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ABSTRACT - SelenlTA is an international interdisciplinary mission
consisting of two CubeSats that will provide the first multi-point
measurement in a sustained low lunar orbit. This mission will advance the
understanding of spatiotemporal differentiation of the electromagnetic
space environment at the Moon in support of Artemis crew and the
geosciences. The candidate mission science objectives and measurement
requirements are listed below. SelenITA builds on a rich history of
electromagnetic plasma observations of the near lunar surface and space
environment, and it answers high level science questions with state of the
art instruments in a small package.
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PLAIN LANGUAGE ABSTRACT — SelenlITA comes from the greek word
for Moon, selene, with the addition of “ITA” as a reference to the Brazilian
teammate, Instituto Tecnologico de Aeronautica. In addition, in Portuguese
“ita" is a prefix similar to "ite" in English, used in naming minerals, so
Selenita could be seen as a lunar gemstone. In Spanish, “ita” is a &
diminutive suffix for “little” which is appropriate for this CubeSat mission &
which consists of twin 12U CubeSats in low lunar orbit. The primary |
science goal of the mission is to distinguish time varying features within the
electromagnetic plasma environment near the surface of the Moon. The "
science objectives include investigating the origins of crustal magnetic . . : :

fields, pIasta interactions with SEhescsaJ fields, gplasma waves, sSrface Flgure 1. The SelenITA mission consists of twin 12U
potential, and interior properties. This mission is also interested in the CybeSats with ﬂying in formation in low lunar orbit. Each

radiation environment at the Moon and the amount of dust at the lunar : : : : :
poles. This is important because it helps us understand how future satellite is suited with a full COmpIement of plasma and fields

astronauts will live and work on the lunar surface and identify hazards. iInstrumentation (Matos).
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Open Science Questions:
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Figure 7. Incident solar wind ions-interact directly with crustal magnetic fields processes occur In lunar
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Figure 9. Example observed reflected ion beam (Chu et al. 2021, JGR
Space Physics).

The near surface lunar
plasma environment is
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 |n situ measurements indicate that both ions and electrons can be heated in and above
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T /Wake Boundary + + + + + . « We lack a complete understanding of how incident ion and electron fluxes vary as a function of the interaction region [Saito et al., 2012; Halekas et al., 2012, 2014; Chu et al., 2021;
—————— gomprlged t of ’ E:c altitude and magnetic field strength, as well as at what altitude(s) incident ions are reflected and/or Harada et al., 2021], but we lack a c;)mplet,e accounting of,how t,he ene,rgy of bulk |,olasme;
(a" Y plyansanr]n e:g Qleec\;/:c/rci) cr; anod deflected within lunar magnetic field interaction regions. motion is converted to other forms in the magnetic field interaction regions.
et _ Kl magnetic fields. « We _wish to _understand the avera_ge morpho{ogy and_tfemporal variability of the plasma interaction . we wish to quantify the role of reflection/deflection by DC magnetic fields,
[ + Photon Driven. ¥ - currents, the variable region and its response to changing solar wind conditions. reflection/deflection by DC electric fields, and thermalization of the distribution by non-
A N solar wind, IMF, along * Fully characterizing the 3D structure of the interaction would allow us to understand the adiabatic interactions and plasma waves.
L Chagng with  particle, fluid, relationship between lunar n'!agnetic anomal!es ar]d lunar swirls, anc_:l to determine whether the . Additionally, observations are needed to confirm the presence and generation of
4 - |Elect ] olasma, | and albedo features represent regions of the regolith shielded from solar wind bombardment. selenogenic ion cyclotron waves [Chi et al 2013] and whistlers [e.g., Harada et al 2015].
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Figure 11. Meteoroid impacts implications for volatile and water cycles (Szalay).



