Benchmark performance metrics of a vane propellant management device for a 0.15 m³ liquid hydrogen tank

K. Westra^{a,b} and J. Hartwig^b

^a Hydrogen Properties for Energy Research (HYPER) Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 US

^b Glenn Research Center, Cleveland, OH, 44135 USA

H H Grogen P drogen P roperties for E nergy R esearch Lab

Motivation

The high specific impulses of cryogenic propellants (e.g. 450s for liquid hydrogen/liquid oxygen) will see their continued use in future long-duration manned in-space missions, but this brings challenges.

[3] Adapted from Weiderkamp, K. NASA-CR-72432, 1968.

2

Comparing performance

The complexities of these PMDs must be justified by three primary performance metrics.

- 1. PMD mass, m_{PMD}.
- 2. Expulsion flow rate, m.
- 3. Expulsion efficiency, $EE = 1 V_{residuals} / V_{tank}$.

Diminishing returns in expulsion.

Vanes

This study focuses on deriving benchmark performance metrics from orthodox vanes from which to compare against.

Coop atudy	Characteristic Size	Geometry	Quantity	Associated Programs
Case study	m (in.)			
	0.24 (9.4)	Sphere	28	AEROS, IUS, SHUTTLE, etc .
	0.328 (12.9)	Sphere	94	GPS, GEOSAT, etc.
	0.391 (15.4)	Sphere	11	OTS
PROPELLANT OUTLET	0.419 (16.5)	Sphere	219	PIONEER, NOVA, TITAN II, etc.
He INLET	0.444 (17.5)	Sphere	9	ISPM, SAX
DIFFUSER ASSEMBLY	0.483 (19)	Sphere	3	EXOSAT
	0.528 (20.8)	Sphere	53	IUS
	0.561 (22.1)	Sphere	231	P-95, VIKING, CENTAUR, etc.
	0.587 (23.1) x 0.653 (25.7)	Cylindrical	8	EURECA
SIDE VERT He HEILIAM	0.71 (28)	Sphere	54	VOYAGER, SHUTTLE, CASSINI, etc.
	0.91 (36) x 1.2 (47)	Cylindrical	5	GRO
Figure 5. Apollo RCS Positive Expulsion Tank	1.0 (40)	Oblate Spheriod	28	TDRSS, COBE, EOS, etc.
[5] Stechman, R., & Sumpter, D. 1989, DOI:	Adapted from [6] Ballinger	. I.A., Lav. D., an	d Tam. W.	H. 1995.
10.2514/6.1989-2388.	DOI: 10.2514/6.1995-253	,,,, ,, 4.		

RCS thrusters provide a relevant context from which to couch
comparisons between PMDs.Selected geometry:Selected test conditions:• Cylindrical tank w/ no domes.T = 20.3 K; P = 101.3 kPa.• L_{tank} = 0.75 m; D_{tank} = 0.5 m. $F_{ullage} = 0.05$.

Model derivation

Navier-stokes equations:

$$\underline{\nabla} \cdot \underline{\mathbf{u}} = \mathbf{0}$$
$$\rho \frac{\underline{\mathbf{D}} \underline{\mathbf{u}}}{\underline{\mathbf{D}} \mathbf{t}} = -\underline{\nabla} \mathbf{p} + \mu \nabla^2 \underline{\mathbf{u}} + \rho \underline{\mathbf{F}}$$

Pressure gradient across fillet: $dP = \gamma d(R^{-1}) = -\gamma R^{-2} dR$ Assumptions:

- Incompressible.
- Steady-state.

• No body forces.

- No heat transfer.
- End-of-life configuration.

For a given volumetric flow rate, Q, area, A(λ), and initial down stream radius, R($\lambda = L_V$), numerically solve for expulsion efficiency, EE.

[4] D. Jaekle, Jr. 1991. DOI: 10.2514/6.1991-2172.

NASA

NA SA

6

Defining boundary condition, $R(\lambda = L_V)$

Sump must remain submerged.

Accomplished with overlapping propellant.

 D_v

Determine a minimum $R(\lambda = L_V)$ where $H_{OV} > H_s$.

Compare via chord lengths:

 $C(h) = (8h(R - 2^{-1}h))^{0.5}$

Find the root of:

$$O = ((C(h = H_{OV}) - C(h = H_s)) - Dv)^2$$

Results from 4 vanes with heights of 10 cm, subjected to 0.001 kg/s.

Studies – i.

8

Studies – ii.

Parametrically varied number of vanes, N_v , and vane height, H_v , between 4 – 8 and 1 – 10 cm, respectively.

NASA

Conclusions and Future Work

- Defined a case study of a 1.5 m³ LH2 tank from which to calculate performance metrics of vanes, characterized by high EE and low m.
- Future work will focus on constraining maximum expulsion flow rates of vanes with choked flow.
- This and future work will help carve out niches within the PMD design space.

Acknowledgements:

Funding was provided by a NASA Space Technologies Research Opportunities fellowship (Grant 80NSSC20K1221).

Dr. Jacob Leachman¹ and Adam Swanger² have provided technical guidance and oversight for this fellowship work. A thank you is also extended to Eric Carlberg³ for their assistance.

¹HYdrogen Properties for Energy Research Laboratory, Washington State University, WA 99164, USA. ²NASA Kennedy Space Center, Cryogenics Test Laboratory, Kennedy Space Center, FL 32899, USA. ³NASA Glenn Research Center, Cleveland, OH, 44135 USA

Thank You!

FFF

HF.

.....