Under-Constrained SEE Data: Implications for Estimating and Bounding SEE Rates

Ray Ladbury, NASA-GSFC code 561.4, Greenbelt, MD 20771.

Abstract: Increasingly scarce SEE testing resources and rapid growth of the New Space sector have increased the prevalence of under-constrained SEE data. We develop Monte Carlo tools to assess implications for SEE.

Optimizing Under-Constrained Data

Although the previous sections show that under-constrained SEE data will not usually be available to the analyst at fixed limits, such data may be aggregated with additional information, e.g. in terms of a Bayesian Prior probability distribution ("Prior")—i.e. a Prior that describes the uncertainty in the probability of a single event as one increases the number of measurements. However, even if such data is available, the most practical way to incorporate such data is to use a non-parametric approach to the data. This can be done by using the Expectation-Maximization (EM) algorithm to fit the data to a non-parametric model.

Adding a Bayesian Analysis for SEL

To use a non-parametric approach to the data, we will use a Bayesian approach to the data. This can be done by using the Expectation-Maximization (EM) algorithm to fit the data to a non-parametric model. This can be done by using the Expectation-Maximization (EM) algorithm to fit the data to a non-parametric model.

Using Priors in System-Level Analyses

Although the ultimate under-constrained data will inevitably have significant challenges for the radiation analyst, we show how the tools introduced in this work can assist in finding the best-fitting rate. The tools introduced in this work can assist in finding the best-fitting rate, which is a valuable tool for estimating and bounding SEE rates.

Conclusions

The increasing prevalence of under-constrained SEE data—where source-free data is not available—has increased the need for tools to estimate SEE rates. The tools introduced in this work can help mitigate this issue, providing a valuable tool for estimating and bounding SEE rates.