@AGUPUBLICATIONS

Water Resources Research

Supporting Information for

Remotely sensed soil moisture can capture dynamics relevant to plant water uptake

Andrew F. Feldman^{1,2}, Daniel J. Short Gianotti³, Jianzhi Dong³, Ruzbeh Akbar³, Wade T. Crow⁴, Kaighin A. McColl^{5,6}, Alexandra G. Konings⁷, Jesse B. Nippert⁸, Shersingh Joseph Tumber-Dávila⁹, Noel M. Holbrook¹⁰, Fulton E. Rockwell¹⁰, Russell L. Scott¹¹, Rolf H. Reichle¹², Abhishek Chatterjee¹³, Joanna Joiner¹⁴, Benjamin Poulter¹, Dara Entekhabi³

¹Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA ²NASA Postdoctoral Program, NASA Goddard Space Flight Center, Greenbelt, MD, USA ³Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

⁴USDA ARS Hydrology and Remote Sensing Laboratory, Beltsville, Maryland, USA ⁵Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA ⁶Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA

⁷Department of Earth System Science, Stanford University, Stanford, California, USA ⁸Division of Biology, Kansas State University, Manhattan, KS, USA

⁹Harvard Forest, Harvard University, Petersham, MA, USA

¹⁰Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA

¹¹USDA ARS Southwest Watershed Research Center, Tucson, AZ, USA

¹²Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA

¹³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

¹⁴Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA

Contents of this file

Table S1

Introduction

This file includes Table S1 and its references that are used to create Figure 3.

Table S1. Field isotropic tracer studies across the globe as displayed in Fig. 3. Crop species are specified and partitioned in the table due to wide variability of cultivated vegetation types (includes both herbaceous and woody species). This dataset is stored in https://doi.org/10.5281/zenodo.7527459.

Reference	Reference Index	Plant Category	Latitude	Longitude	Mean Annual Precipitation (mm)	Uptake Range Top (cm)	Uptake Range Bottom (cm)	lsotope Sampling Months	Decay of Water Uptake With Depth	Temporary Uptake of Upper Layers
Asbjornsen et al. 2007	1	Crop (Corn)	41.5	-93.25	882	0	20	Jul.	No	No
Asbjornsen et al. 2008	2	Grass	41.5	-93	882	0	20	May to Sep.	No	No
Asbjornsen et al. 2008	2	Crop (Soybean)	41.5	-93	882	0	20	May to Sep.	No	No
Asbjornsen et al. 2008	2	Crop (Corn)	41.5	-93	882	0	20	May to Sep.	No	No
Asbjornsen et al. 2008	2	Shrub	41.5	-93	882	0	55	May to Sep.	Yes	Yes
Asbjornsen et al. 2008	2	Tree	41.5	-93	882	0	150	May to Sep.	No	Yes
Bachmann		Cross	50.0	11 5	597	0	10	Apr., Jun.,	No	No
Brinkmann	3	Grass	50.9	11.5	587	0	10	Apr. to	INO	INO
et al. 2019 Brooks et	4	Tree	47.5	8.3	1110	0	70	Nov. Jul. to	No	Yes
al. 2002 Case et al	5	Tree	44	-121	550	0	200	Sep. May	No	Yes
2020	6	Grass	-24	31.5	479	0	10	Jun.	No	No
Case et al. 2020	6	Tree	-24	31.5	479	0	50	May, Jun.	Yes	Yes
Case et al. 2020	6	Grass	-24	31.5	510	0	20	May, Jun.	Yes	No
Case et al. 2020	6	Tree	-24	31.5	510	0	100	May, Jun.	No	No
Case et al.	6	Grass	-24	31.5	600	0	50	May, Jun	Yes	Yes
Case et al.	6	Tree	-24	31.5	600	0	100	May,	Yes	Yes
Chimner et	7	Shrub	37.7	-105.8	121	0	200	Jun.,	No	Ves
Clement et	,	Crop	57.7	100.0		0	100	Jun. to	Vee	Vee
Clement et al. 2022	8	(Wheatgra ss)	55.7	12.3	523	0	100	Jun. to Aug.	Yes	Yes
Dai et al. 2015	9	Shrub	44.33	87.9	125	0	300	Apr. to Sep.	No	Yes
Eggemeyer	10	Grass	/1 9	-100.3	573	5	50	Jan. to	No	No
Eggemeyer	10	Troo	41.0	100.3	E70	5	00	Jan. to	Voo	Vee
Ellsworth	10	Тисс	41.9	-100.3	575	5	90	Jan. to	Tes	Tes .
Goldsmith	11	Tree	27.2	-81.33	1346	20	150	Dec. Mar.,	INO	NO
et al. 2012 Goldsmith	12	Tree	19.75	-97	3186	0	40	May Mar.,	No	No
et al. 2012 Hahn et al.	12	Tree	19.75	-97	3186	60	80	May Sep. to	No	No
2021 Hartsough	13	Tree	0.5	35.3	1988	0	150	Dec.	Yes	Yes
et al. 2008	14	Tree	19.5	-103.5	1100	0	30	Nov.	No	No
al. 2014	15	Grass	47.47	8.9	927	0	40	Aug.	No	No
Hoekstra et al. 2014	15	Grass	47.4	8.5	1176	0	40	Jun. to Aug.	No	No
Jackson et al. 1995	16	Tree	9	-79.5	2600	20	100	Dec. to May	No	No

Jackson et al. 1999	17	Tree	-15.8	-47.8	1550	0	300	Aug., Sep.	No	No
Kulmatiski et al. 2010	18							Oct., Nov., Feb.,		
Kulmatiski	18	Grass	-25	31.5	746	0	20	Apr. Oct., Nov.,	Yes	No
et al. 2010		Tree	-25	31.5	746	0	50	Apr.	No	No
Kulmatiski et al. 2013	19	Grass	-25	31.5	746	0	20	Feb., May	Yes	No
Kulmatiski et al. 2013	19	Tree	-25	31.5	746	0	20	Nov., Feb., May	Yes	No
Le Roux et al. 1995	20	Grass	6.25	-5	1210	10	20	May, Nov., Jan.	No	No
Le Roux et al. 1995	20	Shrub	6.25	-5	1210	10	30	May, Nov., Jan.	No	No
Li et al. 2006	21	Tree	48	108.5	296	0	30	Jun. to Oct.	No	No
Liu et al. 2010	22	Tree	21.9	101.25	1487	0	60	Mar., Dec.	No	Yes
Liu et al. 2010	22	Tree	21.9	101.25	1487	0	150	Mar., Dec.	No	Yes
Liu et al. 2011	23	Shrub	30.85	103	711	0	30	Aug.	No	No
Liu et al. 2019	24	Tree	37.5	114.5	521	0	40	Mar. to Sep.	No	No
Ma et al. 2018	25	Crop (Wheat)	39.5	116.5	540	0	70	Jul., Aug.	Yes	Yes
Meinzer et al. 1999	26	Tree	9	-79.5	2600	0	100	Jan. to May	No	Yes
Moreira et al. 2000	27	Grass	-3	-47	1800	0	100	Apr. Jun., Jul., Dec.	Yes	No
Moreira et al. 2000	27	Shrub	-3	-47	1800	0	25	Apr. Jun., Jul., Dec.	No	No
Munoz- Villers et al. 2020	28	Crop (Coffee)	19.5	-97	1765	0	15	Jan. to May, Aug.	No	No
Munoz- Villers et al. 2020	28	Tree	19.5	-97	1765	0	120	Jan. to May, Aug.	Yes	Yes
Nippert and Knapp 2007	29	Grass	39	-96	850	0	30	Jun. to Aug.	Yes	No
Nippert and Knapp 2007	29	Shrub	39	-96	850	0	30	Jun. to Aug.	Yes	No
Ogle et al. 2004	30	Shrub	33	-107	230	0	70	Jul. to Aug.	Yes	Yes
Ohte et al. 2003	31	Tree	39	109.15	362	0	150	Sep.	No	No
Ohte et al. 2003	31	Shrub	39	109.15	362	0	50	Sep.	Yes	No
Penna et al. 2021	32	Crop (Apple Tree)	46.6	10.7	480	0	40	Jun. to Sep.	Yes	No
Plamboeck et al. 1999	33	Tree	64.25	19.75	614	0	55	Jul., Aug.	Yes	No
Prechsl et al. 2015	34	Grass	47.2	8.3	1110	0	30	Apr. to Oct.	Yes	No
Prechsl et al. 2015	34	Grass	46.5	9.75	950	0	30	Apr. to Oct.	Yes	No
Ratajczak et al. 2011	35	Shrub	39.1	-96.6	835	0	75	Jun. to Sep.	Yes	No
Ratajczak et al. 2011	35	Grass	39.1	-96.6	835	0	30	Jun. to Sep.	Yes	No
Retzlaff et al. 2001	36	Tree	34.8	-79.6	1200	0	120	Mar. to Nov.	Yes	Yes

Schulze et al. 1996	37	Grass	-45.3	-69.8	125	0	30	Mar.	Yes	Νο
Schulze et						Ţ				
al. 1996	37	Grass	-45.3	-70.3	160	0	30	Mar.	Yes	No
Schulze et										
al. 1996	37	Grass	-44.8	-71.3	290	0	30	Mar.	Yes	No
Schulze et										
al. 1996	37	Tree	-44.8	-71.6	770	0	80	Mar.	No	Yes
Sun et al.	20		47.5	0.5	004	0	20	May to	Vaa	Na
2021 Sup at al	38	Crop (Pea)	47.5	8.5	994	0	20	JUI.	Yes	NO
Sun et al.	20	(Porlov)	47.5	9 5	004	0	60	iviay to	Voc	No
2021 Wang at al	30	(Balley)	47.5	0.0	994	0	00	Jui. Movito	165	INU
2010	39	(Corn)	34.9	110.75	590	0	50	Oct.	Yes	Yes
Wang et al.		Crop				Ţ		May to		
2010	39	(Cotton)	34.9	110.75	590	0	90	Oct.	Yes	Yes
Weltzin et								Apr.,		
al. 1997	40	Grass	31.5	-110.3	602	0	35	Sep.	Yes	No
Weltzin et								Apr.,		
al. 1997	40	Tree	31.5	-110.3	602	0	90	Sep.	No	Yes
Williams et								May to		
al. 2000	41	Tree	34	-110	430	0	50	Sep.	No	Yes
Williams et	44	T		440	000	0	50	May to	NI-	Maa
al. 2000	41	Tree	39	-110	390	0	50	Sep.	NO	Yes
williams et	41	Troo	20	110	200	50	100	May to	No	No
Wu ot al	41	Tiee	39	-110	390	50	100	Sep. Mar. to	INU	INU
2014	42	Shrub	44 25	87 75	160	0	300	Oct	No	No
Wuetal		Onido	44.20	07.70	100	Ŭ	000	Mar to	110	110
2014	42	Shrub	44.25	87.75	160	0	60	Oct.	Yes	No
Wu et al.		Crop						Jun. to		-
2016	43	(Corn)	37.8	102.9	164	0	80	Aug.	Yes	Yes
Yang et al.		Crop						Apr. to		
2015	44	(Corn)	38.5	100.33	129	0	10	Sep.	No	No
Zhu et al.								May, Jul.,		
2011	45	Shrub	38.5	103	111	0	120	Sep.	No	Yes

References

- Asbjornsen, H., Mora, G., Helmers, M.J., 2007. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S. Agric. Ecosyst. Environ. 121, 343–356.
- Asbjornsen, H., Shepherd, G., Helmers, M., Mora, G., 2008. Seasonal patterns in depth of water uptake under contrasting annual and perennial systems in the Corn Belt Region of the Midwestern U.S. Plant Soil 308, 69–92. https://doi.org/10.1007/s11104-008-9607-3
- Bachmann, D., Gockele, A., Ravenek, J.M., Roscher, C., Strecker, T., Weigelt, A., Buchmann, N., 2015. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands. PLoS One 10, 1–14. https://doi.org/10.1371/journal.pone.0116367
- Brinkmann, N., Eugster, W., Buchmann, N., Kahmen, A., 2019. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 21, 71–81. https://doi.org/10.1111/plb.12907
- Brooks, J.R., Meinzer, F.C., Coulombe, R., Gregg, J., 2002. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol. 22, 1107–1117. https://doi.org/10.1093/treephys/22.15-16.1107
- Case, M.F., Nippert, J.B., Holdo, R.M., Staver, A.C., 2020. Root-niche separation

between savanna trees and grasses is greater on sandier soils. J. Ecol. 108, 2298–2308. https://doi.org/10.1111/1365-2745.13475

Chimner, R.A., Cooper, D.J., 2004. Using stable oxygen isotopes to quantify the water source used for transpiration by native shrubs in the San Luis Valley, Colorado U.S.A. Plant Soil 260, 225–236.

https://doi.org/10.1023/B:PLSO.0000030190.70085.e9

- Clément, C., Sleiderink, J., Svane, S.F., Smith, A.G., Diamantopoulos, E., Desbrøll, D.B., Thorup-Kristensen, K., 2022. Comparing the deep root growth and water uptake of intermediate wheatgrass (Kernza®) to alfalfa. Plant Soil 472, 369–390. https://doi.org/10.1007/s11104-021-05248-6
- Dai, Y., Zheng, X.-J., Tang, L.-S., Li, Y., 2015. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant Soil 389, 73–87. https://doi.org/10.1007/s
- Eggemeyer, K.D., Awada, T., Harvey, F.E., Wedin, D.A., Zhou, X., Zanner, C.W., 2009. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiol. 29, 157–169. https://doi.org/10.1093/treephys/tpn019
- Ellsworth, P.Z., Sternberg, L.S.L., 2015. Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution. Ecohydrology 8, 538–551. https://doi.org/10.1002/eco.1523
- Goldsmith, G.R., Muñoz-Villers, L.E., Holwerda, F., Mcdonnell, J.J., Asbjornsen, H., Dawson, T.E., 2012. Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology 5, 779–790. https://doi.org/10.1002/eco.268
- Hahn, M., Jacobs, S.R., Breuer, L., Rufino, M.C., Windhorst, D., 2021. Variability in tree water uptake determined with stable water isotopes in an African tropical montane forest. Ecohydrology 14, 1–14. https://doi.org/10.1002/eco.2278
- Hartsough, P., Poulson, S.R., Biondi, F., Estrada, I.G., 2008. Stable isotope characterization of the ecohydrological cycle at a tropical treeline site. Arctic, Antarct. Alp. Res. 40, 343–354. https://doi.org/10.1657/1523-0430(06-117)[HARTSOUGH]2.0.CO;2
- Hoekstra, N.J., Finn, J.A., Hofer, D., Lüscher, A., 2014. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallowrooting grassland species as determined by δ18O natural abundance. Biogeosciences 11, 4493–4506. https://doi.org/10.5194/bg-11-4493-2014
- Jackson, P.C., Cavelier, J., Goldstein, G., Meinzer, F.C., Holbrook, N.M., 1995. Partitioning of water resources among plants of a lowland tropical forest. Oecologia 101, 197–203. https://doi.org/10.1007/BF00317284
- Jackson, P.Č., Meinzer, F.C., Bustamante, M., Goldstein, G., Franco, A., Rundel, P.W., Caldas, L., Igler, E., Causin, F., 1999. Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem. Tree Physiol. 19, 717–724. https://doi.org/10.1093/treephys/19.11.717
- Kulmatiski, A., Beard, K.H., 2013. Root niche partitioning among grasses,

saplings, and trees measured using a tracer technique. Oecologia 171, 25–37. https://doi.org/10.1007/s00442-012-2390-0

- Kulmatiski, A., Beard, K.H., Verweij, R.J.T., February, E.C., 2010. A depthcontrolled tracer technique measures vertical, horizontal and temporal patterns of water use by trees and grasses in a subtropical savanna. New Phytol. 188, 199–209. https://doi.org/10.1111/j.1469-8137.2010.03338.x
- Le Roux, X., Bariac, T., Mariotti, A., 1995. Spatial Partitioning of the Soil Water Resource between Grass and Shrub Components in a West African Humid Savanna. Oecologia 104, 147–155.
- Li, S.G., Tsujimura, M., Sugimoto, A., Sasaki, L., Yamanaka, T., Davaa, G., Oyunbaatar, D., Sugita, M., 2006. Seasonal variation in oxygen isotope composition of waters for a montane larch forest in Mongolia. Trees - Struct. Funct. 20, 122–130. https://doi.org/10.1007/s00468-005-0019-1
- Liu, Wenjie, Liu, Wenyao, Li, P., Duan, W., Li, H., 2010. Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China. Agric. For. Meteorol. 150, 380–388. https://doi.org/10.1016/j.agrformet.2009.12.006
- Liu, Y., Xu, Z., Duffy, R., Chen, W., An, S., Liu, S., Liu, F., 2011. Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes. Eur. J. Soil Biol. 47, 380–386. https://doi.org/10.1016/j.ejsobi.2011.07.012
- Liu, Y., Zhang, X., Zhao, S., Ma, H., Qi, G., Guo, S., 2019. The depth of water taken up by Walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests 10. https://doi.org/10.3390/f10020121
- Ma, Y., Song, X., 2018. Seasonal variations in water uptake patterns of winter wheat under different irrigation and fertilization treatments. Water (Switzerland) 10. https://doi.org/10.3390/w10111633
- Meinzer, F.C., Luis, J., Goldstein, G., Holbrook, N.M., Cavelier, J., Wright, S.J., 1999. Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 293–301. https://doi.org/10.1007/s004420050931
- Moreira, M.Z., Sternberg, L. da S.L., Nepstad, D.C., 2000. Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: An isotopic approach. Plant Soil 222, 95–107. https://doi.org/10.1023/a:1004773217189
- Muñoz-Villers, L.E., Geris, J., Alvarado-Barrientos, M.S., Holwerda, F., Dawson, T., 2020. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrol. Earth Syst. Sci. 24, 1649–1668. https://doi.org/10.5194/hess-24-1649-2020
- Nippert, J.B., Knapp, A.K., 2007. Linking water uptake with rooting patterns in grassland species. Oecologia 153, 261–272. https://doi.org/10.1007/s00442-007-0745-8
- Ogle, K., Wolpert, R.L., Reynolds, J.F., 2004. Reconstructing plant root area and water uptake profiles. Ecology 85, 1967–1978. https://doi.org/10.1890/03-0346
- Ohte, N., Koba, K., Yoshikawa, K., Sugimoto, A., Matsuo, N., Kabeya, N., Wang,

L., 2003. Water Utilization of Natural and Planted Trees in the Semiarid Desert of Inner Mongolia , China Published by : Ecological Society of America WATER UTILIZATION OF NATURAL AND PLANTED TREES IN THE SEMIARID DESERT OF INNER MONGOLIA , CHINA. Ecol. Appl. 13, 337–351.

- Penna, D., Zanotelli, D., Scandellari, F., Aguzzoni, A., Engel, M., Tagliavini, M., Comiti, F., 2021. Water uptake of apple trees in the Alps: Where does irrigation water go? Ecohydrology 14, 1–16. https://doi.org/10.1002/eco.2306
- Plamboeck, A.H., Grip, H., Nygren, U., 1999. A hydrological tracer study of water uptake depth in a Scots pine forest under two different water regimes. Oecologia 119, 452–460. https://doi.org/10.1007/s004420050807
- Prechsl, U.E., Burri, S., Gilgen, A.K., Kahmen, A., Buchmann, N., 2015. No shift to a deeper water uptake depth in response to summer drought of two lowland and sub-alpine C3-grasslands in Switzerland. Oecologia 177, 97– 111. https://doi.org/10.1007/s00442-014-3092-6
- Ratajczak, Z., Nippert, J.B., Hartman, J.C., Ocheltree, T.W., 2011. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere 2. https://doi.org/10.1890/ES11-00212.1
- Retzlaff, W.A., Blaisdell, G.K., Topa, M.A., 2001. Seasonal changes in water source of four families of loblolly pine (Pinus taeda L.). Trees - Struct. Funct. 15, 154–162. https://doi.org/10.1007/s004680100087
- Schulze, E.D., Mooney, H.A., Sala, O.E., Jobbagy, E., Buchmann, N., Bauer, G., Canadell, J., Jackson, R.B., Loreti, J., Oesterheld, M., Ehleringer, J.R., 1996. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511. https://doi.org/10.1007/BF00333727
- Sun, Q., Klaus, V.H., Wittwer, R., Liu, Y., Heijden, M.G.A. van der, Gilgen, A.K., Buchmann, N., 2021. Water uptake patterns of pea and barley responded to drought but not to cropping systems. Biogeosciences Discuss. 1–37. https://doi.org/10.5194/bg-2021-217
- Wang, P., Song, X., Han, D., Zhang, Y., Liu, X., 2010. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotope: A case in Shanxi Province, China. Agric. Water Manag. 97, 475–482. https://doi.org/10.1080/10643389.2012.728825
- Weltzin, J.F., McPherson, G.R., 1997. Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA. Oecologia 112, 156–164. https://doi.org/10.1007/s004420050295
- Williams, D.G., Ehleringer, J.R., 2000. Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecol. Monogr. 70, 517–537. https://doi.org/10.1890/0012-9615(2000)070[0517:IAIVFS]2.0.CO;2
- Wu, Y., Du, T., Li, F., Li, S., Ding, R., Tong, L., 2016. Quantification of maize water uptake from different layers and root zones under alternate furrow irrigation using stable oxygen isotope. Agric. Water Manag. 168, 35–44. https://doi.org/10.1016/j.agwat.2016.01.013
- Wu, Y., Zhou, H., Zheng, X.J., Li, Y., Tang, L.S., 2014. Seasonal changes in the

water use strategies of three co-occurring desert shrubs. Hydrol. Process. 28, 6265–6275. https://doi.org/10.1002/hyp.10114

- Yang, B., Wen, X., Sun, X., 2015. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin. Sci. Rep. 5, 1–12. https://doi.org/10.1038/srep15206
- Zhu, Y., Jia, Z., Yang, X., 2011. Resource-dependent water use strategy of two desert shrubs on interdune, Northwest China. J. Food, Agric. Environ. 9, 832–835.