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Nucleate Boiling Correlation:

The ’rrc;nsfer of Jcr:ryogemlfr: prc;lpellcgn’r.l.’rhrough a p|Tpeh|n|’r|ToTIIy c:’r]c Dﬁilﬁjseis: T(;) \frc:tho’re the coJrrLeIo’rg?ks], ?gh’r cry;ﬁg?n;lc pipe Fluid Mass Accumulation During Chilldown An enhanced single-phase vapor correlation is used, where Nus,
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The hoat fransfor regimes during childown are divided s follows o ; e e Sedion” Doutshisom eciion  voporzers _ mee and the remaining ferms are nondimensional numbers that
. J g ' Fluid: Hy, N,y CH,, Oy, and Ar LNZ Flow - iquicl capture the heat fransfer augmentation from surface boiling.
Single-phase vapor convection: Far downstream of the quench Pipe lenath: of 0.1 to 6.5m End of chilldown test two-phaseE
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front where only cold vapor flow remains Outer Dipe diameter: 12.7 to 25.4 mm fest SeCTIonTgISITIIgeUCISrIi,JQenSg\tvvr]cs)fr%g?rs]esggﬁgngld VOponz\e/gporizers moevaer 7 Nu _ (1 . )Cz Rec3 Wec4]aCSAT'C6PTC7Nu EC{ 15
- - . . — I E_ ve = 11 = X.)% Re,"We,"Ja, L Niksp ~
Film boiling: the wollc ’rempero’rure IS .c:bove the rewetting Pive wall thickness: 0.51 1o 1.64 mm LNZ Flo
temperature (1., liquid approaching the wall evaporates flow direction: q d q d horizontal
entirely or is pushed away by the propulsive force of near-wall GOW . |r|ec |c|)n]. UpWSer' (%N]nwor - and horizonta Transition Boiling Correlation:
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elvaporqhon. Includes both Inverted Annular Flow and Dispersed vy \evel. 1g ana Vg J Correlation Fitting Methodology: This is a novel approach to transition boiling where the heat flux
flow. - o | . . The candidate correlation forms were created by combining smoothly fransifions from the rewetting point fo the CHF.
producing a mixfure of film and nucleate boiling Wall Conservation of Energy correlation that do not improve the accuracy of the correlations gls = qup0°t + qls(1 — 1) Fq. 16
Nucleate boiling: after the critical heat flux (CHF) the liquid D Coy B SV = G — (e — f—g EQ. | A will be eliminated. Ty —Toor
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makes full contact with the wall, and boiling heat franster FIuida(tZonservc’rion of Enerqi/ L Previous work has always considered the mass flux to be k- =q. 17
generated from surface nucleation sites dominates o, . IR constant along the test section, leading to inaccuracies in
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Single-phase liguid convection: boiling ceases below the onset my —L = i (hyin — Rr) — Mout (hf,oue — hy) R *' correlations and the equilibrium quality estimation. Our method
of nucleate boiling (ONB), and the temperature difference 9 P T TTTTTT | uses the iterative procedure below to calculate the mass flux,
. . . +th(TWi — Tf l)6AWf + — mf— Eq 2 i dws : ey e . . .
between the liguid and the wall drives heat transfer ' ' ot\"7 ps inhyim | , touchiow | R calculate the equilibrium quality, and fit the correlations. CONCLUSIONS
Conservation of Mass TR
Heat Transfer Regimes in Line Chilldown 8V 2L = 11y — T EqQ. 3 l_z __________ i I This work provided a new data reduction methodology to
Solution T Run the pipe s there a accurately determine equilibrium quality and local mass flow
Quench Front “aeh Hon s solved ~ql llv-discretized wal Guess x | | corelations| | chilldown model | Yes C;ljgn”;'ecifﬂfhe No | o rate. The improvement in accuracy of these quantities will
(Location of CHF) I(:ILIIQ:(BJ(’r)lIcl)Irr:golfan:ﬂIr?wTJm . C](SKC:I fli%ugolr?;:cﬁ \s/cgl\t/ﬁnerswumerlca y over axidily-aiscretized wad and m d;%i’gfs C\C/)v::glgﬁc\:;]s ol enable more accurate line chilldown predictions.
\ “e‘;'“x’ : coefficients? The forms of the correlations were determined by compiling
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sl S , wal lterative Solution Procedure ! S equations from prior ch!lldown development effor’rs that were fit
o L et = . = goégoo 2 el T?r?peroETur? E;TS;K]?QS cormelations 1o to smaller datasets. An iterative approach to fitting the
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Lquid | Flow ; vapor soluion P(fE CGOC;US% T'g)” R o . m(SEO U3'§>“ . (HTC estimation is challenging. Future work will involve fitting these
Film Boiling EQ. 2) el cdleuieiion - correlations) new correlations to the large cryogenic chilldown dataset and
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presenting the final correlations and coefficients.
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