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Abstract 31 
A frequently expressed viewpoint across the Earth science community is that global soil 32 
moisture estimates from satellite L-band (1.4 GHz) measurements represent moisture 33 
only in a shallow surface layer (0-5 cm) and consequently are of limited value for 34 
studying global terrestrial ecosystems because plants use water from deeper rootzones. 35 
Using this argumentation, many observation-based land surface studies avoid satellite-36 
observed soil moisture. Here, based on peer-reviewed literature across several fields, 37 
we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil 38 
emission depth considerations and statistical considerations of vertically correlated soil 39 
moisture information together indicate that L-band measurements carry information 40 
about soil moisture extending below the commonly referenced 5 cm in many conditions. 41 
However, spatial variations of effective depths of representation remain uncertain. 42 
Second, in reviewing isotopic tracer field studies of plant water uptake, we find a 43 
prevalence of vegetation that primarily draws moisture from these upper soil layers. This 44 
is especially true for grasslands and croplands covering more than a third of global 45 



vegetated surfaces. Even some deeper-rooted species (i.e., shrubs and trees) 46 
preferentially or seasonally draw water from the upper soil layers. Therefore, L-band 47 
satellite soil moisture estimates are more relevant to global vegetation water uptake 48 
than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil 49 
evaporation). Our commentary encourages the application of satellite soil moisture 50 
across a broader range of terrestrial hydrosphere and biosphere studies while urging 51 
more rigorous estimates of its effective depth of representation. 52 
 53 
1. Introduction 54 
Global soil moisture retrievals from microwave satellites are now widely used across the 55 
Earth science community to study various topics related to the global climate system 56 
and its water, carbon, and energy cycles. While soil moisture in the unsaturated zone 57 
stores only 0.005% of Earth’s water by volume (Bras, 1990), its position at the interface 58 
of the land and the atmosphere is of high value for understanding these global cycles 59 
(Koster and Suarez, 2001; McColl et al., 2017). As such, satellite-based soil moisture 60 
estimates are increasingly being used in studies of land-atmosphere interactions, 61 
numerical weather prediction, plant function and stress, and land surface response to 62 
climate change (Akbar et al., 2020; Dong et al., 2020; Feldman et al., 2022, 2018b; 63 
Konings et al., 2017; Purdy et al., 2018; Santanello et al., 2019; Short Gianotti et al., 64 
2020; Taylor et al., 2012; Tuttle and Salvucci, 2016). 65 
 66 
However, there is now a frequently expressed viewpoint that microwave satellite soil 67 
moisture products are of limited use for studying vegetated landscapes because they 68 
sense only a superficial fraction of the rootzone. Across global studies using satellite-69 
derived soil moisture, there is widespread, explicit mention of this limitation (Bassiouni 70 
et al., 2020; Denissen et al., 2020; Ford et al., 2014; Peng et al., 2021, 2017; Qiu et al., 71 
2014; Sehgal et al., 2021). Some studies use this limitation as the basis for using 72 
modeled rootzone soil moisture datasets instead of satellite observations for land 73 
surface studies (Farahmand et al., 2021; Koster et al., 2019; Liu et al., 2020) or 74 
alternatively estimating a rootzone soil moisture (Calvet and Noilhan, 2000; Ford et al., 75 
2014; Li et al., 2010; Scott et al., 2003). Others are less explicit, but may have similar 76 
reasoning for avoiding use of satellite soil moisture and favoring precipitation-based 77 
wetness indices or rootzone moisture products from model reanalysis (Li et al., 2021; 78 
Mueller and Seneviratne, 2012; Zhou et al., 2021).  79 
 80 
A major contributor to this viewpoint is the history of the microwave remote sensing 81 
community generally offering a simplified view of a single, shallow observing depth of 82 
satellite-based retrievals. Modeling and field studies have characterized microwave 83 
emission profiles that are a function mainly of soil moisture (Shen et al., 2021; Tsang et 84 
al., 1975; Ulaby and Long, 2014), but the emission profiles are commonly simplified to 85 
single, conservative support scale values (see, for example, Wilheit, 1978). Reflecting 86 
this, the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity 87 
(SMOS) L-band satellite missions are often described as producing estimates of soil 88 
moisture within the top 5 cm of soil (Entekhabi et al., 2010; Kerr et al., 2010). Similarly, 89 
the Advanced Microwave Scanning Radiometer (AMSR) satellite series and the 90 
Advanced Scatterometer (ASCAT) (at higher C- and X-band frequencies) are thought to 91 



observe only the top 1-2 cm of soil (Njoku et al., 2003). Other contributors to this 92 
viewpoint include the prevalent use of the top-most in-situ sensors for assessing 93 
satellite soil moisture products (Chan et al., 2016), and a simplified intuition that the 94 
maximum rooting depth defines the relevant water uptake profile (Nippert and Holdo, 95 
2015).  96 
 97 
According to this viewpoint, if roots supply plants from soil layers down to maximum 98 
rooting depths that are meters below the top 5 cm, then L-band satellite soil moisture 99 
estimates have little value for the global study of terrestrial water, carbon, and energy 100 
fluxes, given that these fluxes can rely heavily on plant use of soil moisture (Jasechko et 101 
al., 2013; Katul et al., 2012). If satellite soil moisture retrievals were to hold more 102 
information about the rootzone, they could be considered more desirable than 103 
reanalysis products for some observation-based land-atmosphere and ecological 104 
applications; they are observations independent of model-prescribed linkages with other 105 
land surface variables and provide direct information about plant water use and 106 
evapotranspiration (Dong and Crow, 2019). 107 
 108 
In fact, current evidence from soil moisture vertical coupling studies as well as 109 
microwave emission modeling and field experiments suggests that L-band satellite 110 
retrievals often represent soil moisture below the shallow (0-5 cm) surface soil layer. 111 
Under drier soil conditions, microwave emission models and field measurements show 112 
that microwave emission originates from layers below a depth of 5 cm (Liu et al., 2016; 113 
Lv et al., 2018; Moghaddam et al., 2000; Ulaby and Long, 2014). Under wetter soil 114 
conditions, studies show surface and rootzone moisture dynamics are often 115 
hydraulically connected and correlated despite soil evaporation acting to decouple these 116 
layers (Akbar et al., 2018; Ford et al., 2014; Qiu et al., 2014). This is because rootzone 117 
moisture is driven by surface forcing and has strong spatiotemporal memory resulting in 118 
similar soil moisture dynamics in the upper surface and deeper soil layers (though these 119 
conditions are reduced in dry climates with strong seasonal drying and consequent 120 
decoupling of upper and deeper soil layers) (Albergel et al., 2008; Crow et al., 2017; 121 
McColl et al., 2017). As a result, the effective vertical depth of representation, or support 122 
scale, of L-band satellite soil moisture retrievals have been shown to be deeper than 5 123 
cm for wetter, coupled soil conditions (Akbar et al., 2018; Short Gianotti et al., 2019).  124 
 125 
Furthermore, part of the argument to reject use of satellite soil moisture is an emphasis 126 
on the fact that maximum rooting depths can extend plant water uptake meters into the 127 
soil (Nepstad et al., 1994). However, this notion neglects the fact that active water 128 
uptake is rarely uniform across the rooting profile (Nippert and Holdo, 2015). 129 
Specifically, global observations and optimally modeled rooting profiles indicate that a 130 
large proportion of plants preferentially draw water from the upper soil layers to take 131 
advantage of these layers’ pulse water and nutrient availability (Collins and Bras, 2007; 132 
Jackson et al., 1996; Nippert and Holdo, 2015). As such, not only soil evaporation, but 133 
also root water uptake can conceivably influence these upper soil layer moisture 134 
dynamics. Even for deeper-rooted vegetation, high sensitivity to upper-layer soil 135 
moisture is also found based on findings of decreasing rooting biomass and root 136 
hydraulic conductance with depth (Nippert et al., 2012; Werner et al., 2021). Therefore, 137 



to learn about nominal plant water use and evapotranspiration, rootzone soil moisture 138 
products may not always need to integrate moisture dynamics down to the maximum 139 
rooting depth. 140 
 141 
Here, we ask: do L-band microwave remote sensing products only represent soil 142 
moisture in the top 0-5 cm? Can L-band satellite soil moisture retrievals be useful for 143 
studying plant water use and, if so, under what conditions? In this commentary, we 144 
provide a novel synthesis of results from microwave remote sensing, soil hydrology, and 145 
plant water isotopic tracer studies to illustrate that satellite soil moisture observations 146 
are more useful than commonly believed for studying global vegetated surfaces. 147 
 148 
2. Satellite Soil Moisture’s Effective Depth of Representation 149 
The true vertical support, or effective depth of representation, of remote sensing-based 150 
soil moisture retrievals is dependent on both (1) the microwave emission properties of 151 
the soil column and (2) the vertical autocorrelation of typical soil moisture profiles and 152 
their dynamics (Njoku and Entekhabi, 1996; Short Gianotti et al., 2019). Both principles 153 
typically result in the remote sensing signal being representative of a soil moisture 154 
profile that decays with depth (e.g., exponential distribution). Therefore, reported single 155 
depth values are length scales, or the depth at which the satellite signal holds a portion 156 
(e.g., 63% for e-folding scales) of soil moisture information from the sensed profile with 157 
some information coming from deeper layers. Furthermore, these principles trade off in 158 
dominance from dry to wet conditions (Fig. 1). Ultimately, we argue here that evidence 159 
for both principles results in effective L-band depths of representation deeper than 5 cm 160 
across many conditions. Additionally, reported depths at a single value (e.g., 5 cm) are 161 
not a limit, but rather length scales describing a profile of soil moisture representation 162 
that continues below the reported value. A more quantitative discussion of satellite soil 163 
moisture depths of representation is provided in Sections 2.1 and 2.2. 164 
 165 
For drier soils, L-band satellites typically directly detect soil moisture in a deeper soil 166 
column because microwave emission originates from deeper soil layers than for wetter 167 
soils (Fig. 1). Specifically, modeling microwave emission from a soil layer that is 168 
assumed to be a homogenous, dielectric medium with uniform moisture and 169 
temperature profiles reveals that soil emission depth increases with aridity and vertically 170 
decays approximately exponentially (Njoku and Entekhabi, 1996; Njoku and Kong, 171 
1977). Therefore, despite drier periods resulting in less coupling between surface and 172 
deeper layer soil moisture (Fig. 2), satellites should directly sample deeper into the soil 173 
column for drier soils, where the emission likely originates partly below a depth of 5 cm 174 
but can be hindered by fine soil texture and large soil scatterers. Microwave emission 175 
depth e-folding scales in Fig. 1 are computed based on a soil emission model (Eq. A1, 176 
which is from Njoku and Entekhabi, (1996)). See Section 2.1 for a more quantitative 177 
discussion. 178 
 179 
For wetter soils, despite shallower soil emission depths from an electromagnetic 180 
perspective, surface soil moisture has a greater hydraulic connectivity with deeper soil 181 
layers (Figs. 1 and 2). This is because soil moisture is a storage variable with strong 182 
spatiotemporal memory (McColl et al., 2017). This memory results in daily soil moisture 183 



variations at a 5 cm depth (the emission depth under wetter conditions) correlating with 184 
deeper soil moisture variations. Such vertical autocorrelation information decays 185 
approximately exponentially with depth (Fig. 1). E-folding vertical correlation length 186 
scales reported in Fig. 1 are global remote sensing-based vertical length scales 187 
estimated using Eq. A2 in Short Gianotti et al., (2019). See Section 2.2 for a more 188 
quantitative discussion. 189 
 190 
Combining these electromagnetic and statistical considerations suggests that, across 191 
soil moisture conditions, L-band satellite soil moisture retrievals effectively carry 192 
information about soil moisture dynamics deeper than 5 cm depending on the 193 
subsurface conditions (Fig. 1). This deeper effective depth of representation results 194 
from electromagnetic and statistical considerations of satellite-based soil moisture 195 
trading off in their dominance of vertical soil representation from dry to wet conditions. In 196 
principle, the combined support scale of the satellite-based soil moisture dynamics is at 197 
least the deeper of the two considerations, and we urge future work to estimate holistic 198 
effective depths of representation across the globe. Deeper layers well below 5 cm are 199 
often still integrated but contribute progressively (i.e., exponentially) less to the effective 200 
satellite soil moisture signal with depth (Figs. 1 and 2). By contrast, reanalysis rootzone 201 
moisture products often assess the uniform, column-averaged soil moisture typically 202 
between 0 and 100 cm and/or discretized portions of this range.  203 
 204 
The modifier “effective” is used to describe the depth of representation here because 205 
both direct and indirect sensing contributes to the estimated depth of representation. In 206 
the case of drier soils, the microwave emission typically originates from layers deeper 207 
than 5 cm (see Section 2.1), which would provide direct observation of the magnitude 208 
and time variations of deeper layer soil moisture. However, in wetter conditions, only the 209 
soil moisture magnitude and variations in the upper soil layers, likely shallower than 5 210 
cm, are directly observed by L-band satellite sensors. Nevertheless, the typically high 211 
hydraulic connectivity between shallow and deeper layers in these wetter conditions at 212 
daily-to-weekly timescales allows indirect observation of the soil moisture magnitude 213 
and variations in the deeper layers. As such, the vertical depth of representation is 214 
indirect and more “effective” when using statistical arguments in wetter conditions.  215 



 216 
Figure 1. Effective depth of representation of microwave satellite soil moisture retrievals 217 
based on consideration of both microwave soil emission physics and vertical hydraulic 218 
connectivity of soil moisture. Satellite effective depths of representation of soil moisture 219 
likely extend deeper than 5 cm across many conditions at L-band. However, effective 220 
depths across space remain uncertain with current evidence discussed in Sections 2.1 221 
and 2.2. Note that single value depths refer to a profile of soil moisture representation; 222 
as examples shown in this diagram, effective depths of representation (red/blue 223 
shading) are e-folding scales determined from modeled microwave soil emission vertical 224 
distributions (red lines) and estimated soil moisture vertical correlation distributions 225 
(blue lines). Under drier conditions, microwave emission theoretically originates directly 226 
from deeper layers, while for wetter conditions, correlation length scale arguments only 227 
provide an effective representation of deeper soil layers. The diagram can scale 228 
depending on the frequency across low frequency microwaves. For equation details, 229 
see Appendix A. The displayed root profile image was adapted with permission from 230 
Nippert and Holdo, (2015). It has a commonly observed vertical structure of decreasing 231 
root biomass with depth. However, note that the length scale of this root density decay 232 
will vary globally.  233 
 234 
2.1 Depths of Representation Under Drier Conditions 235 
Microwave emission depth scales theoretically increase with drying soil (Burke et al., 236 
1979; Ulaby and Long, 2014). However, estimates of emission depths under dry 237 
conditions as a function of soil texture remain uncertain with differences between model 238 
and experimental evidence. Ultimately, based on current evidence, we expect that the 239 
mean emission depth scales under dry soils are deeper than 5 cm under many 240 
conditions, and likely between the shallower experimentally determined values and 241 
deeper model-based values. Furthermore, given that microwave emission is based on 242 



an emission profile (not a uniform profile with a cutoff), some emission will originate 243 
from below the reported length scale values here (see profiles in Fig. 1). 244 
 245 
Under dry soils, microwave emission models produce e-folding depth of representation 246 
scales deeper than 5 cm, with estimates below 30 cm for the driest soils. This result 247 
holds for a wide range of clay fraction values (Fig. 1 shows case of 20% clay fraction), 248 
with soil texture only minimally impacting emission depth (Shen et al., 2021). 249 
Furthermore, emission depth magnitudes from several different emission and dielectric 250 
models tend to agree with that of Eq. A1 (Fluhrer et al., 2022; Lv et al., 2018; Njoku and 251 
Entekhabi, 1996).  252 
 253 
However, these model-based emission depth estimates are likely upper bounds. In 254 
assuming homogenous media without an air-soil boundary, these emission models will 255 
underestimate scattering effects (Zwieback et al., 2015). Specifically, scattering due to 256 
the air-soil boundary and scattering from subsurface features at the scale of the 257 
microwave wavelength within the medium will reduce the emission depth (Newton 258 
1982). Formation of biocrusts, prevalent in global drylands (Phillips et al., 2022), and 259 
near surface debris may also create scattering effects that will limit emission depths. 260 
These models also assume uniform soil moisture and temperature with depth. However, 261 
since soil commonly dries at the surface first, emission will only originate from the dry 262 
upper layers and little from below the transition to wet layers (Shen et al., 2021).  263 
 264 
Experimental studies suggest emission from deeper than 5 cm in dry conditions, but 265 
results are variable without well-known dependencies. Some studies find emission 266 
depths of 5-10 cm under drier soils, and potentially closer to 5 cm for soil with high clay 267 
content (Lv et al., 2018; Owe and Van De Griend, 1998; Rao et al., 1988). Another finds 268 
deeper soil moisture representation of near 100 cm (Moghaddam et al., 2000), though 269 
this may be due to reduced scattering in more uniform sand (Mätzler, 1998). Others 270 
suggest these emission depths may still be within the top 5 cm for dry soils similarly to 271 
wetter soils (Escorihuela et al., 2010; Newton et al., 1982).  272 
 273 
However, there are confounding factors in these experimental studies that likely cause 274 
underestimations of dry soil sensing depths. Many field studies that suggest emission is 275 
from shallower than 5 cm across conditions draw conclusions using a wide range of soil 276 
moisture values (Escorihuela et al., 2010; Owe and Van De Griend, 1998; Shen et al., 277 
2021). These procedures will likely underestimate the dry soil emission depth by 278 
including wet soils conditions. Additionally, some studies draw conclusions about 279 
shallow emission depths without measuring soil moisture values below their depth 280 
estimate and/or without explicitly showing that the soil moisture values below their depth 281 
estimate contribute less to the signal (Escorihuela et al., 2010; Owe and Van De Griend, 282 
1998). We argue that more targeted microwave experiments are needed to better 283 
estimate the dry soil emission depths globally and their dependencies (see 284 
recommendations in Section 5). 285 
 286 
2.2 Effective Depths of Representation Under Wetter Conditions 287 



Under conditions ranging from moderately wet to very wet conditions, microwave field 288 
experiments tend to find a 5 cm emission depth as measured by L-band radiometers, 289 
suggesting that L-band satellites like SMAP and SMOS directly sense the first 5 cm of 290 
soil with a weaker contribution of emission from deeper than 5 cm (Jackson et al., 1984; 291 
Njoku and O’Neill, 1982; Wang, 1987). Some studies argue that L-band microwave 292 
emission may only observe soil moisture in the first 2 cm of the soil (Escorihuela et al., 293 
2010; Schmugge, 1983; Wilheit, 1978). However, these findings of shallower emission 294 
may be under scenarios of high air-soil interface roughness (Newton et al., 1982). 295 
These results may also be uncertain due to interpretation of small correlation 296 
differences between soil moisture and brightness temperature in different soil layers. 297 
 298 
Nevertheless, soil moisture in the top few centimeters is typically well-correlated with 299 
deeper soil layer moisture. Across wetter environments, in-situ soil moisture sensors 300 
show high soil moisture anomaly correlations (>0.8) between 5 cm and depths of 10 cm 301 
and 20 cm (Fig. 2). The correlation increases with higher mean soil moisture (Fig. 2E) 302 
are consistent with the interpretation that the partially saturated soil hydraulic 303 
conductivity increases with moisture content and allows redistribution of soil moisture 304 
across the profile under matric and elevation head gradients. Consideration of lagged 305 
correlations does not change the correlations appreciably, meaning much of the 306 
subsurface coupling can be accounted for within daily dynamics. Using this concept, L-307 
band satellite soil moisture retrievals have been previously used to globally estimate 308 
effective depths of representation, which tend to be deeper than 5 cm across wetter 309 
conditions, but only rarely more than 30 cm (Akbar et al., 2018; Short Gianotti et al., 310 
2019). For deeper layers, these correlations can greatly decrease and even show 311 
anticorrelations between anomalies in shallower and deeper soil layers (Fig. 2). More 312 
detailed study is needed to quantify effective length scales and how they vary with soil 313 
hydraulic conditions. 314 
 315 
The vertically correlated nature of soil moisture under wetter conditions has emerged in 316 
previous work. Surface soil moisture has been shown to have similar information 317 
content as deeper layer soil moisture in explaining evapotranspiration fluxes and 318 
moisture thresholds between evaporative regimes (Dong et al., 2022; Qiu et al., 2016). 319 
Experimental microwave L-band field studies have found emission depths deeper than 320 
5 cm under wetter conditions, but this may have been due to soil moisture being 321 
correlated with depth (Macelloni et al., 2003; Pampaloni et al., 1990). Finally, L-band 322 
satellite soil moisture was useful as a direct representation of rootzone conditions 323 
deeper than 5 cm when modeling ecosystem carbon fluxes (Zhang et al., 2022).  324 
 325 
C- and X-band (6.9 GHz and 10.7 GHz) depths of representation are shallower and 326 
potentially have less utility for our arguments (Owe and Van De Griend, 1998; Wilheit, 327 
1978). Namely, these wavelengths are about 5- and 8-times smaller than L-band, 328 
respectively, which in principle result in 5- and 8-times shallower soil emission depths 329 
(Eq. A1) across moisture and texture conditions. However, similar vertical soil moisture 330 
correlation arguments can be applied to these higher C- and X-band frequencies under 331 
wetter conditions. We encourage the analysis with Eq. A2 in the Short Gianotti et al. 332 



(2019) study to be repeated with C- and X-band radiometer observations to estimate 333 
their correlation length scales.  334 
 335 

 336 
Figure 2. Vertical correlations from in-situ USCRN measurements support that soil 337 
moisture in the upper 5 cm layers holds information about variations in rootzone soil 338 
layers under wetter soil moisture conditions. Soil moisture daily anomaly correlations 339 
between 5 cm sensor measurement depth and soil depths of (A) 10 cm, (B) 20 cm, (C) 340 
50 cm, and (D) 100 cm using U.S. Climate Reference Network (USCRN) soil moisture 341 
(Bell et al., 2013). (E) Spatial distributions of anomaly correlations from (A) to (D) panels 342 
with USCRN sites binned as a function of the sites’ mean annual soil moisture.  343 
 344 
3. Relevance of Satellite Soil Moisture Retrievals to Plant Water Uptake  345 



A frequently expressed argument when discouraging the use of satellite soil moisture is 346 
that rootzones are (qualitatively) “deep,” which argues against using an upper rootzone 347 
soil moisture dataset to study vegetated landscapes. Indeed, maximum rooting depths 348 
often extend to 1-2-m and, at times, tens of meters below the surface depending on 349 
climate, edaphic conditions, and topography (Fan et al., 2017; Nepstad et al., 1994;  350 
Schenk and Jackson, 2002; Tumber‐Dávila et al., 2022). Existence of deep roots 351 
indicates adaptation to plant water stress, where access to deeper, less variable water 352 
sources allows plants to continue transpiring to survive under seasonal or severe water 353 
limitation (Jiang et al., 2020; Stocker et al., 2021; Tumber-Dávila and Malhotra, 2020). 354 
However, in the context of nominal plant water uptake, such a perspective can result in 355 
over-emphasis of the maximum rooting depth and neglect of the nature of typical rooting 356 
profiles when discouraging the use of satellite soil moisture. Specifically, while there are 357 
indeed many cases of deep root water use, global rooting profiles are often 358 
concentrated in the upper soil layers and decrease in root density with depth (Jackson 359 
et al., 1996). Some estimates indicate that most species (potentially as high as 90%), 360 
and especially herbaceous plants, concentrate the majority of their roots in depths 361 
shallower than 30 cm (Schenk and Jackson, 2002).  362 
 363 
Due to root suberization and woody root development that prevents root water uptake, 364 
the rooting distribution does not necessarily match the actual vertical profile of root 365 
water uptake (Kramer and Boyer, 1995). Instead, isotopic tracers can be used to 366 
estimate the true range of primary water uptake, commonly called the functional rooting 367 
profile (Dawson and Pate, 1996; Ehleringer and Dawson, 1992). Within the limits 368 
imposed by isotopic mixing model uncertainties (Case et al., 2020; Ogle et al., 2004), 369 
isotopic tracer methods can determine water uptake profiles and/or ranges more 370 
relevant to the water cycle than knowledge of the rooting profile alone. 371 
 372 
Therefore, instead of rooting profile information, we have collated isotopic tracer studies 373 
that determine the vertical range of roots contributing the most to xylem water within 374 
plants (Fig. 3). Our main goal was to assess whether there are widespread cases of 375 
plants using soil moisture that may be relevant to L-band satellite representation of 376 
upper layer soil moisture. Values displayed in Fig. 3 reflect the primary zones of water 377 
uptake over most of the year indicated by each reviewed study. In our web search of 378 
peer-reviewed literature, our keywords included “stable”, “isotope,” “tracer,” “plant,” 379 
“root,” “water uptake,” and “soil.” We only sampled studies that (a) explicitly stated or 380 
displayed the primary depths of water uptake (avoiding subjective judgment of results), 381 
(b) assessed naturally occurring plants under nominal conditions (avoiding experimental 382 
manipulation, extreme stress, and laboratory experiments), and (c) evaluated plant 383 
species with an unobstructed rootzone (avoiding riparian, coastal, and shallow bedrock 384 
environments). Our search resulted in 45 references that met our criteria (Fig. 3 and 385 
Table S1).  386 
 387 
We find that grass and crop species (primarily herbaceous) across global climates 388 
typically extract water from the upper soil layers (shallower than 25 or 30 cm) over most 389 
of the year, with preferential uptake of water nearer to the surface (Figs. 3A and 3B). 390 
70% of studied grass species typically use water in the upper 30 cm of soil. 65% of 391 



grass studies find increased proportional uptake in the top-most soil layers, with many 392 
explicitly reporting use of water at 0-5 cm depths (Fig. 3A). While 43% of studied crop 393 
species use water mainly shallower than 25 cm, all sampled crop species preferentially 394 
draw water from the upper soil layers with decreasing water use with depth (Fig. 3B). All 395 
crop studies that found water use extending deeper than 50 cm also found 396 
proportionally higher water use in the upper soil layers. 88% of these same studies also 397 
found the primary plant water uptake zone transitioned at least temporarily to the upper 398 
soil layers (see diamond symbols in Fig. 3B).  399 
  400 
Shrub and tree species show a larger vertical range of water uptake, with water uptake 401 
commonly extending to well below 50 cm (Figs. 3C and 3D) often related to root-niche 402 
separation under competition with grasses (Case et al., 2020). However, even in these 403 
deeper water uptake cases, 89% of shrub and 67% of tree isotopic studies found either 404 
proportionally higher water uptake from the upper soil layers or the primary water use 405 
zone transitioned temporarily to the upper soil layers. Absence of triangle and diamond 406 
symbols indicate that the study did not mention either phenomenon, not that the 407 
phenomenon does not exist. Therefore, these percentages that indicate preferential or 408 
temporary uptake of upper soil layer moisture are lower bounds. 409 
 410 
We acknowledge potential biases in our search. For example, a greater proportion of 411 
studies in the midlatitudes arises due to abundant field research facilities in Asia, 412 
Europe, and North America as well as due to a lack of field measurements in the tropics 413 
(Schimel et al., 2015). More studies also take place in semi-arid and sub-humid 414 
environments because of their higher proportion of global land cover. While our search 415 
yielded few tropical forest studies, we expect these regions may have deeper functional 416 
rooting profiles similarly to those found in Fig. 3D (Ichii et al., 2007). However, we argue 417 
that this search provided a representative distribution of species across grass, crop, 418 
shrub, and tree categories and across global moisture availability gradients.  419 
 420 
Though roots and consequent root water uptake profiles can extend below 30 cm, likely 421 
beyond the profiles of L-band satellite soil moisture representation (especially for shrubs 422 
and trees), our analysis shows that shallow root water uptake is widespread (Figure 3). 423 
Furthermore, even in the presence of deep roots, this analysis shows that shallow 424 
preferential soil water uptake and deeper roots can exist concurrently – the existence of 425 
a deep maximum rooting depth does not always imply low plant utilization of shallow 426 
soil moisture. This claim is supported by previous estimates that root water use from 427 
deeper layers may be smaller, or less than 10% of annual plant water uptake 428 
(McCormick et al., 2021; Miguez-Macho and Fan, 2021). This lower contribution of 429 
water uptake from the deeper layers may be, in part, because there are hydraulic 430 
limitations in transporting water over long vertical distances from deeper roots, with high 431 
radial and axial resistances in roots that can increase with depth (Jones, 2014; 432 
Landsberg and Fowkes, 1978; Nippert et al., 2012). As such, deeper roots may be more 433 
important for survival under seasonal or severe water limitation rather than nominal 434 
uptake (Stocker et al., 2021; Wang-Erlandsson et al., 2016). Use of deeper roots is 435 
limited in many water-limited ecosystems (Nippert and Holdo, 2015), where rainfall 436 
infiltration is often shallow (<30 cm) and plants must rely on this more frequently wetted 437 



shallow zone for survival (Scott and Biederman, 2019). Additionally, essential limiting 438 
nutrients are typically highly concentrated in the upper soil layers due to decaying 439 
organic matter, which may prevent sole plant reliance on deeper moisture sources 440 
(Jobbágy and Jackson, 2001). This motivates strategies like hydraulic redistribution 441 
where plants actively move water via the roots to upper soil layers for easier uptake of 442 
nutrients under dry conditions (Cardon et al., 2013). As such, knowledge of maximum 443 
rooting depths should be used with caution when evaluating nominal plant water uptake 444 
throughout the year in the context of global soil moisture estimates (Nippert and Holdo, 445 
2015).  446 
 447 
This evidence together with Section 2 ultimately indicates that plant water use of upper 448 
soil layers is likely prevalent within a satellite pixel in some biomes, especially those 449 
with herbaceous vegetation, and highlights the utility of L-band satellite soil moisture for 450 
studying water control of many vegetated surfaces. We stress that we are not making 451 
wider claims about global dominance of shallow plant uptake strategies, but rather that 452 
deep root water use may be overemphasized when discussing limitations of using 453 
satellite soil moisture to study the terrestrial biosphere.  454 
 455 

 456 
Figure 3. Primary root water uptake profiles (or functional rooting profile) based on field 457 
stable isotope tracer studies for species binned in (A) grass, (B) crop, (C) shrub, and (D) 458 
tree categories based on Table S1 and dataset in Feldman et al., (2023). The triangle 459 



symbol means the study found preferential water uptake nearer to the surface and 460 
decreasing uptake with depth. The diamond symbol means that while the study found 461 
uptake to 50 cm soil depths or below, root water uptake switched primarily to the upper 462 
soil layers (<~30cm) temporarily during the year. Placement of the diamond symbol at 463 
20 cm is arbitrary. Thickness of the line indicates number of species studied in the given 464 
reference. The number above the plotlines is the reference index (see Table S1). The 465 
line colors refer to the mean annual SMAP soil moisture shown in the colorbar for each 466 
field site using the nearest 36 km pixel. (E) Locations of the isotopic field 467 
measurements.  468 
 469 
4. Effective Depth of Representation Limitations  470 
Several soil and vegetation processes can limit L-band retrievals effectively capturing 471 
soil moisture dynamics from deeper than 5 cm. We discuss several limitations here and 472 
comment on whether our arguments are confounded by or robust to these processes.  473 
 474 
Regarding microwave soil emission depth arguments in dry conditions, large subsurface 475 
scatterers, like woody roots and rock inclusions that are larger than the wavelength of L-476 
band microwaves (~20 cm) can reduce the depth of soil microwave emission (Roth and 477 
Elachi, 1975; Xiong et al., 2017). This is especially the case if belowground rooting 478 
density and rock inclusions are present across the satellite footprint. Deeper soil 479 
emission may occur in many drier regions (Section 2.1), which climatically tend to have 480 
lower woody vegetation density and thus may be less consistently influenced by larger 481 
roots (Good and Caylor, 2011). However, the existence of large abiotic soil scatterers 482 
across a satellite footprint can reduce the depth of microwave soil emission, in which 483 
case modeled dry soil emission depth values are an overestimate. The global 484 
distribution of soil scatterer density is uncertain and it is ultimately unclear how soil 485 
texture heterogeneity at small spatial scales translates to uncertainties for our larger 486 
scale arguments (Baroni et al., 2017; Or, 2020).  487 
 488 
Regarding vertical correlation arguments in wet conditions, soil conditions that promote 489 
heterogeneous vertical moisture movement rates in the subsurface can decouple 490 
surface and deeper soil layers. This includes bare soil evaporation (i.e., the formation of 491 
an evaporation front). A soil evaporation front forms with differential bare soil drying of 492 
upper soil layers, which can act to decouple the near surface soil moisture dynamics 493 
from the rootzone especially over long seasonal drydowns in seasonally dry 494 
environments (Scott and Biederman, 2019). Nevertheless, macropores (Vereecken et 495 
al., 2022) and processes like hydraulic redistribution of moisture from wet to dry soils by 496 
roots of some plant species (Katul and Siqueira, 2010; Nadezhdina et al., 2010) could 497 
act to further couple the surface and deeper soil layers. Macropores are large soil pore 498 
spaces that make up less than 1% of soil volume, but can dominate gravity drainage 499 
rates in the soil under wet conditions (Fatichi et al., 2020; Hirmas et al., 2018; Kramer 500 
and Boyer, 1995). Ultimately, our arguments that shallow soil moisture under wet 501 
conditions captures moisture dynamics of deeper than 5 cm due to vertical correlation 502 
are based on satellite and in-situ observations, and thus they already integrate these 503 
soil and vegetation processes and their limitations (Figs. 1 and 2). 504 
 505 



Soil evaporation influences soil moisture at depths between 0 and 80 cm depending on 506 
soil texture (Aminzadeh and Or, 2014; Lehmann et al., 2008; Or and Lehmann, 2019). 507 
As such, near-surface soil moisture dynamics will have a signature of soil evaporation 508 
physics (Haghighi et al., 2013; Salvucci, 1997). However, the existence of soil 509 
evaporation in the upper soil layers does not preclude root water uptake from being 510 
sensitive to upper rootzone soil moisture, including 0-5 cm. Our analysis indicates that 511 
many plant species prefer moisture in upper soil layers (Fig. 3), with many isotopic 512 
studies finding dominant uptake from 0-5 cm (Asbjornsen et al., 2008; Case et al., 2020; 513 
Kulmatiski et al., 2010; Kulmatiski and Beard, 2013; Le Roux et al., 1995; Ogle et al., 514 
2004; Prechsl et al., 2015). As such, soil moisture in these upper layers is indeed 515 
influenced by root water uptake along with bare soil evaporation in many cases. It is 516 
also not likely that either bare soil or root water uptake entirely dominate globally given 517 
estimates of transpiration and evaporation partitioning (Fatichi and Pappas, 2017; Good 518 
et al., 2015; Jasechko et al., 2013). Remotely sensed soil moisture dynamics are thus a 519 
function of both root water uptake and bare soil evaporation processes, but future work 520 
should determine how much soil moisture dynamics in these layers is explained by plant 521 
water uptake. 522 
 523 
Aboveground vegetation biomass, from a passive microwave emission perspective, 524 
does not necessarily impact the soil microwave emission profile and depth. Dense, 525 
wooded vegetation canopies de-polarize the strongly horizontally and vertically 526 
polarized soil microwave emission signal, where multiple-scattering of microwave 527 
emission through the canopy reduces sensitivity to soil reflectivity and thus to soil 528 
moisture (Feldman et al., 2018a; Kurum et al., 2011). Therefore, dense vegetation 529 
results in a higher soil moisture retrieval error variance (Feldman et al., 2021; Zwieback 530 
et al., 2019), but does not directly change the physics of electromagnetic attenuation in 531 
the soil, and thus does not change the depth of microwave emission. Nevertheless, our 532 
deeper direct microwave emission depth arguments pertain to dry soil conditions 533 
(Section 2.1), where vegetation density tends to be lower and would thus be less 534 
influenced by vegetation presence.  535 
 536 
5. Conclusions and Recommendations  537 
Our findings convey that satellite L-band retrievals effectively capture global soil 538 
moisture dynamics deeper than 5 cm in many conditions (Section 2) and are more 539 
relevant for evaluating plant function than commonly appreciated (Section 3). We find 540 
that L-band satellite soil moisture retrievals will likely have their highest utility for 541 
studying most grasslands and croplands, which cover more than a third of global 542 
vegetated surfaces. This land cover proportion is higher when including non-vegetated 543 
surfaces, given that these L-band measurements also have utility for evaluating bare 544 
surfaces where soil evaporation dominates. Grass and crop water use also decreases 545 
with depth, much like the decreasing L-band satellite soil moisture representation with 546 
depth (Fig. 1). Therefore, reanalysis soil moisture datasets that integrate rootzone 547 
dynamics between 0-100 cm and deeper may in fact be less useful than L-band soil 548 
moisture for representing plant-relevant soil moisture dynamics in grass and croplands 549 
(Fig. 3). This is because soil moisture products representing the 0-100 cm layer will 550 
integrate subdued moisture dynamics in deeper layers not relevant to the functional 551 



rooting profile concentrated in the upper soil layers. Additionally, even woody plant 552 
species that exhibit deeper root water uptake (shrubs and trees; see Fig. 3) frequently 553 
draw water nearer to the surface preferentially or temporarily within a given season. L-554 
band soil moisture observations are still useful for these scenarios at least during 555 
certain times of the year. 556 
 557 
We stress that deeper-layer (0-100 cm and beyond) soil moisture products based on the 558 
assimilation of L-band observations (i.e., SMAP L4 rootzone soil moisture; Reichle et 559 
al., 2019) are likely more optimal for the study of soil moisture memory in the context of 560 
land-atmosphere interactions, the study of deeper-rooted vegetation function under 561 
water-stress conditions, the study of infiltration and drainage fluxes, and the initialization 562 
of dynamical seasonal forecasts. Our findings here also indicate that reanalysis 563 
rootzone soil moisture products are needed for the study of many forested and mixed 564 
(i.e., savanna) landscapes that have deeper plant water uptake and often higher errors 565 
in remote sensing soil moisture retrievals. 566 
 567 
Additionally, we argue that there is no single global soil moisture product that will 568 
integrate the soil moisture layers relevant to plant water uptake and thus terrestrial 569 
water, carbon, and energy exchanges. Instead, the optimal soil moisture product 570 
changes in time and space. For studies of water, carbon, and energy exchanges at 571 
landscape scales, we encourage first understanding the typical root water uptake 572 
patterns for plant species in the study region and then carefully selecting a soil moisture 573 
dataset. Potentially, multiple products and their synergistic use are needed depending 574 
on the complexity of root water uptake scenarios.  575 
 576 
For example, for landscapes with primarily herbaceous vegetation including many 577 
croplands, grasslands, and savannas with sparse tree cover, the L-band soil moisture 578 
products are more optimal for integrating the relevant rootzone moisture information 579 
because they are typically sensitive to the shallow rootzone layers and often 580 
progressively decrease in sensitivity to deeper soil moisture, much like these 581 
ecosystem’s functional rooting profiles. These observations will additionally be optimal 582 
for the study of mostly bare surface supplied mainly by soil evaporation. Alternatively, in 583 
scenarios where prevalent deeper-rooted shrubs and trees are mixed with a shallow-584 
rooted understory, datasets representing a uniform distribution of integrated soil 585 
moisture across the top 1-2 meters of soil (i.e., model reanalysis rootzone soil moisture 586 
products) would be optimal (Reichle et al., 2019). P-band (0.4 GHz) soil moisture 587 
remote sensing applications may be useful for these scenarios as well - with potentially 588 
twice as deep of effective depths of representation than at L-band and less sensitivity to 589 
the overlying vegetation (Chapin et al., 2012; Konings et al., 2014; Shen et al., 2021). 590 
These datasets may be similarly useful for plant water stress scenarios if the given 591 
vegetation shifts its water use to deeper layers. Finally, in scenarios where root water 592 
uptake extends well below one meter for consistent or transient use of deep moisture or 593 
groundwater (McCormick et al., 2021; Miguez-Macho and Fan, 2021), care must be 594 
taken in determining when this uptake occurs. Such scenarios may occur in tropical 595 
rainforests where L-band satellite soil moisture retrievals are suboptimal due to 596 
vegetation multiple-scattering of microwaves (Feldman et al., 2018a; Kurum et al., 597 



2011). Satellite-based terrestrial water storage variations (i.e., GRACE and GRACE-FO) 598 
may be useful to study these cases and can be used in tandem with reanalysis rootzone 599 
products (Rodell and Famiglietti, 2001).  600 
 601 
Our commentary ultimately encourages broader use of L-band satellite soil moisture for 602 
the study of soil moisture’s impact on the terrestrial net carbon balance, water 603 
movement in the soil-plant-atmosphere continuum, land-atmosphere coupling, and crop 604 
yield forecasting. This is the case for grasslands and some croplands but may only 605 
extend to woody biomes in some contexts. Based on the evidence presented here, we 606 
argue that L-band satellite soil moisture is more useful than suggested by the frequently 607 
assumed skin depth support scale. Furthermore, satellite soil moisture retrievals can 608 
often serve as a more direct observation of relevant upper rootzone soil moisture than 609 
less direct precipitation wetness indices or modeled rootzone products which may 610 
include process assumptions that confound interpretations of emergent terrestrial 611 
behavior.  612 
 613 
With the availability of X-, C-, and L-band soil moisture observations, we urge more 614 
study into quantifying effective depths of representation at each frequency and how they 615 
change with soil structure and moisture across the globe. These estimates should 616 
consider both microwave soil emission depths and statistical vertical correlation 617 
arguments because previous studies evaluate these considerations in isolation (Lv et 618 
al., 2018; Njoku and Kong, 1977; Short Gianotti et al., 2019). Correlative evidence 619 
between brightness temperature and soil moisture across many depths can 620 
simultaneously capture both the direct emission depths within the radiometric brightness 621 
temperature measurements and the effective, vertical connections within the soil 622 
moisture measurements. Furthermore, to draw more conclusive evidence about L-band 623 
sensing depths under drier soils, we recommend that (1) microwave emission models 624 
used to estimate sensing depths should be adapted to account for air-soil boundary and 625 
within-layer scattering due to soil heterogeneity. (2) Field experiments should explicitly 626 
test dry soil conditions without using methods that include wet soil conditions. Drydown 627 
experiments as shown in a previous experiment may be useful in this endeavor (Newton 628 
et al., 1982). (3) Field experiments should also establish that soil moisture from deeper 629 
layers contributes much less to the signal in order to define a depth of representation. 630 
 631 
Finally, the potential value of satellite-based soil moisture deeper than a 5 cm skin 632 
depth highlights the need to maintain continuity of L-band satellite remote sensing 633 
missions. Additionally, we have discussed several factors that limit the effective L-band 634 
depth of soil representation, which motivate the need to directly observe deeper soil 635 
moisture layers with upcoming satellite missions. We namely advocate for P-band 636 
satellite soil moisture missions that can directly detect several times the effective L-band 637 
depth of representation. Planned P-band missions include the European Space 638 
Agency’s BIOMASS mission and NASA’s Signals of Opportunity P-band Investigation 639 
(SNOOPI) (Garrison et al., 2019; Quegan et al., 2019). 640 
 641 
Appendix A 642 



The e-folding length scale of microwave emission used to estimate surface soil moisture 643 
can be modeled by: 644 

𝐿𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝜆

4𝜋𝑛′′
 (Eq. A1) 645 

where  is the emission wavelength (Njoku and Entekhabi, 1996). n'' is the imaginary 646 
part of the refractive index, which is the square root of the dielectric constant. The 647 
dielectric constant is a function largely of soil moisture and soil texture (i.e., clay 648 
fraction), though soil texture has smaller influences (Shen et al., 2021). Incidence 649 
angles are not explicitly considered in these models, the consequences of which are not 650 
well known (Shen et al., 2021). LEmission is the e-folding scale that represents the 651 
emission depth of microwaves. Measurements of these microwaves are used to 652 
estimate satellite soil moisture. Nearly identical emission length scales are found when 653 
using other common emission and dielectric models (Fluhrer et al., 2022; Lv et al., 654 
2018).  655 
 656 
The e-folding vertical correlation length scale of soil moisture dynamics can be 657 
computed by: 658 

𝐿𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
𝜎𝑉′𝜌(𝑉

′,𝜃𝑠
′)

𝜎
𝜃𝑠

′
 (Eq. A2) 659 

where V is the total volume soil moisture in the column, s is the surface soil moisture,  660 
is correlation, and  is standard deviation (Short Gianotti et al., 2019). Prime 661 
superscripts indicate the time derivative. LCorrelation is a correlation length scale, or the e-662 
folding scale, that captures the decay of surface soil moisture’s correlation with the total 663 
column soil moisture. LCorrelation is thus the effective depth to which the surface soil 664 
moisture (here, being measured at least at a 5 cm depth) holds information about the 665 
total soil column moisture. Similar theoretical arguments allow interpretation of LCorrelation 666 
to be a support scale of the soil moisture magnitude and time dynamics (Akbar et al., 667 
2018). 668 
 669 
While Eq. A2 is an exact solution, total column volumetric moisture is not widely 670 
available to estimate LCorrelation globally. Thus, Short Gianotti et al. (2019) estimate 671 
LCorrelation using information about the variance of surface hydrologic fluxes (rainfall 672 
minus surface hydrologic losses) as well as surface soil moisture variance and 673 
autocorrelation (their equation 28). GPM rainfall retrievals (Huffman, 2015) and SMAP 674 
soil moisture retrievals are used together to globally estimate LCorrelation, which are used 675 
in Fig. 1.  676 
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