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Introduction & Background

• Cryogenic fluid storage & transfer 
systems are critical to future space 
missions in LEO and beyond

• Creating accurate models of these 
systems anchored to existing data is 
essential to developing predictive tools 
for future missions

• Several experiments have already been 
conducted on orbit to collect data on 
cryogenic fluid systems

• Robotic Refueling Mission – 3 (RRM3) 
microgravity experiment is one such 
dataset that can be used to create 
these models
– Collected 4+ months worth of LEO 

cryogenic storage & transfer data

RRM3 Fuel Transfer Module on the ISS 
from Breon et al (2020)



Introduction & Background Cont’d

• Current study: Self pressurization of the RRM3 source dewar
• 50-liter Aluminum 2219 tank

– Fluid: Liquid Methane
– Duration: 7 hour Cool to Reboost period
– Thermal Desktop model created to measure:

• Tank pressurization 
• Internal & external tank temperature

RRM3 Cryogen Demonstration System Block Diagram from Kassemi et al. (2022)
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Previous 0g Self-Pressurization Model in Thermal Desktop

• A previous modeling study1 focused on 
creating a Thermal Desktop model of 
the Zero Boil-Off Tank Experiment 
(ZBOT) conducted onboard the ISS in 
2017

• Pressurization of tank containing two-
phase fluid in microgravity

• Conduction (not convection) 
through fluid is the primary heat 
transfer method in microgravity

• Liquid is modeled as a solid finite 
element nodes in TD

• Vapor modeled as a single lump
• Mass transfer across liquid-vapor 

interface (LVI) governed by 
Schrage Equation

• Pressure rise using this method 
matches data within 25%

TD Model of ZBOT Fluid and resultant Pressure Rise in Tank 
from Tesny and Hauser (2019)1Tesny, E and Hauser, D (2019)
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0g Thermal Desktop Model Setup

• Method used for ZBOT adapted 
for RMM3 Source Dewar

• Tank Wall simplified in SpaceClaim
and imported into Thermal 
Desktop

• Tank Wall represented as a series 
of solid finite element nodes

• All internal tank geometry 
removed from interior

• Liquid volume modeled as a finite 
element solid

• Ullage modeled as a single vapor 
lump

• Ullage shape and location 
approximated from CFD work that 
modeled the self-pressurization of 
the source dewar

Vapor lump

Finite element 
liquid volume

Source Dewar Thermal Desktop 
Model Cross-section



• Variable heat flux applied to 
outer tank wall to simulate 
heat loads on outside of 
source dewar
• Finite elements split into 

different horizontal 
surfaces based on original 
tank geometry

• Conduction Coefficient of 
10,000 W/m2/K between 
Tank Wall and Liquid Volume 
submodels

• Initial Temperature: 104.0 K
• Initial Pressure: 7.437 psia
• Test Duration: 7.0 hrs (Cool 

to Reboost period)

0g Thermal Desktop Model Setup

3.24 W/m2

3.73 W/m2

16.21 W/m2

6.62 W/m2

56.39 W/m2

36.89 W/m2

0 W/m2

Heat Load Distribution from Kassemi et al. (2022)
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• A similar method as in the previous ZBOT 
study was used to calculate heat and mass 
transfer across the Liquid-Vapor interface 
(LVI) Mass Transfer across LI: 
– Schrage Equation
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• Results presented for:
– Single Model: only 1 heat and mass transfer 

path across LVI surfaces
– Split Model: Heat and Mass transfer split up 

across 3 outer LVI surfaces (shown at left)

Heat & Mass transfer2

Surface1

Surface2

Surface3

0g Thermal Desktop Model Setup

LVI Discretization in Second Iteration of 
Thermal Desktop Model
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Previous CFD Modeling
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Thermal Desktop Model

Thermal Desktop OG Pressure Predictions 
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Previous 0g CFD Model Temperature Contours

SDT Locations and Internal Temperature Distribution from Kassemi et al. (2022)
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Internal Fluid Temperature (SDT, Tank Bottom)
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Internal Fluid Temperature (SDT11, near LVI)
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External Tank Temperature

SDT18 Temperature Rise 
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0g Thermal Desktop Model Temperature Contours

Middle Plane at 7.0 hrs

Split LVI

Node 
> 109, 1 

109, 1 

108. 6 

108. 1 

107, 6 

'-t 1os. 7 

107, 1 

106. 7 

106. 2 

105, 7 

105. 2 

104, 7 

104, 3 

< 104, 3 
', 

T eMpero. ture [ KJ, Ti Me = 25200 s 



Conclusions

• Split LVI Thermal Desktop Model was able to more accurately predict the 
pressure rise inside the ullage and the liquid and wall temperatures over 
the Single LVI model
– Split LVI model predicts pressure rise within ~15%, whereas Single LVI 

predicts within ~25%
• Split model also gives better agreement with data temperature rise close to 

interface due to refined heat & mass transfer prediction
– Split LVI predicts temperature rise within ~15%, whereas Single LVI 

predicts within ~50%
– Difference between models less apparent farther away from the 

interface
• Both models do similarly well predicting outside wall temperatures and 

overpredict the temperature rise by ~90%
• The Split LVI model can be used to inform design of future tank self-

pressurization in microgravity



Questions?
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