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SiC/SiC Ceramic Matrix Composite (CMC) Components

• Replace metal alloy engine components with SiC/SiC

ceramic matrix composites (CMCs)

• Increased efficiency and cost savings

– Higher temperature stability

– Lower density

• CMCs can degrade under O2 and H2O environments at high 

temperature (>800℃)
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SiC (s) + 3/2 O2 (g) ⟶ SiO2 (s) + CO (g)

SiO2 (s) + 2 H2O (g) ⟶ Si(OH)4 (g)



Environmental Barrier Coatings (EBCs) for SiC/SiC CMCs

• CMCs can recess under O2 and H2O environments at high temperature (>800℃)

• Rare-Earth (RE) disilicates (RE2Si2O7) are a promising class of EBCs

• EBCs can reduce H2O diffusion

• Some formation of SiO2 TGO still occurs with EBC
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E. Opila et al. J Am Ceram Soc (1999)

K. Lee et al. J. Am Ceram Soc. (2019)

SiC (s) + 3/2 O2 (g) ⟶ SiO2 (s) + CO (g)

SiO2 (s) + 2 H2O (g) ⟶ Si(OH)4 (g)

EBC chemistry affects TGO growth and CMC recession

1000 h/1000 cycles at 1316℃ in 90% H2O + 10% O2

EBC-coated turbine vanes



EBC Failure Modes and Design Criteria
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EBC lifetime and design 

requirements determined by 

combination of extrinsic 

failure modes

Intrinsic Material Selection Criteria

• Coefficient of thermal expansion (CTE)

• Sintering resistance

• Low H2O and O2 diffusivity/solubility

• Phase Stability

• Low Modulus

• Limited coating interaction

Calcia-Magnesia-Alumina-Silicate

Attack & Infiltration
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EBC lifetime and design 

requirements determined by 

combination of extrinsic 

failure modes

Intrinsic Material Selection Criteria
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Attack & Infiltration

Thermochemical Properties

• Phase Stability

• Chemical Reactions

Thermomechanical Properties

• Mechanical Strength

• Thermal Expansion

Computational Simulations



Atomic-scale simulation methods for property calculations

Density Functional Theory

• Electron-level theory

– Cost scales with number of electrons

• Smaller simulation cells

– Self-interaction errors?

Classical Molecular Dynamics

• Atom-level theory

– Cost scales with number of atoms

• Bonding based on empirical trend fits

– Generally, no bond breaking/formation
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DFT Classical MD

Pros

• Higher accuracy

• Generalizability

• Time
• ~Hours

• System Size
• Larger cells possible (~1,000s-10,000s of 

atoms)

Cons • Time
• ~Days-Weeks

• System Size
• Smaller unit cells (~100s of atoms)

• Requires pre-parameterized potential
• Not as generalizable

• Just don’t exist
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Direct Property Calculations

• Train ML model to directly predict property

• Descriptors to capture system information

– Crystal structure information

– Atomic composition

– Environmental variables

• Temperature, Pressure, etc.

• Example: Neural network to predict CTE 

for rare-earth disilicates1

Indirect Property Calculations

• Train ML model to run simulations

– Interatomic potentials

• Descriptors often include atomic 

neighborhood information

– Nearest-neighbor atoms within cutoff

– Bonding information

• Example: NN-based interatomic potential 

for HfO2
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Machine learning approaches for crystalline materials

Ayyasamy, et al. J Am Ceram Soc. (2020)

Wu, et al. Phys Rev B. (2021)

Direct Indirect

Pros • Can describe more materials

• Can be easier to train

• Can enable prediction of multiple 

properties

Cons
• Single output property

• More intensive to train

• Often limited to a single material



DIRECT MACHINE LEARNING 

PREDICTIONS

9



Feature Selection for Neural Network Model

• NN model to predict heat capacity (Cp) for RE 

oxides, monosilicates, and disilicates

– Candidate EBC materials

• Features selected to simply include geometric and 

chemical information

– Space group, lattice parameters, RE cation, and 

temperature were used as input features

• Correlation Matrix analysis performed to determine 

most impactful features

• Features with a correlation coefficient of 1.0 were 

neglected from model training

– Reduces overfitting

– P1̅ space group and γ angle were removed

10Bodenschatz. NASA/TM-20230004256. (2023)



Hyperparameter Optimization and Model Training

• Trained on DFT data

• Model was trained using “leave-one-group-out” cross 

validation where each material Cp-T dataset was a group

• Optimized model structure:

• Optimized model RMSE:

– 5.12±3.37 J/mol-K
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Parameter Tested Optimal

Hidden Layer Architectures (1), (10), (100), (1,1), (10,10), 

(100,100), (1000,1000), (1000,100), 

(10,10,10), (100,100,100), 

(1000,1000,1000), (1000,100,10) 

(100)

Activation function Logistic, RELU RELU

Solver LBFGS, SGD, Adam Adam

Learning rate update method Constant, adaptive Adaptive

L2 regularization constant, α 0.0001, 0.001, 0.01 0.01

Bodenschatz. NASA/TM-20230004256. (2023)



Bagged Ensemble Model

• After determining the optimal model structure, the 

model was re-trained using the bagging ensemble 

regressor model

– 50 models were trained using randomized subsets of 

Cp data

• The ensemble model can be used to calculate the 

average prediction of all the individual models

• The standard deviation of the ensemble of models 

can be used to show an error estimate of the model 

prediction capabilities

• The Out-of-Bag score for the overall accuracy of 

the ensemble model is 0.997, and the mean 

standard deviation over the temperature range is 

1.1 J/mol-K

12Bodenschatz. NASA/TM-20230004256. (2023)



INDIRECT MACHINE LEARNING 

PREDICTIONS
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Training an Interatomic Potential from DFT Data

• Deep Neural Network Potential (DNP) using descriptors to 

preserve translational, rotational, and permutational 

symmetries

• Descriptors dependent on atomic neighbor environment

– Full information (radial and angular) included for first- and 

second-nearest neighbors

– Radial information only for other atoms inside the user-

defined cutoff radius

• Training data obtained from ab initio molecular dynamics 

(AIMD) simulations using DFT

– VASP, Perdew-Burke-Ernzerhof (PBE) exchange-correlation 

functional

• DNP used to calculate atomic energies; total energy is the 

sum of atomic energies.

• Forces and virial calculated using gradient of energy w.r.t.

positions

14Wang H, et al. Comp Phys Comm. (2018)

Generate Raw Data

• DFT, AIMD, QMC, etc.

Convert Raw Data to Descriptors

Train and Test DNP

• Tensorflow

Import Model to MD Code

• Classical MD – LAMMPS

• Path Integral MD – i-PI

T
e
n
s
o
rflo

w
In

te
rfa

c
e

T
e
n
s
o
rflo

w
L
ib



Y2Si2O7 Predicted Properties From MLMD Potential
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CTE calculations as function of temperature

• Good agreement between DNP 

simulations and experiment1

• Overprediction of a and b CTE, 

underprediction of c CTE

CTE ( ×106 K-1 )

β γ δ

a 7.4 0.1 4.1

b 5.3 7.2 11.5

c 0.6 7.0 11.2

Avg Bulk 4.4 (4.11) 4.8 (3.91) 8.9 (8.11)
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Table 1: Linear lattice CTE and average bulk CTE of Y2Si2O7 crystal phases

Dolan, et al. Powder Diff. (2008)

Fukuda, et al.

Sun, et al.



Conclusions

• Two machine learning approaches were used to predict thermodynamic properties for environmental barrier 

coating candidate materials

– Direct prediction of properties via training a neural network model

– Indirect prediction of properties via training an interatomic potential

• Training a neural network model enabled prediction of Cp across material classes

– RE oxides, monosilicates, and disilicates

– Training did not require a very large dataset (only 25 unique crystal phases)

– Bagging ensemble method provides error estimate for model

• Machine learning was used to develop an interatomic potential for YDS

– Potential was successfully used to calculate various properties of YDS including CTE

– Results from MD match well with results from DFT

– Calculation of phonon vibrational frequencies accelerated compared to DFT (~hours vs. ~weeks)

– Training DNPs is resource intensive, and training of potentials for additional materials is required. However, training is 

a one-time expense (per material), and potentials can be flexibly used in additional calculations.
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