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A method of analysis and prediction of servoelastic coupling in launch vehicles
is presented, surveying the discovery and subsequent resolution of a predicted
servoelastic resonance phenomenon affecting the NASA Space Launch System
launch vehicle at specific flight conditions. A physics-based linearized multibody
mechanization of the governing equations is combined with first principles anal-
ysis to demonstrate that antisymmetric bending of the solid rocket motors leads
to a reduction of equivalent viscous modal damping through coupling with the
thrust vector control actuators. The sensitivity to parameters and the effects of the
resonance phenomenon on flight control performance and stability are confirmed
through extensive simulation verification in the time and frequency domain. A
novel enhancement in model fidelity that accounts for Coriolis effects of fluid
flow on bending within the solid rocket motor case and nozzle is shown to add
sufficient damping to reduce the risk of adverse control-structure interaction.

1 INTRODUCTION

The dynamic coupling of thrust-vectored rocket engines with a launch vehicle structure is a topic
of great interest to vehicle designers, particularly to ensure stable flight control and the design of
robust structures that can survive stressful launch environments. During the booster flight control
certification process, successful stabilization of primary dynamic response mechanisms receives sig-
nificant scrutiny. These dynamics include a statically unstable rigid body airframe, primary lateral
bending modes of the vehicle structure, and liquid propellant sloshing modes. Secondary effects
include stabilization of the thrust vector control (TVC) load resonances, assessment of sample rate
aliasing and local sensor mount compliance effects, and interactions among various software algo-
rithms.

Usually of secondary importance are the coupling effects of multiple engines interacting with
the structure. These effects often do not manifest unless the moving mass of vectored engines is
a substantial fraction of the vehicle mass, the TVC actuator bandwidth is relatively high, or both.
There exists a phenomenon known as thrust vector servoelasticity (TVSE), named in analogy to
its equivalent in aircraft dynamics, aeroservoelasticity (ASE). In this coupling mechanism, a TVC
system resonance is close to a structural bending mode, and the moving mass of the vectored rocket
nozzle exerts both thrust and inertial coupling forces and torques on the vehicle structure. The elastic
response of the vehicle subsequently imparts coupling torques about the engine gimbal. Since the
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lateral thrust force is proportional to the engine angle, the lag between the structural motion and
the thrust vector can, in the correct circumstances, extract energy from the thrust and reduce the
structural damping, or destabilize, the bending dynamics.

For simplified assessments, this relationship can be demonstrated analytically for a simplified
system using the Routh criterion. In terms of the sensitivity to external load torques, most TVC
systems approximate second-order systems asymptotically in frequency. The engine’s compliance
to a static external load torque is usually a constant, and at some frequency above the actuator
dynamics, the system behaves as an inertial load with an asymptotic frequency response of -40
dB/dec. There exists some frequency where the TVC system response to external load torques is
out of phase with the input by ⇡/2. This frequency is the TVC resonant frequency.

These asymptotic relationships hold regardless of the complexity of the TVC system model, so
potential sensitivities can be assessed using a second-order TVC system model with the natural
frequency adjusted to match the TVC resonant frequency of a more complex model.

Bendi
mode

Figure 1. Bending Mode with Thrust Vectoring Nozzle

Consider the dynamics of a hypothetical second-order TVC actuator and a single bending mode
(Figure 1). The linearized equations are given by

Jn�̈ + Ca�̇ +Ka� = � (Jn g + Sn�g) ⌘̈ (1)

⌘̈ + 2⇣b!b⌘̇ + !2
b⌘ = � (Jn g + Sn�g) ⌘̈ �R�g� (2)

where Sn = mnrn, Jn are the first and second moments of the inertia about the nozzle pivot, � is the
thrust structure relative gimbal angle, and Ka = Jn!2

n, Ca = 2⇣
p
JnKa are the closed-loop engine

dynamic parameters.1 The elastic mode is described by its generalized displacement ⌘, its natural
frequency !b, and a viscous damping ratio ⇣b. The gimbaled thrust force R is assumed constant,
and the elastic parameters of interest are the modal displacement and rotation at the gimbal point,
�g and  g, respectively.
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Letting the inertial coupling coefficient ⌥ = (Jn g + Sn�g), the coupled equations are described
in Laplace notation as


Jns2 + Cas+Ka ⌥s2

⌥s2 + �gR s2 + 2⇣b!bs+ !2
b

� 
�
⌘

�
=


0
0

�
(3)

with the associated characteristic polynomial
P

aksk = 0. The roots of this simplified equation can
be used to predict the potential magnitude of servoelastic coupling. For example, it can be shown
that the critical thrust

R <
Jn

�
!2
n + (2⇣n!n) (2⇣b!b) + !2

b

�

⌥�g
(4)

is a necessary condition for stability of the coupled system.

It must be emphasized that a thrust vector servoelastic resonance involves only thrust, the vehicle
dynamics, engine dynamics, and TVC hardware. Since TVSE involves only inner loop (servo) feed-
back, there are no software or avionics components involved. The TVSE phenomenon can occur
even if the autopilot is not providing feedback, although depending on the observability and fre-
quency of the mode in question, flight control feedback can either worsen or improve the situation.

Figure 2. Space Launch System Block 1 Configuration (NASA)

2 SPACE LAUNCH SYSTEM

The Space Launch System (SLS) is NASA’s next-generation exploration-class launch vehicle for
space access, including such objectives as human transit to Mars, rendezvous with near-earth aster-
oids, and the launch of unmanned probes to distant solar system targets such as Europa. Its design
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provides for a level of performance and reliability that is unmatched in any existing or planned
launch system, including an ability to loft approximately 57,000 lbm to trans-lunar injection (TLI)
in its initial Block 1 configuration (Figure 2). Its evolved configurations, Block 1B and Block 2,
utilize the Exploration Upper Stage (EUS) to increase performance. The Block 1B with EUS has a
cargo payload performance capability of approximately 88,000 lbm to TLI. The Block 2, more than
375 feet long and using upgraded solid rocket motors (SRMs), is able to loft 290,000 lbm to low
Earth orbit (LEO) or 99,000 lbm to a heliocentric orbit.

The SLS leverages hardware, processes, and design concepts derived from the Saturn and Space
Shuttle programs, including an 27.5 ft diameter core stage containing more than 700,000 gallons of
cryogenic propellants.2 The core stage is powered by four RS-25E liquid engines derived from the
Space Shuttle Main Engine (SSME), each producing about 475,000 lbf of thrust.3 Additional thrust
is provided by two 5-segment Reusable Solid Rocket Motor-V boosters (RSRMVs). Each booster
provides a peak sea level thrust of about 3.3 million lbf and provides primary ascent propulsion
during the 126-second boost phase. Three-axis control and stabilization during powered flight is
provided by coordinated thrust vectoring of the solid rocket nozzles as well as all four RS-25E core
stage engines, using 12 Space Shuttle heritage quad-redundant hydraulic actuators.

3 ANALYSIS

Analysis of the Space Launch System transient flight dynamics and stability is performed in an
analytically linearized multibody dynamics model. The FRACTAL (Frequency Response Analysis
and Comparison Tool Assuming Linearity) model was developed at NASA MSFC using a rigorous,
matrix-vector Lagrangian derivation of the equations of motion that reduces to the classical planar
rocket equations of motion as a special case.4

Classical methods develop the system equations via superposition using an integrated body ap-
proach.5 The orthogonal vibration modes are elicited from a finite element model containing all
of the vehicle mass, including the gimbaled engines. After partitioning, the rigid body degrees of
freedom, as well as some of the other dynamic modes, are replaced with a higher-fidelity set of equa-
tions to model effects not represented in the FEM, e.g., aerodynamics, propellant slosh, sensors, and
servoactuators.

The inertial engine coupling dynamics are of key concern in the formulation of a physics-based
model. The presence of a servoactuator position control loop substantially changes the character of
the engine dynamic modes, and this effect cannot be duplicated with a simple spring approximation
of the actuator. If the engine dynamic modes are strongly coupled with the global vehicle bending,
it is advantageous to use a more advanced approach to developing the equations of motion.

In a reduced-body method, finite element modes, generated from a model with engines removed,
are coupled to a dynamic model of the engines, propellant, and airframe. The compliance within the
actuator load path, including the backup structure, can be more accurately modeled. Since certain
orthogonality conditions cannot be assumed, additional terms must be included in the equations of
motion to recover the correct dynamics. The engine states are integrated simultaneously with the
vehicle dynamics; that is, the engine equations are part of the system mass matrix. This allows
the direct and simultaneous solution of the equations describing the engine and global bending
dynamics, but the local engine and backup structure compliance remains within the servoactuator
model.

Since the global bending modes need not model the backup compliance, there are no special
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requirements placed on the mode shapes such that they include high-fidelity information at the ac-
tuator attach points. The nozzle is instead coupled to the vehicle using a virtual torque-torque inter-
face. Given computational constraints, the selection of a subset of modes for flight control analysis
can be focused on those most relevant for global feedback stability rather than the dynamics of the
servoactuator loop. Conversely, the servoactuator model can be coupled to the engine using only
angular position and torque feedback, and can internally use an arbitrarily complex representation
of the load compliance and servodynamics.⇤

A total of three novel developments are used to analyze TVSE, or the dynamic interaction of the
booster TVC with the vehicle structure: the fully-coupled reduced-body formulation for the engine
dynamics, the incorporation of propellant flow turning (jet damping) effects, and the use of thrust
structure mode shapes and geometry to construct virtual spatial derivatives of the eigenvectors.

3.1 Reduced-Body Equations of Motion

The linearized motion equations of coupled bending and engine dynamics presented here are a
subset of the multi-DoF formulation used in the FRACTAL toolchain. The motion equations are
expressed in a trajectory-relative accelerating frame, which depends on the mean vehicle accelera-
tion g0. While the fully-coupled model with slosh and aerodynamics is used to evaluate TVSE in
production analyses, the following two equations are sufficient to capture the phenomenon in three
dimensions. The engine and bending equations are given by

JG
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�
Kei +meig

⇥
0 r

⇥
Gei

�
⇥Gei =

⌧ei|{z}
actuator

�meir
⇥
Geiv̇

T �
�
JG
ei �meir

⇥
Geir

⇥
Gi
�
!̇

| {z }
DWT

�
�
meir

⇥
Gei�Gi + JG

ei Gi
�
⌘̈

| {z }
DWT(flex)

(5)

�
Ik + �̄eimei�ei +  ̄Gi

�
JG
ei +meir

⇥
Geir

⇥
Gei

�
 Gi

�
⌘̈ + 2⇣⌦⌘̇ +⌦2⌘ =

� �̄GiReiu
⇥
ei⇥Gei| {z }

thrust

�
�
 ̄GiJ

G
ei � �̄Gimeir

⇥
Gei

�
!̇Gi| {z }

TWD(flex)

+Qp

��̄eimeiv̇
T +

�
mei�̄Gi (rGi + rGei)

⇥ +  ̄Gi
�
r⇥Geimeir

⇥
Gi � JG

ei

��
!̇ (6)

where the angular rate dynamics of the ith of r engines are written with respect to each gimbal, !Gei,
and is subsequently truncated to two degrees of freedom. The engine without actuator dynamics is
described by its inertia tensor JG

ei, a damping matrix Dei, and a stiffness matrix Kei, typically
representing flex bearing stiffness. The virtual gimbal shape �Gi and virtual gimbal slope  Gi are
computed as a function of the rotation and translation eigenvectors at the gimbal and two actuator
backup attach grids. The acceleration v̇T is a trajectory-relative perturbation acceleration of the
vehicle, ! is the body angular rate, and ⌘ 2 Rk is the elastic generalized displacement.

The mean acceleration g0 of the engine gimbal provides an equivalent gravitational stiffening
torque. The angular and lateral acceleration of the vehicle impart inertial coupling torques at the
engine attach point known as “dog-wag-tail” or DWT, and an equivalent coupling due to generalized
acceleration of the gimbal point that depends on the bending dynamics. Local actuator torques are
represented by a generalized force ⌧ei that, in general, depends on the engine and actuator states.

⇤A complementary approach developed by the authors, where the servoactuator is directly coupled with a high-fidelity
FEM using thousands of modes, is the method used in the MSFC MASV (Multiple Actuator Stage Vectoring) simulation.
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The bending equations (6) include coupling terms (in red) that arise when the engine masses are
not included in the finite element model. The term�ei = �Gi�r⇥ei Gi is the elastic coupling matrix
at the ith engine, which is used to form an augmented mass matrix for the mass-normalized bending
dynamics, where ⌦2 is the (diagonal) generalized stiffness matrix. The basic elastic damping ⇣ is
typically assumed constant across all modes. Typically, ⇣ = 0.005 for control-structure interaction
analysis on large boosters.

In the elastic equation, �̄,  ̄ denote the transpose of the mode shape and slope matrices, re-
spectively. The propellant flow (jet damping) generalized forces are incorporated into the term Qp,
which can be expressed as a linear function of ⌘̇ and !Gei. When incorporated into a model con-
taining the rigid-body and sloshing degrees of freedom, these equations can reproduce the TVSE
resonance as a function of the system parameters and the flight condition. As suggested earlier,
these degrees of freedom are sufficient to model TVSE, although the predictions tend to be con-
servative; coupling with the rigid body and sloshing dynamics is an energy sink and tends to add
damping across all coupled system modes.

3.2 Elastic Jet Damping

The term jet damping is traditionally associated with the rigid-body pitch or yaw rate of a rocket
or rocket nozzle. It is the torque due to the expulsion of propellant through the nozzle, which almost
always has the effect of damping out a given rotation rate. Simplified analyses view it as the result
of a force applied at the nozzle exit plane. However, this effect is more accurately seen as arising
from the integrated effect of Coriolis forces acting along the interior path of the propellant. The
notion of integrating the forces along the entire length is essential for computing the damping of
flexible motion.6

Consider a differential element of propellant dm in the core of a flexible booster having a case
length L. Since the burning propellant is confined to travel parallel to the centerline of the booster,
whose structure is elastically deforming with respect to an inertial frame, the propellant undergoes
an acceleration. Hypothetical profiles of dynamic quantities along the centerline of the RSRMV
are depicted in Figure 3. The axes in this diagram are chosen such that x = 0 corresponds to the
foremost location of propellant. A representative z component of the mode shape �z(x) is depicted,
and the velocity of the flow U(x) varies throughout the case and nozzle. Along the length of burning
propellant from x = 0 to x = L, the mass flow is assumed to vary linearly from zero to its maximum
value ṁe at the nozzle throat, and is constant through the nozzle section. It should be noted that
such a model is valid for the RSRMV based on its actual burning profile at the flight condition in
question, although it may not hold for all solid rocket motor designs.

Under reasonable assumptions, including ignoring boundary layer shear forces, it can be shown
that the material derivative along the length of the case is given by

Du

Dt
= �⌘̈ � 2U î⇥ ⌘̇ + U

dU

dx
î� î⇥

✓
U2d 

dx
+ U

dU

dx
 

◆
⌘ (7)

The stiffening and apparent mass effects are easily shown to be insignificant for a problem of this
scale, leaving only terms that are relevant to damping. Letting dm be the fluid mass within a lamina
dx as shown in Figure 3, and assuming no dependency on the coordinates normal to the flow,

Du

Dt
dm = �2U î⇥ ⌘̇⇢Adx (8)
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Figure 3. Dynamic Elements Affecting Jet Damping

where ⇢ is the gas density and A is the cross section area. The local mass flow rate ṁ(x) = U⇢A,
thus

df = 2̂i⇥ ⌘̇ṁ dx (9)

which depends only on the mass flow profile. The generalized force Qp 2 Rk due to propellant in
the elastic equation is given by

dQp(x) = �̄(x)df(x) (10)

Let Qci and Qnibe the generalized force due to jet damping within the ith case and the ith nozzle,
respectively, and the total jet damping effect is given byQp =

P
Qci +

P
Qni . Inserting (9) into

(10) and integrating, the case component becomes

Qci = 2

⇢Z L

0
ṁ(x)�̄(x)̂i⇥ (x) dx

�
⌘̇.

We now apply the aforementioned assumption that the local mass flow rate is zero at the head end
of the booster case x = 0 and increases linearly with x until it reaches the total mass flow rate ṁe

at x = L. That is,
ṁ(x) = ṁe

x

L
(11)

Thus

Qci = ṁe

⇢
2

L

Z L

0
x�̄(x)̂i⇥ (x) dx

�
⌘̇. (12)

In a linear, time-invariant model the quantity in brackets is a linear matrix coefficient of ⌘̇. For
the nozzle, the computation of the integral is similar, but the mass flow is assumed constant as no
propellant burning occurs upon exiting the case. In addition, the nozzle rotates with respect to the
thrust structure with an angular rate that depends on the nozzle rigid body states. The generalized
force due to elastic motion of the ith nozzle is given by

Qni = 2ṁeLn�̄G îi
⇥ ( Gi⌘̇ + !Gi) (13)

where Ln is the nozzle length. The matrix form of this expression can also be incorporated into the
damping and actuator coupling matrices in the bending equations.
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Figure 4. IVG Method Thrust Structure Geometry

Computation of the integral in Equation 12 requires a numerical approximation, since the modal
data are given at discrete centerline grids along the booster axial coordinate. A trapezoidal integra-
tion approximation is used;

Qci ⇡ ṁe
1

L

N�1X

j=1

(xj+1 � xj)
⇣
xj+1�̄c, j+1î

⇥ c, j+1 + xj�̄c, j î
⇥ c, j

⌘
⌘̇ (14)

over N discrete stations distributed, in general, non-uniformly down the centerline of each booster.
Here, the subscript c is used distinguish from the previous gimbal point parameters. The resultant
matrix is computed at each analysis time using the instantaneous mass flow ṁe, which varies in
time and may also vary from booster to booster.

3.3 Improved Virtual Grid (IVG) Model

As discussed in the preceding sections, inertial coupling between the nozzle body and the elastic
vehicle structure is modeled using a torque-torque interface. That is, the nozzle is modeled as a
linearized pendulum. In such a model, the “gimbal point” includes the local structure and actuators,
which transfer loads between the engine, the backup structure, and the thrust application point.

In classical launch vehicle dynamics models5 it is typical to use a single finite element node
to compute the elastic translation and rotation of the structure to which an engine is attached. In
practice, the finite element model contains millions of nodes, and the rotation eigenvector of a single
FEM grid point does not adequately represent the equivalent torques involving the engine gimbal
and actuator attach points. As such, it is necessary to compute a mapping of forces and torques,
or equivalently, inertial accelerations, into generalized accelerations of the structural model that
accurately reflects the physical configuration of the structure.

A virtual mode slope is an equivalent rotation eigenvector computed at the gimbal point that
represents bulk motion of the thrust structure. It is intended to capture only global rotations, not
local differential rotations of the associated gimbal and actuator attach grids. A constrained force-
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based virtual grid method, or Improved Virtual Grid (IVG), provides a physics-based approach to
deriving the gimbal mode slope.

The geometry of the improved virtual grid method is shown in Figure 4. It is desired to compute
a virtual grid G 2 R3⇥k. It is assumed that forces fi at the actuator attach points have magnitudes
fi acting along unit directions ubi , which are collinear with the actuator action line at a given static
gimbal rotation (usually zero). The geometric relationship of the actuator backup attach points and
the gimbal is given by rGbi.

The problem is constructed as follows: given an applied torque ⌧g, resolve the applied torque
into force components along the actuator action lines ubi and an arbitrarily oriented vector force fg
at the gimbal. The gimbal torque component due to each actuator is ⌧i = r⇥Gbifiubi. Assuming the
thrust structure is rigid,† the internal forces must sum to zero; f1 + f2 + fg = 0. Let the unknowns
be x =

⇥
f1 f2 fg

⇤T 2 R5;in matrix form, this problem can be written as
h
r⇥Gb1ub1 r⇥Gb2ub2 03

i
x = Ax = ⌧g

⇥
ub1 ub2 I3

⇤
x = Cx = 0 (15)

Fortunately, this is a linearly constrained least squares (LS) problem which has a unique solution.7

The solution minimizes kAx� ⌧gk2 subject to Cx = 0. Using the Karush-Kuhn-Tucker (KKT)
conditions with Lagrange multipliers �,


x
�

�
=


2ĀA C̄
C 0

��1 
2Ā⌧g
0

�
. (16)

The KKT matrix in Equation 16 is guaranteed invertible if rGbi, ubi are linearly independent. Since
the solution x is linear in ⌧g the Jacobian @xi/@⌧gi can be computed; let the KKT matrix

L =


L11 L12

L21 L22

�
=


2ĀA C̄
C 0

��1

(17)

such that the solution x = L112Ā⌧g = M⌧g where M is the desired Jacobian. The matrix M can
thereafter be partitioned as

M =

2

4
mf1

mf2

Mfg

3

5 2 R5⇥3 (18)

and the two scalar and one vector components of the solution are used to find

f1 = ub1mf1⌧g (19)
f2 = ub2mf2⌧g (20)
fg = Mfg⌧g. (21)

In this form, it is clear that the action line and gimbal reaction forces are an explicit linear function
of the applied torque.

Using the shape functions to map these physical forces into generalized coordinates, it follows
that Qg =  ̄G⌧g with the virtual grid

 ̄G = �̄0Mfg + �̄b1ub1mf1 + �̄b2ub2mf2. (22)

This procedure is used for each set of engine data in order to compute Gi used in FRACTAL.
†This assumption is intentional as the backup structure compliance is accounted for in the actuator model.
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Figure 5. SLS TVSE Antisymmetric Mode (Scale Factors: 20x displacement, 40x TVC angle)

4 SIMULATION

The phenomenon of unstable or marginally-stable servoelastic resonance involving the RSRMV
has been known since around 2009, when dog-wag-tail (DWT) models were incorporated during
analysis of the Constellation Ares I configuration. In that configuration, the resonance appeared as
a gain increase in the vehicle pitch channel at about 80 seconds flight time. It was initially assumed
that the apparent resonance was an artifact of a poorly conditioned constraint in the booster structural
finite element model.

The investigation was reopened in 2016 when a discrepancy was uncovered in during a multi-
center, multi-simulation NASA verification exercise that suggested the presence of a high gain in the
roll autopilot channel when DWT was enabled. Since the default simulation configuration did not
simulate DWT dynamics for the boosters, the roll mode in question was not present in the baseline.
DWT simulation in the baseline for the booster engines confirmed the presence of the roll mode,
and a deep-dive analysis was conducted in cooperation with the Space Launch System structural
dynamics team. Subsequent analysis using a multifaceted approach to resolving the discrepancy
revealed that the issue was physical.

The SLS TVSE mode displacement field and its associated gimbal angles are shown in Figure 5.
Adverse coupling of the SLS structure and the booster actuators occurs in late boost flight. The
structural mode involved in TVSE is a fundamental antisymmetric bending of the booster case cou-
pled with torsion about the core stage structure. While normally such a coupling phenomenon would
involve only hydraulic-structural feedback, the torsion response of the core stage also involves the
vehicle autopilot roll gyro. Thus, the autopilot design must also consider the reduced damping of a
primary torsional mode resulting from TVSE (Figure 6).

Upon the discovery of the TVSE phenomenon in the SLS vehicle, the program was required to
demonstrate, with margin, negligible risk to the flight control system or vehicle loads. The analysis
process leveraged the advanced models detailed above, a detailed assessment of the uncoupled
structural damping of the subject antisymmetric mode, and a fidelity improvement in the mass
properties model for booster nozzles to account for liner ablation. Since the coupling mechanism
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Figure 6. TVSE Effect on Open-Loop System Poles Without Autopilot Feedback

depends on the response of the actuator to load torques, the lighter (ablated) nozzle is less strongly
coupled to the bending dynamics.

The RSRMV mode shape for this otherwise complex structure is nearly identical to the analyt-
ical solution of a free-free Euler-Bernoulli beam, thus allowing straightforward evaluation of the
assumptions discussed in Section 3.2 for terms requiring higher-order spatial derivatives that are
not generated by finite element modeling. Jet damping was shown to have a universally stabiliz-
ing effect for the first bending mode of long, solid rocket motors having uniform-beam-like mode
shapes, reducing the sensitivity of SLS to TVSE.

The effect of TVSE and jet damping on the booster bending modes can be seen in Figure 6. For
comparison, the constant line of ⇣ = 0.005 (uncoupled) structural damping is shown along with the
nominal and dispersed (Monte Carlo, N = 2000) system poles. At this flight condition with no jet
damping, the bare structure with TVC servoloops closed exhibits a servoelastic instability at high
frequency, exhibited by a complex pole pair with a relatively long time-to-double (TTD). However,
inclusion of the case and nozzle rotation jet damping effects shifts the population of TVSE mode
roots to a region that, under conservative assumptions, is more than adequate for vehicle loads and
flight control stability.

Finally, the flight control system autopilot feedback, due to the fundamental motion of the core
stage structure in torsion, provides a rate gyro signal that is always out of phase with the TVSE
response. This has the convenient effect of phase stabilizing, or actively damping, the TVSE
mode. Monte Carlo analysis under worst-on-worst parameter dispersions confirmed that the au-
topilot feedback will always add damping to even unstable TVSE dynamics. Further risk reduction
was achieved by demonstrating in high-fidelity, nonlinear time domain simulation, implementing a
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model similar to that discussed in Section 3.2, that a physically unrealistic but simulated inversion
of autopilot feedback results in only a benign TVC limit cycle under worst-case conditions.

5 DISCUSSION

A comprehensive approach to the analysis and simulation of thrust vector servoelasticity and its
application to the SLS vehicle has been presented. While such advanced formulations are not nec-
essary for many booster configurations, designers should consider evaluating TVSE sensitivity for
high-thrust, TVC-actuated systems early in the design phase, and assess whether a higher-fidelity
analysis may be necessary. In the case of SLS, the TVSE phenomenon involved three-dimensional
antisymmetric motion of the structure interacting with the very high thrust of the solid rocket boost-
ers. Traditional planar models of the vehicle dynamics would not have uncovered the phenomenon.

A retrospective look at Space Shuttle flight dynamics models and data concludes that TVSE was
not a concern, nor was it observed, in the Shuttle ascent configuration. The hydraulic TVC actuators
used on the SLS boosters are the same as those used by the Shuttle SRMs. While this design has
extensive flight heritage and is very reliable, its inner loop frequency response is essentially fixed by
the hardware and allows limited flexibility to address actuator-level structural interactions. Counter
to the expectation of the well-intentioned 1970s-era actuator designers, the performance charac-
teristics of the booster TVC hardware (particularly the near total absence of internal mechanical
nonlinearities) tend to exacerbate structural coupling behaviors.

Further analysis reveals that while the Shuttle ascent stack did exhibit a similar antisymmetric
bending mode, the asymmetry in the structure strongly coupled this mode with wing bending, re-
sulting in observed damping for small excitations in ground vibration testing on the order of 1.5%.
At these damping levels, the coupling with the structure is of no consequence. More importantly,
the higher-performance nozzle used on the SLS booster has a significantly higher moveable moment
of inertia, which decreases the actuator bandwidth and increases the tendency for coupling.

The analysis, assessment, and resolution of TVSE on the SLS vehicle is another example of an
unintended system-level consequence that can occur when employing seemingly low-risk heritage
hardware to a new integrated vehicle configuration. The demands of performance and efficiency
in launch vehicle designs inevitably result in a system that is much more sensitive to global inter-
actions, where seemingly innocuous changes combine in such a way to challenge the design, or at
least require a significant amount of analysis machinery to resolve.
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