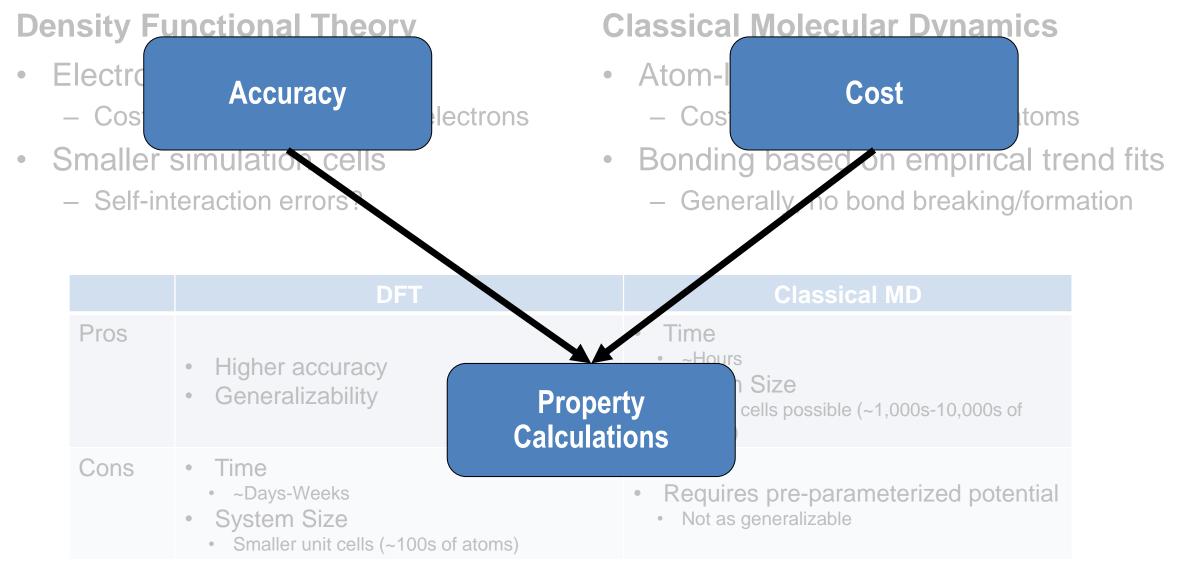
- Electron-level theory
 - Cost scales with number of electrons
- Smaller simulation cells
 - Self-interaction errors?

Classical Molecular Dynamics

- Atom-level theory
 - Cost scales with number of atoms
- Bonding based on empirical trend fits
 - Generally, no bond breaking/formation

	DFT	Classical MD
Pros	Higher accuracyGeneralizability	 Time ~Hours System Size Larger cells possible (~1,000s-10,000s of atoms)
Cons	 Time ~Days-Weeks System Size Smaller unit cells (~100s of atoms) 	 Requires pre-parameterized potential Not as generalizable Just don't exist

Atomic-scale simulation methods



Machine learning approaches for crystalline materials

Direct Property Calculations

- Train ML model to directly predict property
- Descriptors to capture system information
 - Crystal structure information
 - Atomic composition
 - Environmental variables
 - Temperature, Pressure, etc.

Indirect Property Calculations

- Train ML model to run simulations
 - Interatomic potentials
- Descriptors often include atomic neighborhood information
 - Nearest-neighbor atoms within cutoff
 - Bonding information

- Example: Neural network to predict CTE for rare-earth disilicates¹
- Example: NN-based interatomic potential for HfO₂

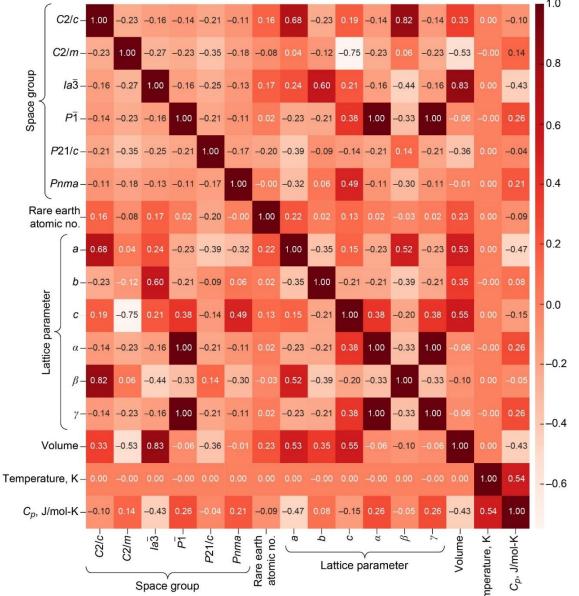
	Direct	Indirect
Pros	Can describe more materialsCan be easier to train	Can enable prediction of multiple properties
Cons	Single output property	More intensive to trainOften limited to a single material

DIRECT MACHINE LEARNING PREDICTIONS

10

Feature Selection for Neural Network Model

- NN model to predict heat capacity (Cp) for RE oxides, monosilicates, and disilicates
 - Candidate EBC materials
- Features selected to simply include geometric and chemical information
 - Space group, lattice parameters, RE cation, and temperature were used as input features
- Correlation Matrix analysis performed to determine most impactful features
- Features with a correlation coefficient of 1.0 were neglected from model training
 - Reduces overfitting
 - $P\overline{1}$ space group and γ angle were removed

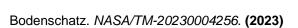


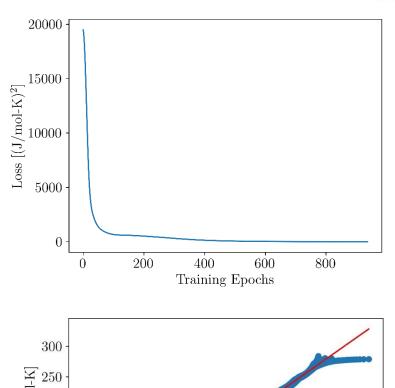
Hyperparameter Optimization and Model Training

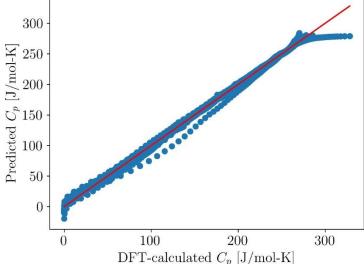
- Trained on DFT data
- Model was trained using "leave-one-group-out" cross validation where each material C_p-T dataset was a group
- Optimized model structure:

Parameter	Tested	Optimal
Hidden Layer Architectures	(1), (10), (100), (1,1), (10,10), (100,100), (1000,1000), (1000,100), (10,10,10), (100,100,100), (1000,1000,1000), (1000,100,10)	(100)
Activation function	Logistic, RELU	RELU
Solver	LBFGS, SGD, Adam	Adam
Learning rate update method	Constant, adaptive	Adaptive
L2 regularization constant, α	0.0001, 0.001, 0.01	0.01

- Optimized model RMSE:
 - 5.12±3.37 J/mol-K

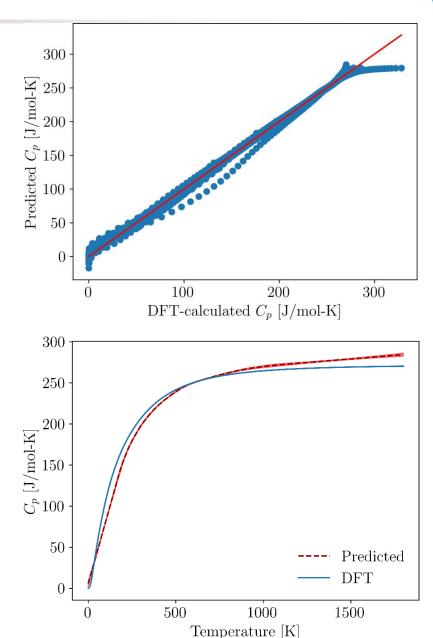






Bagged Ensemble Model

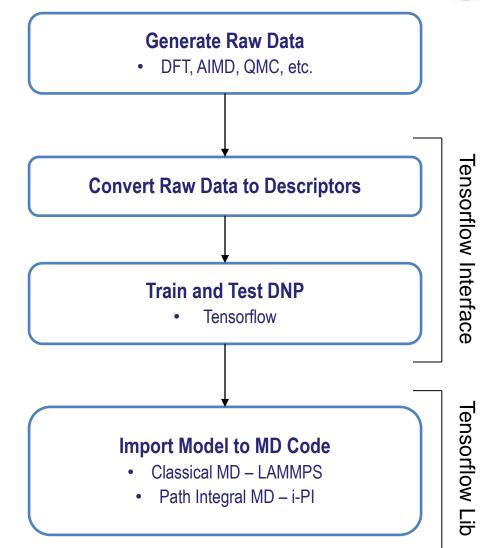
- After determining the optimal model structure, the model was re-trained using the bagging ensemble regressor model
 - 50 models were trained using randomized subsets of $C_{\rm p}$ data
- The ensemble model can be used to calculate the average prediction of all the individual models
- The standard deviation of the ensemble of models can be used to show an error estimate of the model prediction capabilities
- The Out-of-Bag score for the overall accuracy of the ensemble model is 0.997, and the mean standard deviation over the temperature range is 1.1 J/mol-K



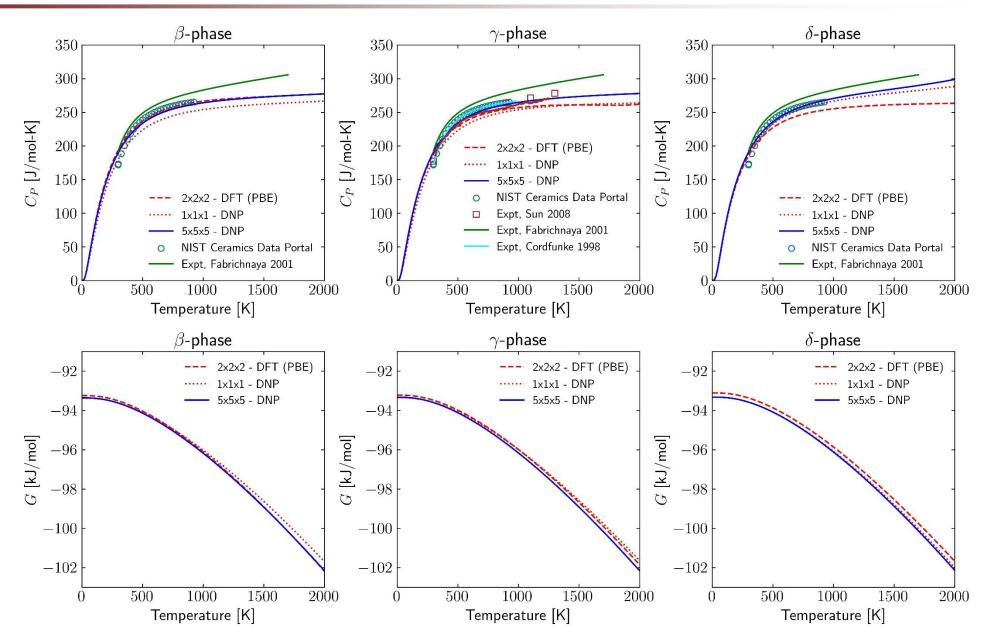
INDIRECT MACHINE LEARNING PREDICTIONS

Training an Interatomic Potential from DFT Data

- Deep Neural Network Potential (DNP) using descriptors to preserve translational, rotational, and permutational symmetries
- Descriptors dependent on atomic neighbor environment
 - Full information (radial and angular) included for first- and second-nearest neighbors
 - Radial information only for other atoms inside the userdefined cutoff radius
- Training data obtained from ab initio molecular dynamics (AIMD) simulations using DFT
 - VASP, Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional
- DNP used to calculate atomic energies; total energy is the sum of atomic energies.
- Forces and virial calculated using gradient of energy w.r.t. positions



Y₂Si₂O₇ Predicted Properties From MLMD Potential



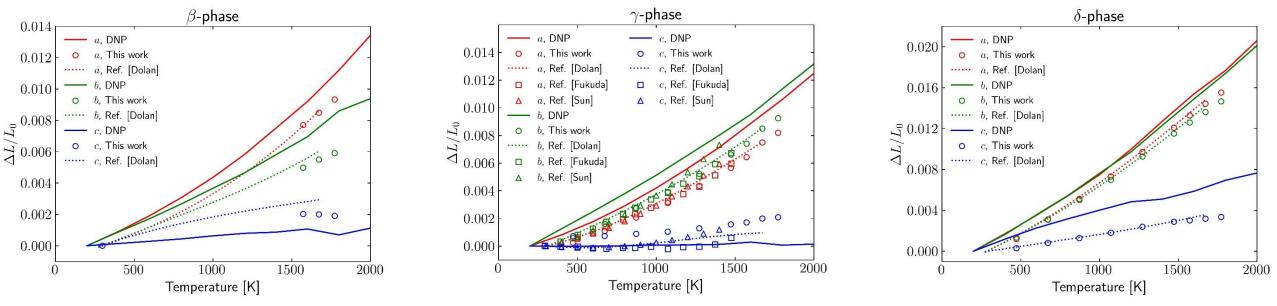
NASA

CTE calculations as function of temperature

- Good agreement between DNP simulations and experiment¹
- Overprediction of *a* and *b* CTE, underprediction of *c* CTE

	CTE(×10 ⁶ K ⁻¹)		
	β	γ	δ
а	7.4	0.1	4.1
b	5.3	7.2	11.5
С	0.6	7.0	11.2
Avg Bulk	4.4 (4.1 ¹)	4.8 (3.9 ¹)	8.9 (8.1 ¹)

Table 1: Linear lattice CTE and average bulk CTE of Y₂Si₂O₇ crystal phases



Dolan, et al. *Powder Diff.* **(2008)** Fukuda, et al.

Conclusions

- Two machine learning approaches were used to predict thermodynamic properties for environmental barrier coating candidate materials
 - Direct prediction of properties via training a neural network model
 - Indirect prediction of properties via training an interatomic potential
- Training a neural network model enabled prediction of Cp across material classes
 - RE oxides, monosilicates, and disilicates
 - Training did not require a very large dataset (only 25 unique crystal phases)
 - Bagging ensemble method provides error estimate for model
- Machine learning was used to develop an interatomic potential for YDS
 - Potential was successfully used to calculate various properties of YDS including CTE
 - Results from MD match well with results from DFT
 - Calculation of phonon vibrational frequencies accelerated compared to DFT (~hours vs. ~weeks)
 - Training DNPs is resource intensive, and training of potentials for additional materials is required. However, training is a one-time expense (per material), and potentials can be flexibly used in additional calculations.

• Environmental Effects & Coatings Branch at NASA Glenn Research Center

• NASA Pleiades Supercomputer Cluster

- Funding
 - NASA Transformational Tools and Technologies (TTT) project
 - NASA Transformative Aeronautics Concepts Program (TACP)
 - NASA Aeronautics Research Mission Directorate (ARMD)