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Abstract—The accurate prediction of aircraft trajectory by
ground-based decision support tools (DST) is a major concern
in air traffic management (ATM). Aircraft trajectory prediction
tools rely on a simplified point-mass aircraft performance model
(APM) to make their predictions. Even though the performance
coefficients and weight of an aircraft are a vital part of the APM’s
predictions and accuracy, these coefficients are proprietary in
nature and therefore, unavailable to DSTs. The current ATM
research focuses on improving the estimate of some APM
parameters by freezing all other coefficients. This simplified
approach introduces unwanted sources of bias and negatively
impacts the accuracy of the performance model. In this paper,
we apply machine learning (ML) models for the prediction of
three key APM parameters simultaneously (two drag coefficients
and the initial aircraft weight). To accomplish this, we employ an
ordinary differential equation (ODE) fitting approach to generate
optimized APM parameter labels customized to each individual
flight record. Subsequently, we train ML models to capture the
relationship between the historical data and the optimized APM
parameters. Two different ML model solutions are applied and
the APM coefficients are predicted for unseen flights. The results
indicate that the ML models are able to capture APM parameters
relationships with flight-related features with good accuracy.

Index Terms—trajectory prediction, machine learning, aircraft
performance model, air traffic management, drag coefficients

NOTATION

h Altitude of aircraft above mean sea level
CL Lift coefficient
CD0 Parasite drag coefficient
κ Induced drag coefficient
δcl Thrust setting coefficient for climb
δdes Thrust setting coefficient for descent
m0 Starting (take off) mass of aircraft
m(t) Mass of the aircraft at time t
mf (t) Total mass of fuel consumed up to time t
Vt True airspeed
Vw Wind speed
Tmax Maximum climb thrust
AF Acceleration Factor
g Acceleration due to gravity
S Wing reference area
ρ Density of air

f Fuel flow rate
ψw Wind direction
ψa Aircraft heading

I. INTRODUCTION

Air traffic trajectory prediction plays a crucial role in
effective air traffic management. By accurately forecasting
the trajectories of aircraft, air traffic controllers can optimize
airspace utilization, enhance safety, and improve overall op-
erational efficiency. Although trajectory prediction for con-
ventional aircraft is well-established in terms of physics, it
relies on accurate knowledge of aircraft performance model
(APM) parameters (such as drag coefficients) and operational
procedures specific to the flight being predicted. Over the
years, advancements in data availability and computing power
have contributed to improved trajectory prediction accuracy.

However, there exist obstacles to accessing the proprietary
aerodynamic data (such as drag coefficients or the aircraft
mass) held by aircraft manufacturers, due to its commercial
and competitive nature. This vital information, crucial for
trajectory prediction, is often subject to strict confidentiality.
When accurate aerodynamic data is unavailable, the Base
of Aircraft Data (BADA), developed by Eurocontrol, serves
as a valuable resource [1]. It provides a comprehensive
collection of performance characteristics for various aircraft
types making it the default APM resource for current ATM
studies. However, there are limitations associated with using
BADA for trajectory prediction purposes. These limitations
include the unavailability of precise speed intent, aircraft mass,
and unknown thrust setting of the engines (which can vary
depending on the flight phase). Additionally, the generalized
nature of the available APM parameters in BADA may over-
look specific nuances and variations that exist among different
actual trajectories [2].

Inaccurate trajectory predictions can arise from various fac-
tors, including imprecise input parameters, misinterpretation
of pilot intent, inaccurate APM parameters, noisy radar data,
and flawed modeling assumptions. There have been numer-
ous studies that try to quantify the sensitivity of trajectory



prediction models with respect to various assumptions [3],
[4]. Early validation work had already identified the impor-
tance of accurate aircraft weight information for trajectory
prediction [5]. As a result, researchers have been actively
investigating different approaches to estimate the unknown
parameters of the APM using available data. Some of the
early research in this domain relied on flight manual data for
improving aero-propulsive models such as the work by Gong
and Chan [6]. Many of these studies have primarily focused on
optimizing a single APM parameter, often the initial aircraft
weight, while making assumptions for the remaining APM
parameters. Schultz et al. [7], [8] proposed a method for
weight estimation during the climb phase by dynamically
adjusting the weight based on thrust and drag information
from BADA. Thipphavong [9] also developed a top-of-climb
matching method using different aircraft weight parameters
and selecting the one that best fit the data. Climb trajectory
modeling has been investigated for separation assurance au-
tomation [10]. Dalmau et al. [11] focused on estimating fuel
consumption in the descent phase rather than determining
the initial aircraft mass based on radar tracks. Alligier et
al. [12] proposed a modification to the BADA thrust model to
derive an equivalent weight and thrust setting profile specific
to the climb phase of flights. This modified model enables
the prediction of the aircraft’s energy rate. In a related study,
Alligier et al. [13] focused on learning the thrust law and mass
parameters using historical flight data. They utilized the BADA
drag polar model and employed a data-driven approach to
estimate the thrust law and mass values. In a subsequent study,
Alligier et al. [14] employed machine learning (ML) methods
to estimate the aircraft mass, leading to enhanced aircraft
climb prediction compared to the baseline method that relies
on the reference mass from BADA. They assumed the max
thrust setting for the climb phase. Sun et al. [15] introduced
a stochastic total energy model formulation for estimating air-
craft drag parameters. This formulation is highly versatile and
incorporates the thrust setting and mass estimation within the
learning process. The authors incorporated maximum thrust
information from BADA.

From all these studies, a strong link between aircraft mass
and other APM parameters is evident. The coupling between
various variables in the aircraft model can result in different
estimation scenarios when using historical data to estimate
APM parameters. These variations are influenced by the choice
of parameters being estimated and other assumptions such as
holding several parameters constant for estimating the variable
of interest. Therefore, our primary focus in this study is to
enhance the estimation of crucial aircraft performance model
parameters simultaneously, specifically two drag coefficients
and the takeoff weight. These parameters play a vital role in
ensuring the accuracy of predictions made by ground-based
Decision Support Tools (DSTs).

The subsequent sections of this paper are structured as
follows: Section II outlines the dataset utilized in this study
and explains the preprocessing steps. Section III provides
a technical overview of the APM estimation process by an

ordinary differential equation (ODE) fitting approach. Section
IV introduces the ML solutions, as well as a description of the
features and labels used. In Section V, the results are presented
and discussed. In Section VI, the simulation results for a single
flight are shown and finally, Section VII concludes the paper.

II. DATA PREPROCESSING

The Sherlock data warehouse at NASA Ames1 serves as the
source for the raw track data (or Integrated Flight Format (IFF)
dataset), event data (EV), and meteorological data forecasts
(rapid refresh (RAP) dataset) used in this study. The IFF
dataset contains essential features such as flight ID, airline,
aircraft type, latitude, longitude, altitude, ground speed, and
UTC timestamp. The RAP data provided meteorological infor-
mation for North America, including variables like wind speed,
temperature, air pressure, and geopotential height. The datasets
covered a duration of 340 days in the year 2019. We filtered
the flights from three widely used aircraft types: B738, B737,
and A320 landings at four prominent destination airports in
the United States: LAX, DEN, MSP, and DFW. The origin
airports of these flights contained flights from all over the
United States. Engine information for each flight was obtained
from the FAA. Additionally, new terms that will be used in
ODE fitting process were derived from the existing data (e.g.,
flight phase, air density, acceleration factor (reciprocal of the
energy share factor), and etc.). Following the merging of the
IFF, RAP, EV, and engine datasets, the data underwent a series
of preprocessing steps, which included:

• Removal of trajectories with a significant number of
missing values (less than 5% of the data). Flights that
lacked data for crucial segments essential for the ODE
fitting process, such as the climb or descent phases, were
identified and excluded.

• Filling the missing rows for categorical features. For
some columns such as engine type or airport names,
we implemented a backfilling technique based on the
constant values observed for each flight. Since these
values remained consistent throughout the flight, we used
the constant values to fill in the missing rows.

• Smoothing using spline interpolation technique. The raw
track data contained one position report every 6 to 12
seconds, resulting in noisy trajectory data, affecting fea-
tures such as speed and altitude. To address this issue, a
vital step was the application of spline interpolation tech-
niques (by Pandas rolling window function) to smooth the
trajectories.

• Feature scaling to ensure consistent scale across all fea-
tures. The ”MinMaxScaler” from the sci-kit-learn library
transforms the features by scaling them to a specified
range, typically between 0 and 1. This normalization is
important when dealing with features that have different
units or varying magnitudes

• Extraction of month, day, and time information from the
time stamps. The time extraction allows us to capture the

1https://sherlock.opendata.arc.nasa.gov/sherlock open/
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temporal aspects of the flights and incorporate them as
features in our ML models. The time and month of the
year can be indicative of various factors such as air traffic
patterns, weather conditions, and seasonal variations.

• Conversion of categorical features (aircraft type, airline,
engine, month, etc.) to numerical values using ”OneHo-
tEncoder” from the sci-kit-learn library. This transforma-
tion allowed us to represent these categorical variables in
a numerical format, enabling their incorporation into the
ML models for analysis and prediction.

The next step was to convert the flight-related data from
a timeseries format to a structured dataset where each flight
corresponds to a single example. By identifying the flight
phases (climb, cruise, and descent) in the flight timeseries, it
became possible to extract meaningful information pertaining
to each phase. As part of this process, the average values
of the key parameters in the ODE fitting process, such
as Rate of Climb (ROC), True Airspeed (TAS), Calibrated
Airspeed (CAS), and Mach number (Mach), were calculated
for each flight phase. The computed average values for these
variables were then included as new features in the dataset.
This transformation facilitated the creation of a dataset where
each flight is represented by a single row, consolidating the
relevant information for that particular flight. However, it is
important to note that this conversion from a timeseries to
a single-example dataset does entail a loss of some valuable
information that results from removing all the temporal fea-
tures. Nonetheless, this transformation significantly reduces
the input feature dimension, making the dataset more suitable
for efficient APM parameter estimation especially when a
complete inflight trajectory is not available and accessible to
DST prior to a flight.

III. TECHNICAL APPROACH

Physics-based models are crucial for predicting flight tra-
jectories as they offer a comprehensive understanding of
aircraft dynamics. These models utilize fundamental principles
of physics to accurately describe the aircraft’s motion and
behavior. A simplified mathematical representation, known as
the point mass model, is commonly employed in trajectory
prediction applications in air traffic management.

Fig. 1: Forces acting on an airborne aircraft.

The point mass model simplifies the aircraft’s dynamics
by treating it as a single point mass located at its center
of gravity, disregarding complex aerodynamic and structural
details. This model establishes a relationship between the
inertial acceleration of the aircraft and the forces acting on
its center of mass, such as thrust, drag, and gravity (Figure
1). Using the point mass model, the aircraft’s trajectory can
be predicted by solving a set of differential equations that
consider the forces acting on the aircraft and the initial
conditions such as mass, velocity, and position.

In conventional trajectory prediction applications that utilize
the point-mass model, certain parameters related to thrust,
drag, and weight are assumed to be readily available, often
obtained from BADA tables. However, parameters for the
remaining components of the model need to be estimated using
the available data. By incorporating flight data, operational
procedures, and other relevant data sources, the model can
then predict trajectories. Nevertheless, the accuracy of these
predictions can be compromised by the introduction of errors
resulting from inaccurate parameter values. To address this
issue, an enhanced approach is proposed in this study, aiming
to improve the accuracy of trajectory prediction tools by learn-
ing previously unknown APM parameters. Parameters such
as initial aircraft mass, thrust setting, and drag coefficients
are estimated using historical flight data. This novel approach
simultaneously estimates all coefficients.

The total energy model (TEM) establishes a relationship
between the work exerted by the forces on an aircraft and
the resulting change in the system’s total mechanical energy.
Equation (1) represents the TEM:

(T −D)Vt
mg

= ḣ+
Vt
g

[
V̇t +

d

dt

(
Vw cos(ψa − ψw)

)]
(1)

In this equation, T refers to the thrust generated by the
aircraft engines, D is the drag force acting on the aircraft, m
is the aircraft’s mass, Vt is the true airspeed of the aircraft, Vw
is the wind speed, ḣ is the vertical speed, g is the acceleration
due to gravity, ψa and ψw are the aircraft heading and wind
direction respectively. We assume a clean drag configuration,
considering incompressible airflow and low Mach speed flight.
We also assume that the effect of wind-related components
and flight resistance arising from flaps or landing gear are
negligible. Using standard thrust and clean drag models, T
and D can be written as:

T = δTmax and D = 0.5ρV 2
t S (CD0 + κC2

L)︸ ︷︷ ︸
CD

Here Tmax is the maximum climb thrust, δ is the thrust
setting which allows scaling the thrust force up or down, rho
is the air density, S is the wing reference area, CD0, and κ
are the parasite and induced drag coefficients. By substituting
T and D, we obtain the parameterized version of the TEM,
as shown in equation (2).
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−

κ(m0 −mf )
[2g.cos2(γ)
SρVt.AF

] (2)

ṁ = f (3)

Here, AF is the acceleration factor, γ is the flight path angle,
mf is the cumulative weight of fuel consumed up to time t,
and f is the fuel flow rate. The functional form of Tmax and
f depends on the phase of flight, altitude, mode, and other
factors. The quantities highlighted in blue in equation (2)
i.e., namely parasite drag coefficient (CD0), induced drag
coefficient (κ), starting mass of the aircraft (m0), and thrust
settings for climb and descent (δdes,δcl), are estimated by the
ODE optimization process, and those in black are available
using the historical flight data. A set of upper and lower bounds
is provided to the optimizer, which includes constraints such
as the minimum and maximum aircraft weight. These limits
ensure that the estimated APM parameters remain within the
acceptable range of operational conditions and constraints.
Equations (2) and (3) together form an ODE system that,
when combined with the corresponding initial and boundary
conditions, enables the calculation of the aircraft’s motion
within each flight segment. Our approach for computing the
APM parameters involves fitting the ODEs described by
equations (2) and (3) to reconstruct the altitude profile of
a historical flight record using our model with minimal error.
By separating the known quantities, such as true airspeed,
from the unknown parameters, we iteratively calculate the
optimal model parameters that minimize the mean square of
altitude error. For more detailed information about the ODE
process and its specific parameters, the reader is referred to
our previous papers on this topic [16], [17].

The data obtained from the ODE fitting process comprises
pairs of historical flights and their corresponding optimized
APM parameters. Since thrust setting values are not a param-
eter used in ground-based trajectory prediction tools and are
mainly dictated by the pilot during the flight, we excluded
them from the set of ML labels. Each historical flight is
accompanied by its trajectory, along with additional data such
as aircraft type, engine type, airline, city pair, and total flight
distance. These pieces of information serve as features in the
ML training process. The ML model’s targets, or labels, are
the APM parameters obtained from the ODE fitting process.

IV. MACHINE LEARNING SOLUTIONS

The ODE-fitting step is a complex process that is very time-
consuming and is performed offline. Moreover, it can only
be done on historical flights that have already landed and is,
therefore, not useful for future flights. Thus, training an ML
model to learn the relationship between the data features and
ODE-generated labels is desired to make the APM parameters
prediction faster and easier for future flight trajectories. After
fitting the APM parameters to individual flight trajectories

using historical data, we obtained the “labels” that serve as
training data for a supervised ML model. Since the APM
values that need to be predicted are numerical in nature, a
regression ML model needs to be trained to accurately predict
these values. In our case, the regression problem involves
predicting values for CD0, κ, and m0. While many ML
regression algorithms are designed to predict a single numer-
ical value, certain algorithms, such as Linear Regression and
Decision Trees, inherently support multi-output regression. In
our APM parameter prediction, all three labels (CCD0, κ,
and m0) were estimated simultaneously using ODE fitting.
Therefore, all these labels are predicted together, as they are
interdependent and influenced by both the input variables and
each other. This type of problem is known as multiple-output
regression. Three ML models including Linear Regression,
Random Forest Regression (RFR), and XGBoost are selected
to be trained and compared in terms of performance. The
ML models capture the relationship between specific flight
trajectory features and APM coefficients, enabling accurate
trajectory prediction in future flights.

Our dataset is divided into two parts: 80% for training,
and 20% for testing. To prevent overfitting, and fine-tune the
ML models, a cross-validation technique was employed. A 5-
fold cross-validation was applied, dividing the training data
into five subsets. Through iterative training and evaluation
on various combinations of training and validation sets, we
optimized models’ hyperparameters. Subsequently, the test set
was employed to assess the final models’ performance on
previously unseen data. The trained ML models can provide
the appropriate set of APM coefficients for any future flight,
minimizing prediction errors and enhancing trajectory predic-
tion accuracy. Figure 2 provides an overview of the APM
estimation process, illustrating the progression from raw data
to the ML testing results.

Our ML approach is divided into solutions: 1- using a subset
of features that are known prior to the flight departure and
do not change during flight (such as aircraft type, current
temperature, destination airport, etc.) and 2- using a subset
of in-flight features of the trajectory (such as average cruise
altitude, Mach, and rate of climb, etc.) as well as all the pre-
departure features from the first solution. The target variables
are the APM parameters that were obtained by fitting them
to a set of ODEs for each flight trajectory. The features in
Solutions 1 and 2 are presented in Table I, accompanied by a
brief description of each feature.

To evaluate the performance of our ML models, we employ
two regression performance metrics: Mean Squared Error
(MSE) and Mean Absolute Percentage Error (MAPE). These
metrics serve as benchmarks to assess the accuracy and
reliability of our models’ predictions. MSE provides an overall
measure of the model’s performance by calculating the average
squared difference between predicted and actual values. On
the other hand, MAPE quantifies the percentage deviation
between the predicted and actual values for each individual
target variable.



Fig. 2: The overview of the APM estimation process.

TABLE I: List of features in Solutions 1 & 2.

Feature Solution 1 Solution 2 Description
Aircraft ✓ ✓ Aircraft type
Airline ✓ ✓ Name of airline

Distance ✓ ✓ Total distance
Engine ✓ ✓ Engine type
Month ✓ ✓ Month of the year

Weekday ✓ ✓ Day of the week
Time ✓ ✓ Time of the day as hour
DEST ✓ ✓ Destination

T (ORG) ✓ ✓ Temperature at origin
P (ORG) ✓ ✓ Pressure at origin
T (DEST) ✓ ✓ Temperature at destination
P (DEST) ✓ ✓ Pressure at destination

Mach (CRU) ✓ ✓ avg. Mach at Cruise
Alt (CRU) ✓ ✓ avg. altitude at Cruise

ROC (CLB) – ✓ avg. ROC at Climb
CAS (CLB) – ✓ avg. CAS at Climb
TAS (CLB) – ✓ avg. TAS at Climb
Mach (CLB) – ✓ avg. Mach at Climb
ROC (DSC) – ✓ avg. ROC at Climb
CAS (DSC) – ✓ avg. CAS at Climb
TAS (DSC) – ✓ avg. TAS at Climb
Mach (DSC) – ✓ avg. Mach at Climb

V. RESULTS AND DISCUSSION

This section presents the results of the evaluation for three
ML models: Linear Regression, Random Forest Regression,
and XGBoost. The performance of these models was assessed
using the Mean Squared Error (MSE) for the combined target
variables CD0, κ, and initial mass (m0). Additionally, the
individual performance scores for each label were reported as
the Mean Absolute Percentage Error (MAPE). The results in
Table II for Solution 1 show that the Random Forest regression
model achieved the lowest MSE for the combined target
variables, indicating its superior overall performance compared
to Linear Regression and XGBoost. When evaluating the
MAPE for each label, the XGBoost model demonstrated
higher accuracy in predicting κ, while Linear Regression
outperformed the other models in predicting CD0 and m0.

Notably, Random Forest performed closely behind the best-
performing model across all three labels.

TABLE II: Comparison of ML performance scores for differ-
ent models in Solution 1.

ML model MSE MAPE
CD0 κ initial mass

Linear Regression 0.025 3.03% 8.37% 5.3%
Random Forest 0.024 3.19% 6.21% 5.77%

XGBoost 0.031 3.22% 6.04% 7.0%

The results in Table III for Solution 2 show that Random
Forest Regression maintained its overall superior performance
compared to the other two models, showing improvement
compared to Solution 1. For the combined target variables,
Random Forest achieved the lowest MSE, indicating better
overall performance. When examining the individual MAPE
scores, Random Forest outperformed the other two models in
predicting κ. XGBoost slightly outperformed the other models
in predicting CD0, while Linear Regression performed the best
in predicting initial mass (m0). These findings highlight the
consistent and improved performance of Random Forest in
solution 2, maintaining its superiority in the combined target
variables’ MSE.

TABLE III: Comparison of ML performance scores for differ-
ent models in Solution 2.

ML model MSE MAPE
CD0 κ initial mass

Linear regression 0.025 3.03% 6.93% 4.67%
Random forest 0.021 3.01% 6.07% 4.89%

XGBoost 0.026 2.95% 6.13% 5.61%

Figure 3 shows the predicted and true labels of the three
aircraft types in our dataset. The predicted values are outputs
of the Random Forest model in Solution 2 (the best-performing
set of features and model). The boxplots for the predicted
labels demonstrate the effectiveness of the ML model in



Fig. 3: Boxplots of the predicted and true labels by Random Forest in Solution 2.

accurately predicting the initial aircraft mass. The boxplots
reveal a clear distinction between different aircraft types,
indicating that the model performs well in capturing the
variations specific to each type. The medians, box lengths,
and whisker lengths vary significantly between the different
types, implying distinct characteristics and behaviors specific
to each type.

The CD0 boxplot shows that the median values of the
predicted values are closely aligned with the true CD0 data.
This suggests that the model’s predictions capture the central
tendency of the CD0 values accurately. When comparing CD0

across different aircraft types, the boxplot indicates that there
is not a substantial amount of variability observed. The boxes
in the boxplot are relatively narrow, indicating that the CD0

values for different aircraft types are clustered around similar
ranges. However, the whiskers of the true values are larger
compared to the predicted values. This indicates that the model
might not fully capture the true variability present in the CD0

labels. The larger whiskers in the true boxplot suggest that
there is more spread and variability in the actual CD0 values
than what is represented by the model’s predictions. This
observation can be due to the nature of the modeling approach.
Unlike the complex relationships and dynamics captured by
the ODE process during label generation, the model is trained
on simplified pre-flight and average in-flight values. As a
result, the model may not fully capture the intricate variability
inherent in the CD0 values. The larger whiskers in the truth
data boxplots suggest a wider range of CD0 values that the
model fails to capture accurately. The boxplots for the κ
exhibit similar trends to CD0. The predicted median values
for κ align closely with the true data, indicating accurate
predictions of the central tendency. However, when comparing
κ across different aircraft types, more noticeable differences
are evident compared to CD0 plots.

Based on the best-performing model, the Random Forest
Regression, feature importance analysis was conducted for
Solutions 1 and 2. This analysis aimed to identify the key
factors that influence the predictions of the target variables,
considering both preflight and in-flight information. Figure 4
displays the sorted feature importance in Solution 1, which
primarily relies on preflight knowledge. Among the features,
“Aircraft Type” emerged as the most significant, suggesting

that the type of aircraft used has a strong impact on the
predicted outcomes. The feature “Airline” has the second-
highest importance. Other influential features include “Average
Altitude during Cruise,” “Temperature at Origin and Destina-
tion Airports,” and “Average Mach during Cruise.”

Fig. 4: Feature importance in Solution 1.

Fig. 5: Feature importance in Solution 2.

The feature importance for Solution 2, as illustrated in
Figure 5, revealed the relative importance of various preflight
and in-flight related features. Consistent with Solution 1,
“Aircraft Type” is the most important feature. “Rate of Climb
during Climb”, “Rate of Climb during Descent”, and “Airline
Type” were also identified as important factors in predicting
the target variables. Comparing Solution 2 to Solution 1, the



introduction of ODE-related terms, such as Rate of Climb,
TAS, and Mach during the Climb and Descent phases has
replaced some of the important features from Solution 1 (such
as temperature and pressure). The incorporation of ODE-
related terms has provided valuable insights into the features,
highlighting the relevance of in-flight dynamics in addition
to preflight information. The inclusion of ODE terms has
slightly improved the performance of all three ML models.
This suggests that by leveraging preflight information, we can
obtain estimations of the APM parameters that are sufficiently
accurate.

The substantial influence of “Aircraft Type” on the ML
predictions can be attributed to its direct relationship with the
initial mass (m0). By considering aircraft type as a prominent
feature in the ML model, the inherent relationship between
aircraft type and the initial mass is effectively captured,
enabling precise predictions.

VI. SIMULATION EVALUATION

Once the ML phase is completed, the ML-derived models
are evaluated using NASA’s Autonomy Development Toolkit
(ADK) simulation software [18] (also known as AutoRe-
solver [19], [20]). The ADK software encompasses various
models such as airspace, airports, aircraft performance, wind,
weather, and atmospheric conditions. Within the ADK, trajec-
tory generators are available to simulate historical flights based
on flight plans, aircraft performance, and atmospheric models.
For more detailed information, readers are encouraged to refer
to the appropriate resources. By simulating a specific historical
flight, we can progressively predict the trajectory at predefined
intervals, such as every 2 minutes. It is essential to note that the
prediction process incorporates a 6-degree-of-freedom aircraft
dynamics model, rendering it more intricate compared to the
TEM employed in our ODE fitting approach. Predictions are
made for a specified time horizon into the future, typically 1
hour.

To assess the performance of the ML-derived models, we
conducted two sets of predictions for each flight. The first
set utilized the baseline BADA APM parameters, while the
second set employed the ML-derived APM parameters. With
the exception of the derived coefficients (CD0, κ, and m0), all
other model parameters and assumptions remained consistent
across the two prediction sets. Figure 6 shows a flight from
the A320 aircraft type during the climb phase. Two distinct
predictions are generated: one utilizing the ML-modified APM
(dashed green line), and the other employing the default
BADA APM (dashed red line). The solid black line represents
the actual historical flight that is simulated or played back in
ADK. The dashed blue line indicates the current timestamp at
which the prediction is made. The predictions are conducted
at intervals of two minutes, and the trajectory is projected
over a time span of 15 minutes into the future. Figure 6
presents snapshots of the predictions at four different time
points during the climb phase. Closer proximity to the current
timestamp corresponds to higher accuracy in the trajectory
prediction. For this particular flight, employing the default

BADA APM parameters results in a lower altitude compared
to the actual flight. However, as the flight approaches the cruise
altitude, the accuracy of the prediction improves. On the other
hand, utilizing the ML-derived APM parameters enhances
the overall accuracy of trajectory prediction. The ML model
incorporates flight-specific information, allowing it to adapt
the APM parameters to better align with the true trajectory.
This improvement is a consequence of the ODE fitting method
employed, where the model “learns” and adjusts the APM
parameters accordingly. This simulation evaluation will be
conducted on several flights to confirm the improvements
afforded by the ML modeling process.

VII. CONCLUSION AND FUTURE STEPS

In this study, we applied ML models to predict key APM
parameters of initial flight mass (m0), CD0, and κ. The key
challenge in this setup was the absence of ground truth data
for APM parameters. To address this challenge, we devised
a novel ODE approach to fit the aerodynamic models and
simultaneously estimate APM parameters for each flight in our
dataset. Due to the substantial computational requirements of
the ODE fitting approach, its real-time application for estimat-
ing the APM parameters in every individual flight becomes
impractical for the DST. Additionally, the unavailability of
the complete time-series data before the flight necessitated the
development of an alternative solution utilizing preflight and
simplified features to estimate the APM parameters. To achieve
this, ML models were trained to estimate these parameters,
exploring two distinct solutions: one utilizing preflight features
and the other incorporating various inflight data features. The
evaluation of the trained ML models demonstrated that the
Random Forest model exhibited the best performance among
the tested approaches.

The results from the feature importance showed that the
“Aircraft type” has the highest importance in accurate label
predictions in both solutions due to its strong correlation with
the initial aircraft mass. It was also shown that adding a
few extra inflight features such as average values of TAS,
CAS, and Mach during the climb and descent phases slightly
improved the ML models’ performances in Solution 2. Despite
the superior performance of Solution 2, which incorporated
inflight data, Solution 1 holds promise as a viable means of
estimating APM parameters solely utilizing preflight infor-
mation. Another observation was the ML models’ inability
to capture the complex relationship between the features and
labels for predicting CD0 and κ. The comparison between the
predicted and true labels in Solution 2 revealed that the true
data exhibited a broader range of variability across all aircraft
types, while the predicted values displayed narrower ranges.
This limitation can be attributed to the models’ reliance on a
limited set of pre-flight and average in-flight features, which
may not fully capture the intricate dynamics and complexities
associated with the entire time series.

Moving forward, we will broaden our dataset to encompass
a wider range of aircraft types and destination airports, allow-
ing for a more comprehensive analysis and evaluation of our



Fig. 6: Trajectory prediction using BADA and ML-derived APM for example flight.

models’ performance. Moreover, we will focus on replacing
the ODE fitting process, which can take up to 10 minutes
for predicting the APM parameters for each flight, with a
deep-learning model that leverages the entire time series of
flight data. This approach holds the potential to expedite the
label generation stage and further enhance the accuracy and
efficiency of estimating APM parameters. Finally, the ML-
derived APM parameters will be further assessed and validated
by comparing them against the reference BADA values using
flight simulation software.
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