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• Rendezvous, Proximity Operations, and Docking (RPOD) occurs after the Orion Multi-
Purpose Crew Vehicle (MPCV) separation and jettison of the Universal Stage Adapter in 
Artemis IV (previously Exploration Mission II).

• Eight attitude Reaction Control System (RCS) thrusters,
already chosen by the prime contractor based on NASA
specifications, located behind the center of mass of the
spacecraft, provide roll, pitch, and yaw control/
maneuvers. 

Exploration Upper Stage (EUS) Vehicle Configuration

Space Launch System (SLS) Exploration Upper Stage (EUS) With Universal 

Stage Adaptor, Spacecraft Adapter, Service Module, and Orion Capsule.



Baseline Algorithms and Limitations
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• During docking, the Orion is the active vehicle, while the EUS is the passive vehicle 
performing an attitude hold.

• EUS and Orion were assigned significantly reduced portions of the International Docking 
System Standard2 (IDSS) requirements during docking.  IDSS calls for < 0.2 deg/s in Roll 
and < 0.2 deg/s for the vector sum of pitch/yaw relative between vehicles.

• Baseline phase plane simulation results exceeded initial allocations by up to 700% in 
Monte Carlo runs!

• For this algorithm, the min rate achievable is limited by the max of these constraints:
– Thruster minimum impulse or firing duration, and
– Control loop latency (Sensors, Bus, Flight Control System (FCS) / Flight Software (FSW), Hardware 

Controllers, Flex Filters).



Alternate Control Modes Developed for Docking / Attitude Hold
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• Feed Forward State Estimator (FFSE)
– FFSE is a second order Luenberger Observer.
– Typically not all vehicle states are directly measured, hence an “observer” is used to estimate

unmeasured states.
• For example, Apollo3 and Shuttle4 on-orbit RCS control had attitude measurement input, so the 

software estimated rotational rate and rotational acceleration.
• The approach here was derived from Apollo and Shuttle.
• Filter gains are based on stability and performance.

– The basic premise is that feed forward of the expected thruster firing torque to minimize 
latency while using the state estimator to remove error, attenuate flex (with a supplemental 
filter), and better estimate rate.

– The current implementation uses a priori
data thrust and mass properties to 
compute a feed forward signal 
(estimated rate of change from a 
firing). Future investigations could
include higher fidelity thrust profile
and potential use of RCS tank pres-
sure measurements. 

– Another application is RCS thruster
Failure Detection Isolation and 
Recovery.
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Alternate Control Modes Developed for Docking / Attitude Hold
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• Minimum Impulse Mode
– Issues thruster firing commands at fixed duration (min firing time) and then waits (time based on 

system latencies: ) before firing again to allow the filtered rate measurement to converge on the 
true vehicle rate.

– Can only shorten the pulses to the capability of the thrusters.  As pulses get shorter, uncertainty 
increases in the amount of thrust produced due to incomplete propellant oxidation.

– Currently has logic in place to exit out of this mode when large phase plane excursions are 
observed.
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Alternate Control Modes Developed for Docking / Attitude Hold
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• Sub Minimum Impulse Mode
– Is a potential enhancement to Minimum Impulse Mode where opposing thrusters are fired 

with a time offset to reduce the net torque on the vehicle below the minimum impulse level.
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Monte Carlo* Results for 4 of the Control Options Considered – Pitch Rate

* 2000 runs were executed per case in the Marshall 
Aerospace Vehicle Representation in C (MAVERIC)  
modeling and simulation tool. 

**Results were very similar for roll, pitch, and yaw for a 
combined Feed Forward State Estimator with Minimum 
Impulse with 0ms wait time.  The 0 ms wait time allows 
for quicker response in the presence of disturbances. 
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Monte Carlo Results Summary
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• Cases 4, 6, and 8 all achieve updated docking error budget (2.5-3.0x initial). 
• Sub-minimum impulse achieves both allocations, once flex outliers are addressed.
• Alternate algorithms drastically reduced propellant usage over the baseline algorithm, 

with minimum impulse variants using the least propellant. 
• EUS selected the FFSE with Minimum Impulse (0 ms wait time) for the design. 

– Has Shuttle flight heritage.4

– Meets the updated allocations with the least propellant usage, and it minimizes the wait period 
between firings which increases the disturbance rejection capability.

Case

% of 
Initial Roll 

Rate 
Allocation

% of 
Updated
Roll Rate 

Allocation

% of
Initial 

Pitch/Yaw Rate 
Allocation

% of 
Updated

Pitch/Yaw Rate 
Allocation

% of Initial 
Translational 

Velocity 
Allocation

% of Updated 
Translational 

Velocity 
Allocation

% of 
Baseline 

Propellant 
Used

1-Baseline 700% 233% 440% 176% 182% 87% 100%

2-Reduced Lag Filter 500% 167% 310% 124% 120% 57% 31%

3-FFSE 300% 100% 270% 108% 94% 45% 11%

4-Min Impulse (200 
ms wait)

170% 57% 100% 40% 92% 44% 7%

6-Sub-Min Impulse 
(200 ms wait)

95%* / 
140%

47% 95%* / 105% 42% 81% 39% 22%

8-FFSE w/ Min 
Impulse (0 ms wait)

180% 60% 140% 56% 89% 42% 7%
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• The sub-minimum impulse algorithm provides the lowest body rates of the 
analyzed control modes in Monte Carlo cases. 

• Investigations show excess propellant usage is not a significant concern.  
• Robustness against potential flexible body interaction is a significant concern, yet 

time domain Monte Carlo simulations demonstrate good response.
• Refinements to the RPOD requirements for the impacted mission show that the 

minimum impulse mode, feed forward state estimator, and a combination of those 
are sufficient to robustly achieve requirements.  Therefore, the sub-minimum 
impulse is not needed for the baseline design.  

• However, sub-minimum impulse shows promise where further reductions in body 
rates are desired for a particular vehicle configuration, with only a modest impact 
to complexity and propellant usage.

Conclusions
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Backup
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Figure 3.3.1.1-2 Coordinate System of Docking Objects (Active and Passive) 
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Table 3.3.1.1-2 Initial Contact Conditions
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• During docking, the MPCV is the active vehicle, while the EUS is the passive vehicle 
performing an attitude hold.

• Phase plane control is used for each attitude axis.1

• Phase plan parameters are time segment based. 
• International Docking System Standard2 requirements during docking

– Relative rotational rates between active and passive vehicles
• < 0.2 deg/s in roll, and 
• < 0.2deg/s for the vector sum of pitch/yaw, 

– Relative translational rate < 0.131ft/s (0.04m/s), and
– Relative angles < 4.0deg. 

• EUS and Orion were assigned 
portions of these values, so that
relative values could be met.

• Baseline nominal phase plane
results greatly exceeded initial
allocations!

Baseline Algorithms and Docking Allocations



Baseline Algorithm Limitations
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• The baseline algorithm relies on feedback from sensors to determine state changes and 
make decisions on turning thrusters On/Off.

• For this algorithm, the min rate achievable is limited by the max of these constraints:
– Thruster minimum impulse or firing duration, and
– Control loop latency (Sensors, Bus, Flight Control System (FCS) / Flight Software (FSW), Hardware 

Controllers, Flex Filters).
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• Mass properties (masses, inertias, CGs),
• Flex (frequencies, damping, gains),
• Slosh (masses, frequencies, damping),
• Sensors (alignment, locations, parameters),
• Stage alignments (X, Y, Z),
• Venting/ (force, direction, flow rate), and
• Thrusters (alignment, pressure drops, max thrust, thrust factor).

Monte Carlo Runs – Over 1500 Dispersed Variables in MAVERIC
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Monte Carlo* Results for 4 of the Control Options Considered – Roll Rate

1400s+ of 

attitude 

hold with 

“fine” 

control 

system

* 2000 runs were executed per case in the 

Marshall Aerospace Vehicle Representation in C 

(MAVERIC)  modeling and simulation tool. 

**Results were very similar for roll, pitch, and yaw 

for a combined Feed Forward State Estimator 

with Minimum Impulse with 0ms wait time.  The 0 

ms wait time allows for quicker response in the 

presence of disturbances. 
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Feed Forward State Estimator

(second order Luenberger Observer)
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Monte Carlo Results for 4 of the Control 
Options Considered - Prop Usage

Minimum Impulse with 200 ms Wait
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Concerns with Sub-Minimum Impulse
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• Some potential concerns with sub-
minimum impulse are:
– Prop Usage,
– Disturbance Rejection / Control 

authority,
– Rates near filtered signal noise limits 

causing extra firings,
– Stability, and 
– Flex interaction.

• There were 2 outliers in roll and 1 in pitch 
that exceeded the initial angular rate 
allocations.

• Except for the outliers, all the rest of the 
runs in were below the threshold and well 
below the threshold in yaw. 

• Adaptive phase plane can reduce the 
outliers.

Sub Min Impulse Pitch/Yaw rate gave small 
increments of with each firing in the nominal case.


