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Abstract—We present the Multi-Route Weighted Package De-
livery Problem (MRWPDP) and a scalable solution methodology
as a major step towards enabling an airspace deconfliction
service for drone delivery operations. The problem is motivated
by Strategic deconfliction under the FAA’s “Unmanned Aircraft
Systems Traffic Management” Concept of Operations. MRWPDP
falls under a class of vehicle routing and scheduling problems,
and as such is NP-Hard. In MRWPDP, a graph network is
given which consists of depots, drop-off sites, and multiple routes
connecting the two. In addition, routes are weighted by the
associated ground risk and total travel distance for package
delivery. The goal is to optimally schedule the departure time
and assign routes to a known set of vehicles at the depot.
We propose a heuristic solution to the problem by borrowing
techniques from Mixed Integer Linear Programming (MILP),
Constraint Programming, and Monte Carlo Tree Search (MCTS).
The resulting hybrid framework is MCTS with Bound-and-
Prune (BP) and rapid simulated updates (U), or MCTS-BP-U.
This approach is able to quickly provide a feasible solution for
MRWPDP, even for large problem instances up to 1000 vehicles.
We provide a MILP formulation of MRWPDP and compare its
performance against MCTS-BP-U in terms of solution quality.
An agent-based model simulation is conducted as a final step to
validate the efficacy of our approach.

Index Terms—Monte Carlo Tree Search, Mixed Integer Pro-
gramming, Constraint Programming, Combinatorial Optimiza-
tion, Scheduling and Routing

NOMENCLATURE

C Set of customers.
D Set of depots.
E Set of edges or routes.
O Set of delivery orders.
Od Set of delivery orders at depot d ∈ D.
Ω(e) Set of edges that intersect with e ∈ E.
Ed Set of edges connected to depot d ∈ D.
a(e, i) Duration needed to arrive to an intersection

(e, i), where e, i ∈ E.

ti Receipt time of delivery order i.
xi Scheduled departure time of delivery order i.
yi,e Indicator variable for edge e, 1 if i ∈ O is

assigned to it; 0 otherwise.
α Non-negative importance weighting for risk.
β Non-negative importance weighting for dis-

tance.
re Risk value of edge e ∈ E.
ce Distance length of edge e ∈ E.
bs(e) Vehicle-to-Vehicle temporal separation along

an edge e ∈ E.
bp(d) Package preparation lead time, d ∈ D.
bf (e, i) Temporal separation required at an intersection

(e, i), where e, i ∈ E.
bt(d) Temporal separation during departure from a

depot, d ∈ D.
M Large non-negative value (“big-M”), i.e. M ≫

0.

I. INTRODUCTION

In recent years, rapid advances in unmanned aircraft systems
(UASs) have led to ubiquitous civilian applications including
crop monitoring, filming, inspection, and parcel delivery [1],
[2]. Several commercial entities (e.g., Joby, Wisk) are already
working on electric air taxis for passenger transport [3].
This explosive rise in UAS technology brings many potential
benefits, but also introduces many challenges related to safe
integration into the airspace. The current Air Traffic Control
paradigm requires significant human resources and is likely
not scalable to UAS operations. The UAS Traffic Manage-
ment (UTM) ecosystem, first developed by NASA and later
written into a formal Concept of Operations (ConOps) by the
FAA serves as a promising first step towards addressing the
aforementioned issues [4].



Under UTM, three layers of airspace conflict management
are envisioned [5]: 1) Strategic deconfliction involves pre-flight
scheduling and routing in order to minimize the likelihood of
airborne conflicts later during flight. 2) Tactical deconfliction
aims to maintain aircraft separation during flight especially
with techniques such as speed adjustment. Lastly, 3) collision
avoidance, i.e., detect and avoid or sense and avoid methods,
are used to remove imminent conflicts. This work focuses on
strategic deconfliction presented as a Multi-Route Weighted
Package Delivery Problem (MRWPDP), which models an
automated package delivery system involving multiple UAS
operators. In MRWPDP, UASs are to depart from various
depot nodes and travel along an assigned route to reach a
customer drop-off node. A key challenge is maintaining sep-
aration distance between every pair of UAS, especially since
different routes may intersect with each other. Thus, the goal
is to optimally schedule departure times and also assign routes
to each of the UAS such that they maintain separation at all
times. Central to our problem is the use of Operational Volume
Blocks (OVBs), which discretize pre-determined routes into
consecutive polygonal volumes. By ensuring only 1 UAS
occupies an OVB at a given time, spacing constraint values are
automatically determined [6]. Belonging to the class of vehicle
routing and scheduling problems, MRWPDP is unfortunately
NP-Hard [7]. Thus, fast heuristics are required to scale the
problem to real-world scenarios.

In this work, we present a heuristic based on the popular
Monte Carlo Tree Search (MCTS) method to quickly provide
feasible solutions to the MRWPDP. MCTS has been used
in a variety of applications such as games [8], [9] aviation,
[10], and combinatorial optimization problems [11]–[20]. A
salient feature of MCTS is that it is able to look through a
large problem space by using statistical information about each
decision. As a result, MCTS carefully balances exploitation
and exploration to avoid exhaustively searching through the
entire problem space. To make use of MCTS, MRWPDP
is formulated as a Markov Decision Process (MDP), which
allows us to use Constraint Propagation techniques from Con-
straint Programming (CP) to find feasible solutions. We also
incorporate lower bounding information from solving a Mixed
Integer Linear Programming (MILP) relaxation of MRWPDP.
The lower bound information allows us to effectively bound
and prune branches of the search tree. Applying strategies from
both CP and Integer Programming (IP) to MCTS, allows us
quickly find solutions.

This work contributes to existing research in several ways.
First, we provide a MILP formulation of the MRWPDP. Then,
we provide a hybrid Monte Carlo Tree Search (MCTS) frame-
work that neatly integrates Branch-and-Bound and Constraint
Propagation techniques from MILP and CP, respectively. We
provide computational results showing the efficacy of this
framework as the problem size increases, and finally validate
the results in an agent-based model simulation. The remainder
of this paper is organized as follows. Some background is
given to set the context of this work in Section II. An overview
of the related works is presented in Section III. A formal

problem definition and a MILP formulation are given in
Section IV. A hybrid Monte Carlo Tree Search framework
to solve the problem is presented in Section V, followed by
computational results and discussion in Section VI.

II. BACKGROUND

In a Markov Decision Process (MDP), decisions are car-
ried out in sequence and can be described by a 6-tuple
(S,A, P,R, so, sg) [21]: let S be the set of states, A the set
of actions or moves, P : S×A×S → R the transition model,
R : S × A× S → R the reward function, and so, sg ∈ S the
initial and goal state, respectively. A policy π maps each state
s ∈ S to an action a ∈ A. A value function V π(s) returns
the expected reward of a state s ∈ S by following a policy π.
In MDP problems, we seek an optimal policy π∗ by finding
the optimal value function V π∗

(s). However, finding V π∗
(s)

is often difficult due to most problems having large state and
action spaces. The optimal value function can be approximated
along with a policy using strategies such as MCTS.

MCTS estimates the value function by performing rollouts,
i.e. creating forward trajectories from a given state until a
terminal condition (such as a goal state) is reached. The
collection of trajectories help build a statistical notion of
possible future rewards. More specifically, MCTS constructs
a search tree where each node and action is synonymous
with a state s ∈ S and action a ∈ A, respectively. During
each iteration of the algorithm, 4 steps are taken beginning
with the root node: 1) in Selection, the child node s′ with
the best reward is selected recursively until the frontier (no
more actions or children) is reached, 2) in Expansion new
child nodes are created, 3) in Simulation, the reward of s′ is
estimated via rollouts, and 4) in Backpropagation, the reward
and other statistical information is recursively returned to all
direct ancestor nodes.

III. RELATED PRIOR WORK

Over the years, there has been considerable research on
similar aircraft deconfliction problems. In [23], a MINLP
(nonlinear programming) is solved to deconflict up to 6
vehicles flying directly towards a common meeting point. Due
to scalability issues, the authors develop a clustering-based
heuristic, but only at most 10 vehicles were deconflicted. In
[24], the authors solved an en-route planning problem for
air traffic control that involves scheduling aircraft departures
and arrivals. Though similar to our problem, the authors also
incorporate fuel costs in their objective and deploy a custom
heuristic that is not asymptotically optimal like ours. In [25],
the authors also focus on strategic deconfliction by providing
a MILP formulation. However, they deconflict aircrafts using
both flight level selection and ground delays. Additionally,
the authors propose solving the MILP in a rolling window
fashion as a scalable heuristic. Other works have used MCTS
in similar, but different contexts. In [26], MCTS is applied
to create a guidance algorithm for on-demand, free-flight
operations for a single aircraft. The authors later generalized
their work to multiple aircrafts [27]. In [28], MCTS is used



(a) Scenario given by the downtown San Francisco area. (b) Operational Volume Blocks overlaid on scenario.

Fig. 1: OpenStreetMap [22] view of the downtown San Francisco area used to generate problem instances. (Left): The depots,
customers, and intersections are green (bottom two), red (top two), and black (middle two) pins, respectively. The solid blue
lines are available routes to take. (Right): Operational volume blocks are shown overlaid on the left figure. As part of ConOps,
the blocks at the intersections should never be active at the same time (red).

to resolve conflicts during flight, after pre-flight planning has
already occurred. Our work however is primarily focused
on using MCTS to solve strategic deconfliction. The closest
related work can be found in [29]. The authors pose the strate-
gic deconfliction problem as a MDP and develop a custom
algorithm called fastMDP to solve. They show that FastMDP
is competitive to MCTS and superior in some cases. However,
their problem involves planning in free-flight (absence of tubes
or corridors) and it is not clear how many flight plans are
being generated simultaneously. Additionally, the FastMDP
algorithm is only applicable for very specific problem setups,
so generalization may be difficult.

Our work differs from existing research in the following
ways: 1) To the best of our knowledge, there is little prior
work that has attempted to incorporate both CP and MILP
knowledge into MCTS to solve the strategic deconfliction
problem as we have, 2) few works have shown their heuristics
methods to be as scalable as MCTS, and 3) many strategic
deconfliction works are done in free-flight instead utilizing
pre-defined routes.

IV. PROBLEM DEFINITION AND FORMULATION

We are interested in solving a multi-depot multi-customer
site package delivery drones scheduling problem that max-
imizes efficiency and also minimizes both conflict in the
air (between vehicles) and risk to people on the ground. In
MRWPDP, a graph network is given, which consists of several
depots (source) and customer (sink) nodes. Between the two
node types, multiple routes connect the depots to customer
nodes, i.e., hyperedges are allowed. We will use the term route
and edge interchangeably. The motivation behind hyperedges
is to allow for edges with varying degrees of risk and distance
values. For example, a shorter and more risky route mimicks
flying over residential areas. In addition, routes are weighted

by both ground risk and distance to customer site values. The
goal is to determine the earliest conflict free departure time
for a known set of package-carrying drones at the depots,
while also choosing the best route (w.r.t. risk, distance, and
time) to reach their assigned customer site. We assume fixed
ground speeds for the vehicles and conflict free refers to
a complete path from depot to destination that satisfies all
inter-vehicle spacing constraints. Note that fixed ground speed
implies that we can only control the take-off time and there is
no opportunity to change the flight thereafter. This assumption
vastly simplifies the optimization problem (which is NP-hard
already). We can always introduce additional waypoints/nodes
where the vehicle can hover/hold, however, this comes at the
additional (computational) cost of dealing with bigger graphs.
We deal with two types of spacing constraints: 1) between
adjacent vehicles on the same edge (or route/path) and 2)
between two consecutive vehicles on two different paths that
intersect. By consecutive, we imply that the two vehicles arrive
at a common waypoint (intersection) one immediately after the
other (in any order).

Figure 1a shows an example scenario of MRWPDP. A 2D
map consisting of 2 depots (green) and 2 customers (red) are
shown, along with 2 routes (blue) per depot-customer pair,
and 2 intersection points (black). The routes with more risk
are the short, direct connections between any depot-customer
pair, while the longer routes are the opposite. On the right,
Fig. 1b shows routes being discretized into approximately
equal blocks. In MRWPDP, package orders will arrive to the
depot in an exponentially distributed fashion. They are then
collected into a batch, and some time is needed to prepare and
load them onto the UASs. Finally, the UASs are scheduled for
departure, along with a route assignment. Upon reaching the
destination (customer), the UAS is removed. In this work, we



aim to solve a deterministic version of the problem where a
batch of package orders is known. Thus, the MRWPDP can
be formulated as a MILP.

The objective is shown in Eq. (1), where the aim is to
minimize total ground delay as well as a weighted combination
of risk and total travel distance. Let O be the set of all package
orders, D the set of all depots, Ed the set of all outgoing
edges from depot d ∈ D, and Od, the set of package orders
at depot d. The first term minimizes total ground delay, where
xk is the scheduled departure time, while tk is the package
order’s known arrival time at a depot. Let the set of all package
orders be given by O. The second term minimizes the weighted
combination of risk and distance, represented by re and ce,
respectively. α, β are non-negative real value weights which
control the trade-off between risk and distance, respectively.
The binary variable yk,e is 1 if package order k is assigned to
edge e, but 0 otherwise.

min
x,y

∑
k∈O

(xk − tk) +
∑

k∈Od,
e∈Ed,
d∈D

(αreyk,e + βceyk,e). (1)

Next, the first set of separation constraints are formulated.
Equation (2) ensures temporal separation between two con-
secutive UASs that are assigned to the same edge. With some
abuse of notation, we can prove this constraint is correct.
In the case both UASs are assigned to the same edge, the
left binary variable yk,eu = 1 and

∑
yq,ev = 0 , and

xk ≥ xq + bs(eu). On the other hand, if neither vehicles
are assigned to the same edge, the constraint becomes either
xk ≥ xq or xk ≥ xq − bs(eu).

xk ≥ xq + (yk,eu −
∑

ev∈Ed\{ev}

yq,ev )bs(eu),

∀d ∈ D, k ∈ Od, eu ∈ Ed,

q ∈ {h ∈ Od|th ≤ tk}.

(2)

Equation (3) ensures temporal separation between UASs
arriving at an intersection between two different edges. Since
it is not known ahead of time which edge a vehicle is assigned
to, we have to consider all possible conflicts it may encounter.
When two different vehicles are encountering a conflict, all
the binary variables y = 1. As a result, the big-M term goes
away on the right-hand side; what remains is bf (e, j). Thus,
we have |xk+a(e, j)−(xq+a(j, e))| ≥ bf (e, j). On the other
hand, if two vehicles will never be in conflict (due to being
assigned to two non-intersecting edges), the constraint needs
to turn off. The right hand side becomes ≈ −M .

|xk + yk,ea(e, j)− (xq + yq,ja(j, e))|
≥ (yq,j + yk,e − 1)bf (e, j) + (yq,j + yk,e − 2)M,

∀d ∈ D, k ∈ Od, e ∈ Ed,

j ∈ Ω(e), q ∈ {h ∈ Oσ(j)|th ≤ tk},
where σ : E → D.

(3)

Note that Eq. (3) is a nonlinear expression. We can linearize
it using an additional binary variable z in conjunction with a
big-M as such using Eq. (4), (5), (6). Note that (.) indicates
the right-hand side of Eq. (3).

xk + yk,ea(e, j)− (xq + yq,ja(j, e))

≥ (.) + zd,k,e,j,qM,
(4)

xq + yq,ja(j, e)− (xk + yk,ea(e, j))

≥ (.) + (1− zd,k,e,j,q)M,
(5)

zd,k,e,j,q ∈ {0, 1}, (6)

∀d ∈ D, k ∈ Od, e ∈ Ed,

j ∈ Ω(e), q ∈ {h ∈ Oσ(j)|th ≤ tk},
where σ : E → D.

The next constraint, Eq. (7), ensures vehicles undergo a
preparation lead time.

xk − tk ≥ bp(d), ∀d ∈ D, k ∈ Od (7)

Equation (8) ensures vehicles depart with a minimum sep-
aration of bt(d) from a given depot d.

xk − xq ≥ bt(d),

∀d ∈ D, k ∈ Od, q ∈ {h ∈ Od|th ≤ tk}
(8)

Finally, Eq. (9), (10) ensures every vehicle is assigned to
exactly 1 outgoing edge, while Eq. (11) ensures departure
times are non-negative.

∑
e∈Ed

yk,e = 1, ∀d ∈ D, k ∈ Od (9)

yk,e ∈ {0, 1}, ∀k ∈ Od, e ∈ Ed, d ∈ D (10)

xk ∈ R+, ∀k ∈ O (11)

Consequently, the MILP formulation is given by Eq. (1)-
(11) (with the exception of Eq. (3)). Note that solving the
MILP optimally scales poorly with growing problem size; the
number of constraints required grows exponentially with each
additional aircraft due to conflicts. As an alternative, we opted
to find sub-optimal solutions by reformulating the problem as
a MDP and solving it with an MCTS-based approach.

We briefly discuss the reformulation of MRWPDP as an
MDP, while implementation details will be given in the next



section. Let each state s ∈ S be defined as an ordered
collection of actions a ∈ A taken so far. The initial state s0 is
empty, while there are many goal states sg (no more possible
actions). Since all package orders are known ahead of time
and are “queued up” in a line at each depot according to their
arrival time tk, we want to maintain a notion of fairness. The
action space at s, As is given by the following: 1) choice
among the package orders at the front of each depot line, and
2) choice among which route to assign to that package, and 3)
the departure time, xk. Since xk is a continuous variable, the
action space becomes infinite dimensional. However, we can
avoid this issue by simply selecting over the discrete choices,
which fully specifies the next tk. Finally, the probability of
selecting any action is uniformly distributed, while the reward
of selecting any action is the expected objective function value.

V. MONTE CARLO TREE SEARCH WITH
BRANCH/PRUNING AND SIMULATED UPDATES

Let each node in the search tree consists of several at-
tributes: children, actions, state, parent, value, and count.
For our problem of consideration, actions is the set of legal
actions or “action space”, where each individual action is
defined as a 3-tuple, (o, x, e) : o ∈ O, x ∈ R+, e ∈ E,
where o is the delivery order id, x the departure time, and
e the assigned edge. The state attribute is implemented as an
increasing list of actions. The parent or child attribute is a
pointer to another node instance in the tree. Once a node is
created, its partial state is considered fixed. Additionally, a
node has “descendants” as long as either actions or children
are non-empty. The value is the “score” of a node, and the
count is the number of times a node has been traversed.
The algorithm maintains the best solution so far, called the
incumbent node. This node gets updated each time a better
solution is encountered. Unlike basic MCTS, we introduce two
features: 1) Bound-and-Prune helps prune the tree when lower
bound information is available or when no more descendants
are possible, while 2) Simulated Updates allows the roll-out
procedure to directly update the incumbent solution. Alg 1
shows the overall algorithm with our modifications; it is
performed repeatedly until either a computational budget is
exhausted or the root node no longer has any descendants.

A. Selection Policy

As in basic MCTS, the selection policy (Lines 8-18) is
used to recursively select the most promising child node for
expansion among its leaf nodes. However, if a leaf node is
still expandable (its set of possible actions are non-empty)
or has no children, the while loop will break early to allow
for possible expansion in the subsequent phase. Line 18 is
used to update the incumbent node n∗ (the best solution
found so far) with the selected node n, in the event n has
a terminal state with a better objective value. In Line 17, U
is used to “score” each child node; its aim is to maintain
a proper balance between exploitation and exploration. A
common implementation is given by the Upper Confidence
Bounds applied to Trees (UCT) [8], [20]. Let n be a node

Algorithm 1: MCTS-BP-U

1 root.children← ∅
2 root.actions := set of possible actions
3 root.state := state of node n
4 root.parent← NULL // Parent node of n.
5 root.value←∞ // Objective value.
6 root.count← 1
7 n∗ ← root // Incumbent node; deep copy.
8 while

Computational budget > 0 and Descendants(root) ̸= ∅
do
// Selection Policy

9 n← root
10 while n.state is not terminal do
11 if n has no children or n is expandable then
12 break
13 else

// Bound and Prune
14 while (Bound(n) > n∗.value ∨

Descendants(n) ̸= ∅)∧n.parent ̸= NULL
do

15 remove n from its parent
16 n← n.parent

17 n← argmax
c∈n.children

U(c) if n.children ̸= ∅

18 update n∗ with n if n.value < n∗.value and
n.state is terminal

19 if if n is expandable then

// Expansion
20 a← randomly pop an action from n.actions
21 s′ ← Move(a, n.s)
22 n′ ← create an empty node
23 n′.actions← GetLegalActions(s′)
24 n′.state← s′

25 n′.parent← n
26 add n′ to n.Children

// Simulation Policy
27 s← n′.s
28 for i ∈ 1 . . . numRollouts do
29 while s is not terminal do
30 A← GetLegalActions(s)
31 a← randomly pop an action from A
32 s← Move(a, s)

33 n′.value←
min {n′.value,ComputeObjective(s)}

34 update n∗ with current node n′ if
n′.value < n∗.value

// Backpropagation
35 n← n′

36 while n ̸= NULL do
37 n.value← min {n.value, n′.value}
38 n.count+ = 1
39 n← n.parent

40 return n∗



from the MCTS search tree, p be the parent node of n, and
N(n) : n 7→ n.count be the number of times a node was
previously visited. Then, the UCT expression is:

U(n) = Q(p, n) + C

√
lnN(p)

N(n)
(12)

The first term is responsible for “exploitation” behavior and
is a function of the node’s objective value (see Eq. (1)). We
ensure Q ∈ [0, 1] by normalizing each node’s value relative
to its siblings total objective. For minimization problems, each
node’s value may need to be negated. Additionally, the second
term is responsible for “exploration”; note that as n is visited
more often, the term begins to vanish. Finally, the constant
C is usually recommended to be

√
2, but is often empirically

tuned.

B. Expansion

A node is expanded (Lines 19-26) by first taking a random
action from the node’s action space. Next, a new consistent
state s′ is created using Move, while GetLegalActions creates
an action space for n′. Both functions utilize domain reduction
via inference, though exact implementation is domain depen-
dent. By carefully implementing both functions, the search
space can be reduced significantly. Our implementations of
both for the MRWPDP are given as follows.

1) GetLegalActions: Consider a FIFO queue at each depot
Qd, ∀d ∈ D. We push all UAS orders onto Qd in the order
of their arrival time tk, ∀k ∈ Od, d ∈ D. Then, the set of all
legal actions is given by {(x, y) : x ∈ Qd.peek() and y ∈
Ed, ∀d ∈ D}.

2) Move: We propagate constraints in a sequential fashion
in order of greatest constraint “tightness”. First, the preparation
constraint of Eq. (7) is propagated. It is easy to ensure this
by modifying the latest action a’s time attribute. Next, the
departure constraint of Eq. (8) is propagated. This can be done
by checking the latest action a against all previous actions in s:
for each action that belongs to Eq. (8)’s index set, the departure
time can be adjusted. A similar approach follows for the edge
separation constraint, Eq. (2). For the intersection separation
constraint Eq. (3), the propagation is more involved. We begin
by scanning over all previous actions that are in conflict with a.
Each time we adjust a, we have to re-scan over the previous
actions and re-propagate. This is continued until a can no
longer be adjusted. At this point, create a new state by deep
copying s and then assigning s′ ← s ∪ {a}. Finally return s′.

C. Bound and Prune

When strong bounds are available, we can prune entire
branches of the search tree similar to branch and bound (Lines
13-16). In other words, if a better solution cannot be found
through n′, it is pruned. We briefly check a child node’s
(n′) bound against the incumbent solution; If the bound is
worse, we remove the n′ from its parent node. Additionally,
we recursively remove nodes without any children or legal
actions, such as terminal state nodes. For MRWPDP, bounds
are given by the LP-relaxation of the MILP formulation.

D. Simulation Policy and backpropagation

The simulation policy is used to estimate a node’s value
by performing several rollouts until some terminal state is
reached. Its primary advantage is that it does not require any
heuristic information. In most implementations, the value is
averaged over many rollouts, but we found that using the best
value over all rollouts to be more effective.

A random rollout consists of randomly choosing a legal
action from the node’s action space and then constructing a
new state using Move. At the end of a single rollout, the
best value of n′ is kept. Repeating the rollouts at a greater
frequency increases the likelihood of correctly estimating a
node’s value, but also introduces overhead. A change to the
basic MCTS algorithm is the addition of Simulation-Based
Updates given in Line 34. Since we are able reach a terminal
state during each rollout, we can immediately update the
incumbent solution as necessary.

After completing the simulation policy, it is necessary to
perform backpropagation (Lines 35-39) to update the statistics
of all direct ancestor nodes. These statistics directly affect the
score calculation given by Eq. (12).

E. Analysis of the algorithm

Proposition 1. Given an arbitrary sequence
< O1, O2, . . . , On > on the set of delivery orders, such that
t1 ≤ t2 ≤ . . . tn is true, a feasible solution to the MILP can
be easily inferred.

Proof. We can always introduce enough ground delay for
subsequent delivery orders to avoid conflicts at intersections
and between each consecutive delivery order.

Lemma 2. “Move(a, s)” returns a locally consistent state s′.

Move takes advantage of proposition 1 by incrementally
filtering a state in sequence.

Theorem 3. Alg. 1 is probalistically complete and will return
an asymptotically optimal solution to MRWPDP as computa-
tional budget tends to ∞.

VI. COMPUTATIONAL RESULTS

A. Setup

All the algorithms were implemented in Python 3.11 on a
MacOS-based laptop, with a 2.6 GHz 6-Core Intel Core i7
processor and 16 GB of memory. Several problem instances
(SF20, SF30, SF40, SF100, SF1000) based on a represen-
tative downtown San Francisco package delivery scenario
were created to compare MCTS-BP-U against typical MILP
solvers (Fig. 1a). In each scenario, there are two source and
two sink nodes. In addition, there are two different routes
available for drone delivery between each pair of source and
sink nodes. Based on the problem instance, there are a total
of |O| = {20, 30, 40, 100, 1000} delivery vehicles initially
queued up at the sources. Ground risk values were based
on those obtained from the NASA Ground Risk Assessment
Service Provider (GRASP) tool [30]. Additionally, the design
of the Operational Volume Blocks in Fig. 1b followed the



Instance MILP

Obj. Value Low. Bound Rel. Gap (%) Comp. Time (s)
sf20 148,004.075 144,965.455 2.053 60
sf30 233,679.754 218,864.763 6.340 60
sf40 324,422.069 296,334.932 8.658 60

sf100 1,084,638.745 817,155.605 24.661 100
sf1000* - 9,829,576.709 - 334

TABLE I: Results are shown from solving the MILP formulations given a computational time limit. *The solver did not
produce a result for sf1000 in the allotted time of 120s. Instead, a lower bound is obtained from the LP relaxation after 334s.
The values shown are unit-less unless otherwise stated.

MCTS-BP-U

Instance Initial

Obj. Value Comp. Time (s) Rel. Gap (%)

sf20 170,936.701 0.232 15.19
sf30 267,103.437 0.421 18.06
sf40 373,509.599 0.679 20.66
sf100 1,173,619.542 3.908 30.37

sf1000 41,285,410.072 13.797 76.19

Instance Final

Obj. Value Comp. Time (s) Rel. Gap (%)

sf20 149,167.610 60 2.82
sf30 237,442.770 60 7.82
sf40 333,849.968 60 11.24
sf100 1,112,903.899 100 26.57

sf1000 40,109,336.091 120 75.49

TABLE II: Initial and final results are shown from applying the heuristic MCTS-BP-U; the relative gap is shown with respect
to the lower bound presented in the previous table.

Fig. 2: The figures show the relative gap wrt. time using the heuristic, MCTS-BP-U, to solve MRWPDP. In each of the problem
instances, results are averaged over 10 trials; the mean is the thin blue line, while the shaded regions represent 2 std deviations
(95% confidence interval).



procedures established in [6]. We compared quality of the
solutions over an allotted computational time using the rel-
ative gap, i.e. the relative difference between the upper and
lower bounds. All optimization formulations (MILP, LP) were
implemented in the Pyomo modeling language [31], [32]. As
a final step, we validated solutions obtained by implementing
them in an agent-based model [33].

B. MILP

Table I shows the average (N = 10) results for the MILP
formulation. For all instances, the MILP solver was not able
to find an optimal solution in the allotted CPU time of 120s.
Instead, the best achievable objective value was recorded.
Additionally, in SF1000, the MILP solver was not able to
find a feasible solution in the allotted time of 120s. The
quality of the objective value decreases with larger problem
instances as evidenced by the growing relative gap from 2.053
to 24.661. Clearly, the MILP formulation does not scale well
with problem size as shown in our example scenario in Fig. 1.

C. MCTS-BP-U

Table II shows both the initial and final average results of
MCTS-BP-U with respect to allotted CPU time. The initial
results correspond to the first instant a feasible solution was
found. MCTS-BP-U can find a feasible solution significantly
faster than the MILP solver. In the final results (bottom table),
the solution quality has furthered increased. However, the
MILP formulation holds a slight edge in terms of solution
quality for small and intermediate problem sizes. For large
problem sizes (SF1000), MCTS-BP-U can still find a solution
in a relative short amount of time as opposed to the MILP
solver which does not.

The average relative gap of MCTS-BP-U over time is
shown in Fig. 2 with a 95% confidence interval shading. As
expected, the relative gap decreases with more CPU time. This
decrease is less dramatic for large problem sizes (SF1000).
However for smaller problems, the relative gap becomes flat
in a short amount of time suggesting diminishing returns for
large computational times.

D. Validation with Agent-Based Model Simulation

An agent-based model (ABM) was developed to quickly
validate solutions obtained from either using the MILP for-
mulation or MCTS-BP-U. The relevant parts of the solution
include the route assignment and take-off time variables for
each UAS, which will be handed off to a waypoint following
controller.

In the ABM, the UAS are modeled as mass-less points
without any kinematic constraints. During each loop of the
ABM simulation, every UAS listens for a velocity command
from the waypoint following controller. After enough simula-
tion time has passed, the controller will issue commands to the
relevant UASs so that they begin following a predefined route.
In addition, several “Operational Volume Blocks” (OVB) of
uniform size have been defined over each route. As required
by FAA ConOps [4], no two overlapping OVBs belonging

Algorithm Makespan (s) Total Conflict Count
MCTS-BP-U 11857 0

MILP 11835 0

TABLE III: The simulation makespans between MCTS-BP-U
and MILP is shown. It is defined as the final vehicle’s delivery
completion time.

to separate UAS operations, should be “active” at the same
time. We henceforth refer to as a conflict. Each time there
is a conflict, we increment a counter. We simulate the ABM
using solution outputs from both algorithmic methods, while
measuring the makespan and total number of conflicts. A
table showing the metrics for the simulation can be found in
Table III. The makespan values are relatively close, suggesting
the benefits of using MCTS-BP-U over the MILP formulation.
Additionally, there are no conflicts indicating correctness of
our mathematical models and proposed approach.

VII. CONCLUSIONS

The rapid growth of UAS technology necessitates new
algorithmic approaches to resolving potential conflicts among
UASs and maintain the safety of airspace operations. In this
work, we have proposed the MRWPDP, which can be seen
as step towards modeling an automated package delivery
scheduling service involving multiple UAS operators.

Taking inspiration from recent work in applying MCTS
to combinatorial optimization as well as observing growing
interest in fusing IP and CP techniques, we have created a
hybrid framework called MCTS-BP-U that nicely blends the
two. The resulting framework is able to solve large instances of
the problem, for which the MILP formulation did not produce
any feasible solution.

There are a number of ways to improve the solution
methods as a future research direction. First, lower bounds are
currently not being strengthened using cutting plane methods;
we believe this may have a modest impact on performance by
reducing the size of the search space, though it is not clear
how to best incorporate branch-and-cut. Second, we did not
explore parallelization of MCTS, which in theory would allow
for greater utilization of CPU/GPU cores to more thoroughly
search through the problem space. Though some literature
suggests speed up is only modest.
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